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Abstract

Feed intake control in ruminants is mediated through physical and metabolic constraints. Rumen fill, dietary fiber
concentration, and fiber digestibility are important physical constraints. Rumen volatile fatty acids (VFA)
concentrations, post-rumen nutrient assimilation and absorption, and hepatic and systemic nutrient balance (and
imbalance) are important metabolic constraints on feed intake. Blood levels of glucose and some ketones and fatty
acids are other significant players in feed intake regulation in ruminants. Research is needed to elucidate how to
optimize feeding strategies and feeding systems to improve feed intake in high-producing ruminants.
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Objective and Physical Constraints
The objective of this review article was to elucidate the main

physical and metabolic constraints on feed intake in ruminants. Over
the last 25 years, several major physical and metabolic regulators of
feed intake in ruminants have been emphasized. Ruminal fill [1-4] is
one of the central regulators of dry matter intake (DMI) under certain
circumstances such as when feeds with low digestibility are fed [5]. The
dietary NDF, especially from forage, is a key contributor to
reticulorumen fill. The greater NDF lowers the clearance rate of the
rumen contents [6]. Hence, the dietary NDF can be a key controller of
feed intake in early and peak lactation cows that have not peaked in
DMI or with limited rumen fiber pool [2]. The NDF digestibility can
significantly impact DMI [7]. As NDF digestibility increases, the
depressing effect of NDF on DMI weakens. Allen [2] stated that DMI
rose by 0.17 kg per unit rise in in vitro or in situ NDF digestibility. At
higher NDF digestibility, the NDF will have a smaller impact on rumen
distension. Thus, factors affecting NDF digestibility will affect DMI.

Metabolic Constraints
Among the important metabolic constraints of appetite are rumen

concentrations of volatile fatty acids [8,9]. Propionate injection into
the portal vein has reduced feed intake in sheep [10,11]. Propionate
rather than acetate seems to cause hypophagia [2]. Insulin secretion
[12] and hepatic receptors [10] have been proposed to mediate the
hypophagic effects of propionate. In addition to the hepatic
chemoreceptors, hepatic thermoreceptors may also control feed intake.
Di Bella et al. [13] heated the rat liver artificially and observed an
increased chewing activity with reduced feed intake.

Feed intake is ultimately a psychological phenomenon integrating
animal’s abilities to cope with changes in diet composition and
metabolic demands [14]. Thus, one must consider that the rumen or
blood VFA is only one of many factors involved in feed intake [15].
Illius and Jessop [16] suggested that imbalances in nutrient supply both
in the rumen, postrumen, and hepatic levels can reduce feed intake.

They proposed that maximizing acetate use for lipogenesis needs a
synchronous glucose supply. Glucose fuels lipogenesis by providing
ATP and cofactors such as NADPH needed for fatty acid elongation
[16]. Thus, even the high production rate of acetate, if accompanied by
adequate supply of other nutrients, may not necessarily down-regulate
feed intake. The framework of Illius and Jessop [16] presumes that
nutrient imbalances constrain feed intake via accumulation of excess
metabolites such as acetate. Therefore, the animal targets a level of
intake that minimizes nutrient imbalances. According to this
framework, in the absence of adequate glucose, acetate will mount up
and act as a hypophagic feedback.

β-hydroxybutyrate (BHBA) is another metabolite that can
contribute to feed intake regulation. Subcutaneous administration of
BHBA reduces feed intake in rats [17,18]. The satiety signals may arise
partly from direct oxidation of BHBA. Consequently, reducing
equivalents or NADH accumulate in the mitochondria and depress
feed intake [19]. Unlike BHBA, subcutaneous administration of
acetoacetate does not affect feed intake [17]. It seems, therefore, that
the process of hepatic BHBA conversion to acetoacetate involving
other metabolites and co-factors and not acetoacetate per se influences
satiety. The role of BHBA on feed intake regulation needs further
research in ruminants.

Mayer [20] was the first to suggest that blood glucose controls feed
intake. Mayer [20] indicated that the hypothalamus takes up glucose
and thereby monitors and controls peripheral blood glucose.
According to the Mayer’s glucostatic theory, the hypothalamus controls
blood glucose by controlling feed intake. Early trials with intra-
ruminal, intra-venous, or intra-cerebroventricular glucose infusion in
sheep [21], goats [22,23] and cattle [24] demonstrated no effects of
glucose on feed intake. Blood glucose and its diurnal fluctuations are
considerably lower in ruminants than in non-ruminants [25]. Thus,
blood glucose does not seem to be as significant in controlling feed
intake in ruminants as it is in non-ruminants. This is not surprising,
because due to the extensive rumen fermentation of dietary
carbohydrates, VFA and not glucose are the main digestion end-
products absorbed across the gut in ruminants [26]. When high-starch
diets containing corn and sorghum grains are fed, however, the
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amount of intact or partially hydrolyzed starch escaping the rumen
may increase [27]. The intestinal starch and the resulting glucose may
affect feed intake. The role of the absorbed glucose across small
intestine on feed intake regulation requires has not been elucidated.

Implications
Physical and metabolic constraints on feed intake in ruminants were

reviewed. Optimal feeding strategies and feeding systems must be
adopted to regulate feed intake such that rumen and intermediary
metabolism can be optimized. Research is needed to elucidate how to
optimize feeding strategies and feeding systems to improve feed intake
in high-producing ruminants.

Conclusion
Reproductive performance of Holstein Friesian herd in the tropical

highland of Ethiopia had been mainly affected by period of calving/
birth, parity and origin of sire. However, merely NSC was affected by
sea-son of calving among the studied traits. The overall performance of
all reproductive traits under this study indicated poor performance of
the herd comparative to its counterpart herd in the same altitude range
of the tropics and ideal ranges for dairy cows. This wastage of months
to reach first age of calving and cyclical nature of the cows can be
corrected by better feeding management and proper heat detection.
Therefore, special emphasis has to be given on these factors as key
entry point for increasing reproductive efficiency to enhance the
replacement rate of the herd for crossbreeding program in tropics.
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