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Abstract

the disease.

The Human Leukocyte Antigen (HLA) gene loci contains immune system-related genes involved in antigen
presentation and in recent years, certain genetic variants in HLA genes have been associated with increased risk for
late-onset Parkinson’s disease (PD), the second most common neurodegenerative disorder, in combination with
pyrethroid pesticide exposure. The mechanisms behind this interaction are currently under investigation. Evidence
that immune responses may confer and/or modulate risk and progression of PD is mounting. Therefore, a clear
understanding of how the immune system plays a role in this and other neurodegenerative disorders will be critical
for successful development of disease biomarkers, and therapeutic interventions to delay or ameliorate the course of
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Introduction

Parkinsons disease (PD) is an age-related chronic, progressive
neurodegenerative disorder that is defined clinically as a set of motor
symptoms (bradykinesia, rigidity, postural instability, and resting
tremor); histopathologically, PD is characterized by the degeneration
of specific neuronal populations associated with a-synuclein inclusions
called Lewy bodies [1,2]. The precise etiology of late-onset PD remains
unknown, hence the term idiopathic PD [3,4]. Multiple mechanisms
including mitochondrial damage, oxidative stress, proteinopathy, and
inflammation have been implicated in the neuronal injury and loss
that occurs in PD [1,5,6]. The relative importance and relevance of
these different mechanisms continues to be enthusiastically debated.
The activation of the immune system has been shown in numerous
ways in the pathophysiology of PD [7-10]. Activated microglia can be
visualized on PET scan and on post-mortem examination in brain
regions affected in PD, including the pons, midbrain, thalamus and
cortex [8,11,12]. Infiltration of T lymphocytes has also been
demonstrated in the human PD brain, suggesting that activation of the
adaptive immune system occurs during its development [13]. These
findings as well as alteration of peripheral immune cell populations
and cytokine levels strongly support that a dysregulated inflammatory
state occurs in a significant fraction of PD patients [14-16]. It is
unclear, however, whether this dysregulated inflammation is the cause
or by-product of neuronal dysfunction and death. The normal function
of the immune system is to discriminate self from non-self while
specifically targeting and eliminating potentially pathogenic or toxic
antigens. As novel genetic and environmental risk factors for PD are
elucidated, it logically follows that the immune system provides a

mechanistic link between ones genetic background and one’s
environmental exposures which come together to determine our
overall risk for development of the disease. This idea is particularly
attractive as many of the proteins most highly associated with PD
pathogenesis, including alpha-synuclein and LRRK2, are enriched in
both immune cells and neuronal populations [17].

Linking Genetic and Environmental Risk Factors for
Parkinson’s Disease through HLA

The identification of the common genetic variant or single
nucleotide polymorphism (SNP) at 753729882 within the non-coding
region of the HLA-DRA gene in genome-wide association studies
(GWAS) provided a testable mechanism of disease susceptibility
unique to the immune system [18-21]. Antigen presentation is
uniquely responsible for activating the adaptive immune system
through presentation of peptides on Human Leukocyte Antigen (HLA)
proteins [22-24]. Once the adaptive immune system, T and B
lymphocytes, has been directed against antigens presented on HLA
proteins, it can orchestrate inflammatory responses as well as targeted
destruction of specific cells. In other words, an adaptive immune
response could selectively target the neuronal populations that
degenerate in PD and help drive the pathogenic process underlying
disease. Therefore, although it has been proposed that the selective
vulnerability of dopaminergic neurons to degeneration stems from
their inherent vulnerability to oxidative stress, mitochondrial
dysfunction, protein aggregation, and inflammatory stress, it is also
possible that selective targeting for destruction by the adaptive
immune system may represent an additional mechanism that
contributes to neuronal loss. In fact, this idea may also help explain the
involvement of other non-dopaminergic neuronal populations in PD
which are not thought of as “vulnerable” to cellular stressors and the
loss of which gives rise to non-motor symptoms of PD (Figure 1).
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Figure 1: Proposed paradigm for synergy of genetic background and environmental exposure in individual risk for PD. Genetic background
influences on€’s neuronal susceptibility to degeneration and one’s process of immune activation and maintenance. Environmental exposure can
induce neurotoxicity and/or immune activation, which over time contributes to downstream chronic inflammation, neurodegeneration, and

GWAS reported that the G allele at 1537129882 SNP in the HLA-
DRA gene was present at a higher frequency in subjects with PD of
European ancestry [19]. In individuals of European ancestry,
homozygous carriers of the high-risk G allele had a 1.7-fold increased
risk of developing PD in one of the largest GWAS performed including
this locus [19]. We then set out to determine if we could go beyond the
GWAS association and determine whether individuals of European
descent with GG versus AA genotype at rs3129882 had antigen
presenting cells with altered expression of HLA mRNA and protein
[25]. We found that GG individuals displayed 1) increased baseline
expression of HLA-DR on the major antigen presenting cell (APCs)
populations peripherally (B cells and monocytes); and GG individuals
with PD displayed 2) increased baseline expression of MHC-II mRNA
in APCs from subjects with the high-risk GG genotype; 3) greater
inducibility of HLA-DQ surface expression in monocytes compared to
AA (low-risk) individuals with or without PD; and 4) greater
inducibility of MHC-II mRNA expression with IFN-y stimulation in
cells from PD patients with the high-risk GG genotype [25]. In general,
the high-risk SNP seems to be associated with higher levels of MHC-II
expression [25]. Higher levels of MHC-II expression during an
immune response could allow for activation of more numerous and
diverse epitopes. These epitopes could then enhance or initiate a
neuroinflammatory response that can hasten neurodegeneration.
Antigens which could trigger neuroinflammatory responses in PD are
yet to be definitively identified but studies show that post-
translationally modified alpha-synuclein or dopaminergic neuronal
proteins may be targets [26-29].

Given the functional aspects we observed on the associations with
the genetic risk factor and surface-expression of MHC-II proteins on
APCs, we sought to determine if there were any environmental
exposures that synergized with the 53729882 SNP. Indeed, we
demonstrated that chronic exposure to pyrethroids in people with the
high-risk GG genotype significantly increased risk of PD [25].
Pyrethroids are known to exert neurotoxic effects in insect brain cells
by inhibiting voltage-gated sodium channels [30]. Interestingly, overt
neurotoxicity is not often observable in humans in part due to the
diversity of channels proteins present on human neurons [31].
However, pyrethroids can cause hyperexcitability in neurons via

reactive oxygen species and have been documented to exert
dopaminergic dysfunction in rodents [30,32-37]. Although pyrethroids
were deemed to be safe for humans because their brain penetrance was
minimal, these same sodium channels are present on peripheral
immune cells and their function in these cell types is not well
understood [38]. Pyrethroids can be absorbed through the respiratory
tract or skin with a plasma half-life in humans of about 6-7 hours [39].
In exposed farm workers, plasma levels of pyrethroid metabolites
could reach up to 10 ng/mL [40]. These compounds are metabolized by
esterases or cytochrome P450 enzymes in the liver and then excreted in
the urine [41]. Pyrethroid exposure in humans has shown to be
associated with alterations in peripheral immune cell populations as
well as in serum cytokine levels [42-44]. Treatment of mammalian
immune cells with pyrethroids resulted in alterations in cytokine
secretion and production of reactive oxygen species [45-47]. A recent
study has shown that pyrethroids can activate primary microglia in a
sodium-channel dependent manner [38]. It is unknown how
pyrethroids may affect the antigen presentation process. Pyrethroids
may accentuate ongoing immune responses by acting on APCs such as
microglia or macrophages and/or by acting on the T cells activated by
APCs.

Contextualizing the Immune System in Gene-
Environment Interactions

Indeed, our preliminary studies in vitro reveal that pyrethroids can
accelerate the replication rate of Jurkat cells, a T-cell leukemia cell line,
as measured by a flow cytometric cellular division dye. Two types of
pyrethroids, esfenvalerate and permethrin, can both accelerate the
number of divisions in this cell line over a 60-hour period (Figure 2).
Rotenone, a mitochondrial inhibitor linked to increased PD risk, only
accelerated cell replication at the lowest dose and significantly
dampened it at higher doses. These data suggest that one of the ways in
which pyrethroids could increase risk for PD is through
immunomodulation at the T cell level at the very minimum. It remains
to be seen whether pyrethroids can alter APC function and synergize
with elevated HLA expression and inducibility observed in human
immune cells from individuals with the high-risk 753729882 SNP.
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Figure 2: Pyrethroids increase rate of Jurkat T cell line proliferation. Carboxyfluorescein succinimdyl ester (CFSE)-labeled Jurkat T cells were
allowed to proliferate in the presence of various concentrations of pyrethroids for 60 hrs and then were analyzed by flow cytometry in
quadruplicate. Frequency of cells in 3™ division (A), change in median fluorescence intensity (MFI) of population CFSE dye (B), and
representative flow cytometry plots (C) are indicated. One-way ANOVA with Sidak post-hoc test was used to assess significance with
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Besides pyrethroids, it is possible and even likely that other
environmental factors may synergize with the 753729882 high-risk SNP
to increase risk for PD. Other environmental factors independently
associated with PD include traumatic brain injury, heavy metals, and
viral infections [48-50]. In particular, certain strains of influenza are
known to cause parkinsonism, such as the encephalitis lethargica
epidemic that arose after the Spanish Flu of 1918 [51]. In animal
models, infection with neurotropic influenza viruses can cause PD
brain pathology [52]. From a small subset of the subjects in our study,
we assessed whether antibody titers against the HIN1 flu virus differed
among individuals with the high-risk versus low-risk rs3/29882 SNP.
In our small sample, there was no significant difference in these titers
regardless of whether individuals had the high-risk GG genotype or
had PD (Figure 3). The strain of flu virus and time since infection
would be particularly important determinants of any provoked
neuroinflammatory response which may explain the negative results in
this preliminary experiment. Larger studies which test a variety of flu
strains from various years may be more revealing as to whether
influenza infection can synergize with the 753129882 SNP. It remains to
be determined whether influenza is a true etiologic factor for PD
through the HLA locus.

100000 5
I
&
. v
> °
8 10000 _é !%_ ‘V% vy
=] -ﬁ
- 00 V \A Ad
< °
§ 1000{f O o v
5
=
=
£
1001— ' . .
CTRLAA CTRLGG PD AA PD GG

Figure 3: Antibody titers to influenza virus do not differ between
individuals with Parkinson’s disease and healthy controls or
between those with the high-risk versus the low-risk genotype at the
rs3129882 SNP. Serum from subjects was assayed by ELISA for
detection of the 2012 HINI flu virus. One-way ANOVA with Sidak
post-hoc test was used to assess significance with treatment and
stimulation as covariates. ~"p<0.001, “p<0.01, “p<0.05.
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As we move forward in understanding neuroinflammation in PD, it
will be critical to identify the antigens that initiate and maintain
immune responses that selectively target and destroy neurons. New
studies implicate Parkin and PINK-1, two proteins associated with
genetic and sporadic forms of PD, may play a role in the regulation of
antigen presentation of mitochondrial antigens [53,54]. Nearly all of
the proteins associated with PD, including alpha-synuclein and
LRRK2, are present in both immune cells and neurons but their
functions in immune cells are not clear and have been underexplored
within the context of neuroinflammation in PD [55]. Our study also
demonstrated that the 753129882 SNP association may be reversed or
absent in specific ethnic groups suggesting a genetic or epigenetic
mechanism linked to the 53129882 SNP in different ways different
populations [25]. Identification of the underlying genetic or epigenetic
mechanisms linked to the rs3729882 SNP will be critical to our
understanding of immune pathophysiology underlying PD
development and/or progression. In summary, we posit that the
immune system is likely to be the nexus for the gene-environment
interactions that contribute to immunotoxicity and development of
PD. Understanding the role of immunity and immune dysfunction in
PD will help us delineate the etiology and intervene in the
pathophysiology of this debilitating disease.
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