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Introduction
The development of an episomal vector

During the last decade many clinical gene therapy trials have 
been taken place. Besides beneficial results for the patients, also severe 
problems became obvious regarding safety aspects of the currently 
used technologies. Currently, a variety of episomal vectors of different 
origins find broad application in gene therapeutic approaches. Episomal 
vectors of viral origin benefit from their high transduction efficiency 
of most tissues and cells. Nevertheless, their successful application is 
limited by several safety issues. For example, adenoviral vectors were 
successfully used for gene therapeutic correction of Crigler Najjar (CN) 
disease in rats for more than 2 years [1]. These vectors can be produced 
easily, but bear the potential risk of random integration and toxicity 
[2,3]. Adeno-associated virus (AAV) based vectors have also been used 
in several clinical studies regarding cystic fibrosis, Parkinson’s disease, 
and haemophilia B [4-6]. AAV vectors display low toxicity, but low 
cloning capacity and rare integration events are limiting factors [7]. 
Episomal vectors that are of herpes simplex viral origin have a large 
cloning capacity and are capable of transducing neurons, myoblasts, 
retinal cells, and hepatocytes - but also bear the potential to integrate 
into the cellular genome [8-11]. Efficient and sustained transgene 
expression was also achieved with non-integrating lentiviral vectors. 
Even though the integration risk of these vectors is greatly reduced, loss 
of expression in non dividing cells and a remaining risk of insertional 
mutagenesis were observed [12]. Since episomal vectors of non viral 
origin lack the ability to transduce the target cell, they represent 
an attractive alternative to viral vectors. The naked DNA (plasmid 
DNA) needs to be transfected into target cells, and once delivered 
into nuclei these vectors exhibit different strategies for replication and 
maintenance. The Epstein Barr virus (EBV) derived plasmid replicon 
replicates once per cell cycle but requires expression of viral proteins 
(EBNA) bearing the risk of cellular transformation [13,14]. With the 
construction of the first human artificial chromosome (HAC) in 1997 
a break through for gene therapeutic approaches was expected. The 
key advantages of HAC include their mitotic stability, non integrating 
maintenance, and large cloning capacity [15], while specialized 
delivery techniques are required [16]. Recently, HACs were firstly 
applied in a gene therapy approach using the mdx mouse model for 
Duchenne muscular dystrophy (DMD). In the two step approach, 
initially mesoangioblasts from dystrophic mdx mice were genetically 

corrected with a HAC containing the human dystrophin genetic locus, 
and subsequently engrafted robustly into mice. A morphological and 
functional amelioration of the phenotype that lasted for up to 8 months 
after transplantation was observed and indicates a potential role of 
HACs in pre-clinical studies [17].

As outlined above, viral based vectors bear potential safety risks 
like insertional mutagenesis and may trigger innate immune reactions 
[2]. In consequence, viral vectors are used in gene therapy solely after 
a careful risk benefit analysis. Accordingly, non viral, autonomously 
replicating vectors are considered to be a safe alternative, but their 
application in gene therapy is nowadays strongly limited due to their 
low establishment efficiency [18]. Attempts to construct non-viral 
episomal vectors date back to the 1980s when ARS (autonomously 
replicating sequences) have been described in yeast [19]. The basic 
was to identify replication promoting sequences in mammalian cells 
and insert them into plasmids, very similar to the ARS assay in yeast. 
Thus, these “new” vectors would undergo the safety problems of viral 
vectors and should not lead to transformation of the recipient cell 
[18]. Yeast ARS are short sequences and represent binding sites for the 
ORC (origin recognition complex) [20]. The ARS isolated from yeast 
were found to promote replication when inserted into a plasmid [19]. 
When mammalian DNA was restriction digested and cloned into yeast 
plasmids, a multitude of sequences was found to promote replication 
in yeast. Transfected in mammalian cells however, the plasmids did 
not replicate autonomously and rather got lost from cells or integrated 
into the genome. These results suggested that some sequences of the 
mammalian genome somehow substitute ARS in yeast but do not 
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Abstract
Nowadays, in most gene therapy trials virus based vectors are used because of their high efficiency. Nevertheless, 

safety risks like transformation of the cell by viral proteins, insertional mutagenesis, or innate immune reactions 
cannot be excluded. Basing on the idea of an ideal vector for gene therapy that is highly efficient but lacks these 
safety risks, non viral vectors systems represent an attractive alternative. With the construction of the non viral, S/
MAR based vector pEPI at the end of the last century, a first step towards non viral gene therapy has been made. 
S/MAR based vectors do not contain any viral elements, do not integrate and show stable transgene expression in 
the targeted cell or organism. Within the last decade, S/MAR based vectors were further improved and modified, 
and find now broad application in basic research and also become more and more recognized in gene therapeutic 
and clinical trials.
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act as origins of replication in mammalian cells. Insertion of putative 
mammalian origins of replication into plasmids resulted in a few rare 
cases in episomal maintenance [21,22]. Subsequent sequence analyses 
of various mapped mammalian origins of replication revealed no 
sequence homologies but rather a number of structural characteristics, 
such as long AT-rich regions, CpG islands, bent DNA and the presence 
of S/MAR (scaffold/matrix attached region) sequences [23,24]. S/MAR 
sequences are involved in a wide variety of biological processes in 
which compatibility to the nuclear matrix is of importance, including 
origin of replication function [25,26], modulation of gene expression 
[27], insulator function [28], and long-term maintenance of high 
transcription levels by counteracting DNA methylation [29,30]. In the 
late 1990 a non viral, episomal, and autonomously replicating plasmid 
was constructed in our lab: The S/MAR based vector pEPI replicates 
episomally and is mitotically stable over hundreds of generations in the 
absence of selection [31]. During the following years, pEPI attracted 
more and more attention. Based on the first prototype, inducible vector 
derivates were constructed, pEPI minicircle plasmids were developed, 

and facing to its potential application in gene therapy approaches, pEPI 
was improved for in vitro and in vivo applications. These issues will be 
discussed in detail in the following section, pointing out an exciting 
role for pEPI in basic research and future gene therapeutic applications 
(Table 1). 

Episomal S/MAR vectors

As mentioned above, the first vector shown to replicate 
autonomously in a variety of cell lines and retained in the absence 
of selection was the vector pEPI-1. The large T antigen of SV40 was 
replaced by a S/MAR sequence derived from the human β-interferon 
gene cluster [31]. Multiple AATATATTTA elements in this sequence 
serve as DNA unwinding elements (DUE) and allow stress-induced 
DNA duplex destabilisation of dsDNA [32]. In CHO cells, pEPI 
replicates at low copy numbers with 5-10 copies per cell [33] and is 
stably retained in the absence of selection for basically unlimited time 
[31]. Episomal maintenance of pEPI was observed in several other 
cell lines including HeLa, HEK293, and even human primary cells. 

promoter 
modification application transfection method reference 

pEPI-1 CMV promoter in vitro lipofection Piechaczek et al. [31]
Jenke et al. [34] 

(prototype) Papapetrou et al. [43]
Tessadori et al. [39] 

in vivo pig embryos sperm-mediated gene Manzini et al. [44] 
transfer

pEPI-CAG CAG promoter in vitro CHO-K1 lipofection Manzini et al. [48] 

pEPI-AAT aplpa1-antitrypsin in vivo hydrodynamic injection, Argyros et al. [45] 

(AAT) promoter
systemic injection of PEI- 
DNA Wong et al. [64]

pEPI-Ubc human Ubc promoter in vivo hydrodynamic injection, Argyros et al. [45] 
systemic injection of PEI- 
DNA Wong et al. [64]

pEPito hCMV/EF1P in vitro HEK293, NIH 3T3 lipofection
Haase et al. [49]

in vivo mouse liver hydrodynamic injection

pEPI-TetON TRE tight module in vitro CHO-K1 lipofection
Rupprecht et al. [42] 

in vivo mouse liver hydrodynamic injection

backbone
modification application transfection method reference 

pEPito CpG depleted in vitro HEK293, NIH 3T3 lipofection
cbackbone Haase et al. [49]

in vivo mouse liver hydrodynamic injection

S/MAR based lacking bacterial in vitro CHO-K1 lipofection Nehlsen et al. [54]
minicircle elements Broll et al. [57]

in vivo mouse liver hydrodynamic injection Argyros et al. [58] 

cell line/ organism

CHO-K1, HeLa, IMEF,
HCT116, CD34+ cells,

mouse liver, neonatal
mouse liver, lungs, heart,
brain, kidney 

mouse liver, neonatal
mouse liver, lungs, heart,
brain, kidney 

cell line/ organism

Table 1: Modifications of the prototype pEPI applied to the promoter and plasmids backbone.



Citation: Hagedorn C, Lipps HJ (2011) pEPI for Gene Therapy: Non-viral episomes and their Application in Somatic Gene Therapy. J Cell Sci Ther 
S6:001. doi:10.4172/2157-7013.S6-001

Page 3 of 8

J Cell Sci Ther Gene Therapy:
Somatic & Germline

ISSN: 2157-7013 JCEST, an open access journal

In all tested cell lines the vector was mitotically stable in the absence 
of selection and occurred in an average copy number below 10 per 
cell [18], indicating a highly efficient replication and segregation. In 
established cells pEPI is associated with the nuclear matrix via the matrix 
protein SAFA and segregation occurs with the host chromosomes via 
hitchhiking (Figure 1) [34]. Although hitherto data are unsuggestive of 
preferential binding sites of pEPI to certain mitotic chromosomes, it 
may be possible that binding of pEPI is restricted to specific sequence 
elements [33,35]. Like the cellular genome, pEPI replicates once per cell 
cycle during early S phase. The origin recognition complex was shown 
to assemble at various regions of the episome [36], thus behaving as the 
initiation zone of genomic origins of replication [23] (Table 2).

After transfection and an initial selection phase, only a small 
percentage of vector molecules (1-5%) establishes stable as an episome, 
even though pEPI carries all cis-acting elements required for episomal 
replication and maintenance. This low establishment rate is one 
main limiting factor of pEPI for its use in gene therapy approaches. 
Therefore, it is most likely that epigenetic mechanisms are involved in 
the establishing process; a phenomenon that has also been reported for 
EBV-based vectors recently [37,38]. Once established pEPI localises in 
the interchromatin space (regions of less condensed chromatin) and 
is found to associate with nuclear speckles, a nuclear region involved 
in RNA processing. An association with early replicating foci that 
is stably retained over mitosis may explain the high mitotic stability 
of the vector. The establishment efficiency strongly depends on the 
nuclear compartment the vector reaches after transfection and the 
chromatin structure it thereby adopts. But when established pEPI 
behaves surprisingly non-dynamic throughout the cell cycle [33,39] 
and is associated with histone modifications typically found in active 
chromatin. Especially within the S/MAR region an accumulation 
of active modifications like H3K4me1 and H3K4me3 is detectable 
[40]. But regardless of successful establishment, only 30   70% cells 
containing pEPI as an episome display transgene (GFP) expression 
to a level detectable by FACS, suggesting that minimal transcriptional 
activity is sufficient to assure vector replication and maintenance. 
However, the expression profile of a single cell clone remains constant 
over numerous cell generations.

Modifications, Improvements and Next Vector Generations

The underlying mechanism of episomal replication and 
maintenance of pEPI is an active transcription running into the S/
MAR. It has been demonstrated that whenever transcription running 
into the S/MAR was abrogated, i.e. by deletion of transgene, deletion of 
the promoter, or a termination signal between transgene and S/MAR, 
establishment failed and plasmids got lost from the cells or in some 
rare cases even integrated into the host genome [41]. Recently, in a 
proof of principle experiment an inducible vector was constructed in 
which transcription unit was under control of a tetracycline responsive 
promoter (TetON). Cells were transfected in the presence of doxycycline 
to ensure establishment. Subsequently, removing of doxycycline 
after establishment resulted in constant loss of vector molecules 
from cells. Furthermore, the pEPI-TetON system also works in vivo. 
Hydrodynamic injection of pEPI-TetON in mice and simultaneous 
administration of doxycycline resulted in a 5 fold increased transgene 
expression in mice liver. Despite these exciting results, the system 
demands further improvements since background expression of 
the transgene was also detectable in the absence of doxycycline [42]. 
These results provide evidence of an active transcription running into 
the S/MAR being essential for the episomal behaviour of the vector. 
Accordingly, modifications solely apply to vector backbone, insertion 
of additional, functional sequences, and insertion of diverse promoters 
(Figure 2). 

Basically, the prototype vector pEPI-1 represents an almost ideal 
vector for gene therapy: Its episomal replication and maintenance has 
been shown in several cell lines [43] and has successfully been used 
for animal transgenesis [44]. Moreover, pEPI is completely based on 
chromosomal elements [31] and does not integrate into the cellular 
genome [41]. But pointing towards gene therapeutic applications, 
long-term transgene expression and episomal maintenance in every 
cell type are of immense importance. Subsequently, several endeavours 
were made to improve pEPI for in vitro and in vivo applications. It 
has been reported that early silencing of the CMV promoter in vivo is 
due to cytosine methylation within the CMV [45]. To circumvent early 
silencing in vivo, the CMV promoter of pEPI was replaced by a CAG 
promoter. The CAG promoter represents a synthetic hybrid promoter 
consisting of CMV enhancer element, chicken beta actin promoter 

Figure 1: (a) Simplified illustration of episomal maintenance. S/MAR sequences (blue) mediate binding of chromosomal DNA (loops) to the nuclear scaffold (brown). 
pEPI is bound to the nuclear scaffold via a SAF A – S/MAR interaction. Presumably, additional proteins are involved. (b) FISH staining of pEPI molecules (purple) 
attached to metaphase chromosomes (blue), using the hitchhiking principle to be segregated during mitosis.
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transgene 
modification application transfection method reference 

pEPI-EGFP EGFP in vitro lipofection Piechaczek et al. [31]
Jenke et al. [34] 
Papapetrou et al. [43]
Tessadori et al. [39] 

in vivo mouse liver hydrodynamic injection Rupprecht et al. [40] 

pEPI-Luc luciferase in vitro U251 lipofection Argyros et al [58] 

in vivo hydrodynamic injection, Argyros et al. [45] 
systemic injection of PEI- 
DNA Wong et al. [64]

ultrasound-mediated Li et al. [70]
RIF-1 tumors

iBAC-S/MAR-LDLR LDLR in vitro CHO ldlr(-/-) lipofection Lufino et al. [59]

S/MAR- CR-HBB in vitro MEL, K562 lipofection Sgourou et al. [60] 

pBcLucA1 bcl-2 in vivo mouse liver hydrodynamic injection Wong et al. [64]

pEPI ? 1? PDX1 in vivo rat liver hydrodynamic injection Cim et al. [66]

S/MAR ? UbC ? GDNF
? S/MAR in vivo rat brain stereotactical injection Yurek et al. [69]

pEPI-b3a2 hU6-bcr abl shRNA in vivo 

 

K562 lipofection Jenke et al. [61] 

pEPI-RNAi hU6-HBV shRNA in vivo 

 

HepG2-2.15 lipofection Jenke et al. [62] 

gene transfer with
microbubbles

mouse liver, neonatal
mouse liver, lungs, heart,
brain, kidney 

pancreatic 
transcription factor
pdx1

rat glial cell line- 
derived neurotrophic
factor (GDNF) 

beta  ‑globin
microlocus cassette 

cell line/ organism

CHO-K1, HeLa, IMEF,
HCT116, CD34+ cells,

mouse left hind muscle

Table 2: Modifications of the prototype pEPI applied to the transgene.

Figure 2: (a) Schematic illustration of the functional elements of pEPI: Expression of the respective reporter- or transgene (green), driven from an active promoter 
(turquoise) has to run into the S/MAR element (blue). When these preconditions are not given, S/MAR based vectors fail to establish episomally. In consequence they 
got lost from the cell or, in rare cases, integrate into the cellular genome. (b) Modifications of pEPI vectors solely apply to promoter, transgene and backbone. 
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sequences and rabbit beta globin 3’ UTR sequences [46]. This promoter 
is described to be less prone to cytosine methylation and displays 
stable transcription in a variety of tissues in vivo [47]. Inserted into 
pEPI 1, increased eGFP expression levels for pEPI-CAG (pEPI 1 25%, 
pEPI-CAG 55%) were detected [48]. Likewise, a combination of CMV 
enhancer element and elongation factor-1 promoter (hCMV/EF1P) 
gave long term gene expression in vitro and in vivo [49]. Moreover, 
to avoid innate immune reactions, a reduction of the CpG motifs in 
pEPI backbone has proven to be promising. The CpG reduced vector 
pEPito showed improved establishment rates in vitro, and transgene 
expression driven from pEPito was stable up to 32 days post injection 
in vivo [49]. 

Preventing innate immune responses is one of the main challenges 
towards safe gene therapy. Thus, the design of a vector lacking any 
bacterial elements was a step forward. The so called minicircles were 
originally constructed with the use of recombinases [50-55], but are 
nowadays also commercially available [56]. Like pEPito, S/MAR based 
minicircles display enhanced transgene expression and sustained 
transgene expression in vitro and in vivo. Introduction of two Flp 
recombination sites into pEPI at either side of the promoter transgene 
S/MAR cassette led to the first S/MAR based minicircle. The subsequent 
induction of a Flp recombinase resulted in a recombination event 
and the emerging of two circular units: one containing the bacterial 
elements and one containing exclusively the promoter transgene S/
MAR cassette [54]. S/MAR minicircles are maintained episomally 
with increased expression levels and establishment rates in vitro [57] 
as well as in vivo [58]. A new generation of the S/MAR minicircles with 
a truncated S/MAR element (~700 bp) displayed further improved 
stability and transgene expression in vitro [57]. An overview of the S/
MAR based vector generations is given in Figure 3. Interestingly, the 
prototype pEPI 1 as well as next vector generations establish within 
a certain range of plasmid copies per cell, suggesting a stringent copy 
number control in the recipient cells. The contradicting observation of 
similar copy numbers and broad variations in expression levels leads 
to the suggestion that epigenetic features, chromatin structure, and 
nuclear localisation strongly influence the regulation of transcription 
from non-viral episomes. 

Applications
In vitro

As discussed above, S/MAR based episomes have been 
demonstrated to function successfully in vitro and in vivo. For 
example, episomal maintenance in primary human fibroblast-like cells 

and at low levels even in human CD34+ cells has been demonstrated 
[43]. To ensure natural regulation an expression of the therapeutic 
gene, insertion of whole genomic DNA loci including all regulatory 
elements into the respective vector is of uttermost importance for gene 
therapeutic applications. Recently, is has been shown that pEPI is not 
only capable of expressing one single transgene. In two approaches, 
cloning of genomic loci into S/MAR based vectors was impressively 
demonstrated. The genomic locus of the human low density lipoprotein 
receptor (LDLR) with 135 kb in size was cloned into a S/MAR based 
vector [59]. The iBAC-S/MAR-LDLR was maintained episomally for at 
least 11 weeks and excitingly was also capable to restore LDLR function 
completely when transfected into CHO ldlr(-/-) cells [59]. In a similar 
approach, Sgourou and colleagues were able to express beta globin at 
physiological levels by combining an S/MAR element with the beta 
globin microlocus cassette, including the locus control region of beta 
globin (betaLCR-HBB) [60]. However, besides the utilisation of S/MAR 
based vectors to express therapeutic genes, they are also suitable for 
expressing gene regulatory sequences. Following the idea of silencing 
viral genes, the bcr abl fusion gene was used as a first target for shRNA 
expressed by pEPI. Indeed, a significant decrease of bcr-abl gene 
expressing in K562 cells was detectable, while again the vector behaves 
like an episome in the absence of selection for at least four month [61]. 
In a next approach, shRNA targeting HBV replication associated gene 
expression was designed and cloned into pEPI. A significant reduction 
of HBV DNA content in HepG2-2.15 cells was detectable eight month 
post transfection [62].

In vivo

Five years ago, pEPI was firstly utilised in a fascinating in vivo 
approach. Vector DNA was delivered into female pigs using sperm 
mediated gene transfer (SMGT) with surprising results: Transgene 
(GFP) expression was ascertained in nine out of 12 modified pig foetuses 
and if expression was shown, it was detectable in all tissues of the foetus 
with up to 80% of GFP expressing cells [44]. The high efficiency in 
this first in vivo approach indicated that pEPI is capable of adopting 
the respective epigenetic features needed for efficient establishment 
and propagation in the developing organism. But researchers were 
confronted with a much more complex situation when pEPI was firstly 
delivered into differentiated tissues. These approaches seem to be more 
challenging, as one of the main imitating factors is rapid silencing 
of transgene expression. As mentioned above, this silencing process 
was described to be due to cytosine methylation within the promoter 
sequence and often occurs within the first week post transfection 
[45,63]. The insertion of tissue specific promoters was a crucial step 

Figure 3: Schematic depiction of pEPI vector generations. The prototype pEPI (a) was constructed in 1999 [31] consisting of a CMV GFP S/MAR expression cassette, 
while (b) pEPI used today harbours EGFP [41]. The construction of the pEPI minicircle (c) resulted in a vector lacking any bacterial residual elements [54]. (d) pEPito 
represents a derivate of the prototype pEPI with a CpG depleted backbone [49]. In our group, an inducible pEPI vector was constructed (e) in which transgene 
expression is under control of a tetracycline responsive promoter [42].
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to overcome this phenomenon. Cloning of a liver-specific promoter 
(alpha1-antitrypsin; AAT) into pEPI resulted in prolonged transgene 
expression in mice liver for up to 24 weeks [45]. Since it is known 
from in vitro experiments that S/MAR based vectors solely establish 
in mitotically active cells, this situation was mimicked in the mice liver 
by a 70% partial hepatectomy. Surprisingly, both, the AAT  as well as 
the CMV based vectors failed to establish in the regenerating liver and 
subsequently got lost [45]. Again, a similar behaviour was observed in 
vitro when establishment efficiency of pEPI was determined without an 
initial selection phase after transfection (own observations). An elegant 
strategy for in vivo selection was published recently [64]. The authors 
provided a survival advantage for transfected cells over non transfected 
cells by introducing the bcl 2 gene in a liver specific pEPI vector (pEPI 
AAT). Briefly, the physiological ligand FasL initiates cell death in 
hepatocytes when bound to the liver transmembrane protein Fas. This 
pathway may also be activated by binding of the agonistic antibody Jo2, 
while BCL2 in turn acts like decoy receptor for Jo2 and thereby inhibits 
apoptosis. The AAT-S/MAR-bcl-2 plasmid was delivered to mice 
liver using hydrodynamic injection. Despite constant Jo2 challenges, 
luciferase expression was detectable in mice liver for at last 12 weeks 
indicating maintained bcl-2 expression [64]. 

Recently, a further step towards pre-clinical application was 
undertaken when S/MAR based vectors were injected into neonatal 
mice [3]. Vectors were administered via the superior temporal vein 
of mice at age 1.5 days. Transcription was driven either from an UbC  
or AAT promoter and plasmid DNA was injected in combination 
with a polyethylene (PEI) complex. Using this approach an efficient 
transfection of lung, brain, heart, brain, spleen, liver, and kidney 
was achieved. The expression profile for the UbC driven vector gave 
a gradual increase of luciferase expression peaking at days 11 12 and 
decreased by day 25 reaching baseline levels. When transcription 
was driven from the liver specific AAT promoter, a corresponding 
expression profile was observed, highest luciferase expression levels 
were detected at days 11 12, and dropped thereafter. As expected, 
the AAT-S/MAR vector gave tissue specific expression in the mid-
abdomen region [3]. The attenuated expression of the transgene 
around day 20 is believed to coincide with the rapid proliferation of 
hepatocytes and the steep increase of liver weight [42], a phenomenon 
that has also been described after a partial hepatectomy [45]. Likewise, 
also minicircles harbouring liver specific promoters (AAT or UbC) 
were examined in vivo. Both, mini AAT-S/MAR and mini UbC S/MAR 
showed significantly increased transgene expression 24 h post delivery 
when compared to mini CMV-S/MAR. Expression levels remained 
elevated over a detected time slot of 92 days [58]. 

Pre clinical applications

Towards gene therapeutic clinical applications of S/MAR based 
vectors, first studies have been published recently. Ferber and 
colleagues mediated ectopic expression of a pancreatic transcription 
factor (PDX1) in mice liver by introducing PDX1 into the livers. 
PDX1 was not only expressed in liver, but also capable of reversing 
streptozotocin mediated hyperglycaemia [65]. Basing on these results, 
the pdx1 gene was cloned into different S/MAR based vectors and 
delivered to rat liver, determining level as well as duration of transgene 
expression [66]. The original pEP 1 PDX1 gave an expression peak at 
day 1 post injection but dropped significantly at day 3. In comparison, 
expression driven from AAT-PDX1-S/MAR lasted up to day three and 
dropped gradually afterwards. Additionally, a vector similar to the 
above described pEPito (reduced CpG motifs in backbone) was used. 

The pEPito AAT not only expressed PDX1 at a high level, but also 
mediated a pancreatic phenotype in the rat livers. Insulin 2 expression 
was detected in 66%, elevated up to 70 fold on day 14 in comparison 
to day 1 [66]. 

Various studies focused on the application of S/MAR vectors in 
other differentiated tissues than liver, like adult central nervous system, 
muscle, and tumours. For CNS studies plasmids were constructed 
in which the transgene is flanked by two S/MAR elements [67-69]. 
Yurek et al. [69] for example examined plasmid DNA delivery of a S/
MAR UbC GDNF S/MAR vector coding for rat glial cell line-derived 
neurotrophic factor (GDNF) and found broad GDNF expression up 
to 400  600% over endogenous expression levels for at least 3 week 
post-delivery. An analogous vector, S/MAR UbC LUC S/MAR, was 
delivered in a complex with lysine 30mer peptides substituted with 
PEG. One single intrathecal injection resulted in stably expressed 
luciferase for up to one year in the striatum [68]. Supported delivery 
strategies into muscle were similar successful: Microbubble mediated 
ultrasound delivery resulted in strong expression levels in muscle 
tissue, while expression from control vectors lacking a S/MAR element 
was silenced within a month [70]. The outcome of these studies points 
towards an utilisation of optimised S/MAR vectors in combination 
with certain gene delivery strategies, being highly beneficial in future 
gene therapy applications. Additionally, S/MAR vectors may find 
broad application in the field of cancer research. As shown previously, 
delivery of a luciferase expressing S/MAR vector into RIF 1 tumours 
via ultrasound has been used successfully to monitor tumour growth 
in mice [70]. In future, the functional luciferase expression encoded by 
S/MAR vectors may, besides monitoring, play an important in tumour 
trafficking or even cancer treatment. 

Since S/MAR based vectors exclusively consist of chromosomal 
elements, their episomal maintenance gives an advantage over the 
potential safety risks of viral vectors. Moreover, their chromosomal 
maintenance, long term expression, and high insert cloning capacity 
make them an attractive tool for gene therapeutic applications.The 
progressions made in minicircle development and the construction 
of inducible vectors highlight the potential of S/MAR based vectors 
for a broad range of applications, although further improvements are 
necessary for future clinical applications.
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