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ABSTRACT
Objective: Limited evidence suggests a vital role for SEC11A in carcinogenesis. Our study conducted an integrated 
analysis on the molecular features and clinical relevance of SEC11A across pan-cancer based on multi-omics data.

Materials and methods: SEC11A expression was analyzed in 33 types of tumor and normal specimens utilizing 
transcriptome profiles from The Cancer Genome Atlas-Genotype-Tissue Expression (TCGA-GTEx) project and protromic 
data from Clinical Proteomic Tumor Analysis Consortium (CPTAC) project. Copy number alterations and methylation of 
SEC11A were investigated across pan-cancer with cBioPortal. Clinical relevance and prognostic implications of SEC11A 
were evaluated in The Cancer Genome Atlas (TCGA) cohorts. Gene Set Enrichment Analysis (GSEA) of SEC11A 
was conducted in Head and Neck Squamous Cell Carcinoma (HNSCC) with cluster profiler package. Correlation of 
SEC11A with immune cell infiltrations was estimated with Estimating the Proportions of Immune and Cancer cells 
(EPIC), Tumor Immune Estimation Resource (TIMER), xCELL, Microenvironment Cell Populations-counter (MCP-
counter), quanTIseq, Cell type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) and 
Immune Cell Abundance Identifier (ImmuCellAI) algorithms. Inhibitory Concentration (IC

50) values of anti-cancer 
agents were curated from Genomics of Drug Sensitivity in Cancer (GDSC) project and their correlations to SEC11A 
were calculated.

Results: We found the expression of SEC11A was upregulated in most of cancer types (24/33), while was downregulated 
in 3 types of cancers. Genetic amplification in SEC11A was widespread across pan-cancer. There were negative 
correlations of SEC11A Ribonucleic Acid (RNA) expression with methylation level. The upregulation of SEC11A 
indicated unfavorable prognosis in adrenocortical carcinoma and HNSCC. Moreover, SEC11A was closely involved in 
cell cycle, TP53 regulation and antigen processing. SEC11A was positively associated with tumor-associated macrophage 
and fibroblast but negatively associated with CD8+ T cell. The expression of SEC11A was positively correlated to drug 
resistance to anticancer drugs.

Conclusion: These findings suggested that SEC11A could act as a prognostic biomarker across pan-cancer. Upregulation 
of SEC11A was in relation to tumor immunosuppressive status. Collectively, our results offered a valuable resource that 
might guide mechanistic and therapeutic analysis of SEC11A across cancers.
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participate in cancer development. The interplay between 
cancer cells and tumor microenvironment fosters tumor growth 
and metastases [12]. Oncogene-driven alterations in tumor 
cells may influence tumor microenvironment, thereby limiting 
immune response and presenting barriers to cancer therapy [13]. 
Hence, exploration of the association of SEC11A and tumor 
microenvironment may assist uncover the role of SEC11A in 
cancer progression.

Despite the presence of research on SEC11A gene, there is still a 
lack of researches about the expression, Copy Number Alterations 
(CNAs), methylation and mutations of SEC11A in cancers. In 
our study, we conducted a comprehensive analysis concerning 
identifying the molecular characteristics and clinical implications 
of SEC11A across diverse cancer types utilizing multi-omics data.

MATERIALS AND METHODS

Retrieval of pan-cancer data

The Cancer Genome Atlas (TCGA), a web-based, freely accessible 
database, generates a large amount of next-generation sequencing 
data, including over 11,000 tumors in 33 cancer types. Genotype-
Tissue Expression (GTEx) offers transcriptome profiles from 53 
normal tissue sites across approximately 1,000 persons through 
publicly available RNA sequencing (RNA-seq). RNA-seq profiling 
of normal and primary tumors was retrieved from TCGA and 
GTEx via University of California Santa Cruz (UCSC) Xena 
repository (https://xena.ucsc.edu/). SEC11A messenger RNA 
(mRNA) expression in normal and tumor tissues across pan-cancer 
was visualized using ggplot-2 package [14]. Moreover, SEC11A 
mRNA expression in diverse tumor tissues or normal tissues 
was analyzed via ggradar package. Log-2[Transcripts Per Million 
(TPM)+1] transformed expression data were employed for the box 
plots.

Analysis of proteins interacted with SEC11A

Through the Clinical Proteomic Tumor Analysis Consortium 
(CPTAC); (https://proteomics.cancer.gov/programs/cptac), we 
curated the proteomic data of tumor and normal tissues across pan-
cancer [15]. SEC11A protein expression was analyzed in tumor and 
normal tissues. Proteins interacted with SEC11A were analyzed 
through Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) [14]. The Protein-Protein Interaction (PPI) 
network was then constructed.

INTRODUCTION

Cancer is a major burden globally and the leading cause of death. 
As estimated, there are 19.3 million new cancer cases and 10.0 
million cancer deaths in 2020 [1]. This disease is a multi-step 
malignancy and featured by complex biological characteristics, 
involving multiple genetic and epigenetic alterations in the genome 
[2]. As high-throughput sequencing progresses, numerous studies 
have offered an in-depth survey of genetic dysregulation in cancers 
[3]. Analyses of molecular changes across pan-cancer identify 
commonalities and differences in critical biological processes that 
are dysregulated in tumor cells from distinct lineages [4].

Recent studies have proposed that SEC11A is a key regulator for 
carcinogenesis [5]. SEC11A is up-regulated in basal-like bladder 
cancer cases, which could be served as an independent prognostic 
predictor for bladder cancer [5]. Meanwhile, silencing SEC11A 
may weaken bladder cancer cell growth and invasiveness. SEC11A 
up-regulation is detected in gastric cancer and poorer survival in 
SEC11A-positive patients displays undesirable survival outcomes 
[6]. Forced expression of SEC11A may activate gastric cancer 
progression via promoting Transforming Growth Factor Alpha 
(TGF-α) secretion. Interestingly, study found that high SEC11A 
expression was examined in squamous cell carcinoma of tongue 
and its activation induced proliferation, migration and invasion in 
tongue squamous cell carcinoma cells [7]. SEC11A up-regulation is 
in relation to increased cancer-specific mortality among esophageal 
squamous cell carcinoma [8]. Moreover, SEC11A knockdown 
weakens cell proliferation as well as Epidermal Growth Factor 
Receptor (EGFR) signaling in esophageal squamous cell carcinoma. 
SEC11A exhibits up-regulated expression in parathyroid adenoma 
[9]. SEC11A-positive colorectal cancer patients usually display 
advanced pathological stage and SEC11A expression serves as an 
independent prognostic factor [10]. Collectively, SEC11A serves as 
an oncogene in cancer progression. Nevertheless, there is lack of 
pan-cancer evidence of the role of SEC11A on diverse cancer types 
on the basis of big clinical data. Growing evidence indicates that 
tumor microenvironment containing malignant, non-malignant, 
hematopoietic, as well as mesenchymal cells possesses clinic-
pathological implications in prediction of therapeutic effects and 
survival outcomes of cancer patients [11]. Immune cells act as 
critical elements within the tumor stroma. Innate immune cells 
(macrophage, neutrophil, dendritic cell, innate lymphoid cell, 
myeloid-derived suppressor cell and natural killer cell) and adaptive 
immune cells (T cell and B cell) within tumor microenvironment 
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between two groups was conducted with student’s t test or Wilcoxon 
test. Meanwhile, comparison between multiple groups was analyzed 
with one-way variance analysis. Correlation analysis was carried out 
with Pearson or Spearman correlation tests. P<0.05 was indicative 
of statistical significance.

RESULTS

SEC11A mRNA expression across pan-cancer

Here, we analyzed the expression of SEC11A in 33 types of 
tumor and normal specimens from TCGA and GTEx projects 
(Figure 1A). Our results demonstrated that SEC11A was 
significantly down-regulated in Adrenocortical Carcinoma 
(ACC), Acute Myeloid Leukemia (LAML) and Ovarian Serous 
Cystadenocarcinoma (OV) tissues. Meanwhile, its expression was 
prominently increased in Bladder Cancer (BLCA), Breast Cancer 
(BRCA), Cholangiocarcinoma (CHOL), Colon Adenocarcinoma 
(COAD), lymphoid neoplasm Diffuse Large B-cell Lymphoma 
(DLBC), Esophageal Carcinoma (ESCA), Glioblastoma 
Multiforme (GBM), Head and Neck Squamous Cell Carcinoma 
(HNSCC), Kidney Renal Clear Cell Carcinoma (KIRC), Kidney 
Renal Papillary Cell Carcinoma (KIRP), brain Lower Grade 
Glioma (LGG), Liver Hepatocellular Carcinoma (LIHC), Lung 
Adenocarcinoma (LUAD), Lung Squamous Cancer (LUSC), 
Pancreatic Adenocarcinoma (PAAD), Prostate Adenocarcinoma 
(PRAD), Rectum Adenocarcinoma (READ), Skin Cutaneous 
Melanoma (SKCM), Stomach Adenocarcinoma (STAD), 
Testicular Germ Cell Tumors (TGCT), Thyroid Carcinoma 
(THCA), Thymoma (THYM), Uterine Corpus Endometrial 
Carcinoma (UCEC) and Uterine Carcinosarcoma (UCS). 
However, no significant difference in SEC11A expression was 
detected in cervical squamous cell Carcinoma and Endocervical 
Adenocarcinoma (CESC), Kidney Chromophobe (KICH), 
Mesothelioma (MESO), Pheochromocytoma and Paraganglioma 
(PCPG), Sarcoma (SARC) and Uveal Melanoma (UVM). Among 
different cancer tissues obtained from TCGA project, SEC11A 
displayed the highest mRNA expression in THCA and the lowest 
mRNA expression in ESCA (Figure 1B). Moreover, the expression 
of SEC11A was the highest in bone marrow and the lowest in 
brain among diverse normal tissues curated from GTEx project 
(Figure 1C).

Expression patterns of SEC11A mRNA in specific cancer 
types and pathological stages

We compared SEC11A expression in cancer and paired normal 
specimens. We observed the prominent up-regulation of SEC11A 
expression in BLCA, CHOL, ESCA, HNSCC, LIHC and STAD 
(Figures 2A-2F). In contrast, SEC11A was markedly down-
regulated in KICH (Figure 2G). Moreover, this study presented the 
comparison of SEC11A expression in distinct pathological stages 
of each cancer type. Higher SEC11A expression was found in stage 
IV than stage III in BLCA (Figure 2H). Compared with stage II, 
SEC11A exhibited higher expression in stage IV in HNSCC (Figure 
2I). In Figure 2J, we observed marked up-regulation of SEC11A 
in stage IV than stage I or stage III in KICH. In comparison to 
patient of stage I, higher SEC11A expression was observed in that 
of stage II and stage IV in LUAD (Figure 2K). As shown in Figure 
2L, SEC11A displayed a significant up-regulation in stage IV than 
stage II for PAAD.

Genetic mutations and methylation analysis

Somatic Copy-Number Alterations (CNAs) and methylation levels 
of SEC11A were curated from the cBioPortal that is a repository of 
cancer genomics datasets [15]. Correlations of SEC11A expression 
with CNA values or methylation levels were determined across pan-
cancer utilizing Pearson correlation analysis.

Survival analysis

Univariate-cox regression models were conducted to determine the 
associations of SEC11A with Overall Survival (OS), Disease-Specific 
Survival (DSS), Disease-Free Interval (DFI) as well as Progression-
Free Interval (PFI) across pan-cancer in TCGA cohorts. OS was 
defined as the period between the date of treatment and date of 
death from any cause. DSS was defined as the period between the 
date of treatment and date of death from a specific disease. DFI was 
defined as the interval between treatment and disease recurrence 
or death. PFI was defined as the interval between treatment and 
disease worsening or death. The cutoff value of SEC11A was 
determined in each cell type with survminer and survival packages. 
Kaplan-Meier curves of OS were presented between high and low 
expression SEC11A groups. OS difference was estimated utilizing 
log-rank test.

Gene Set Enrichment Analysis (GSEA)

Pearson correlation analysis was utilized for screening the co-
expressed genes of SEC11A with P<0.05 across Head and Neck 
Squamous Cell Carcinoma (HNSCC) specimens [16]. Afterwards, 
Gene Set Enrichment Analysis (GSEA) was carried out with cluster 
profiler package [17]. On the basis of Gene Ontology (GO) and 
reactome pathway databases, biological functions of SEC11A were 
investigated [18,19].

Immune infiltration analysis

Immunedeconv package offers an access to six algorithms for robust 
quantification of the abundance levels of immune cells based on 
bulk RNA-seq profiling of different cancer types, composed of 
Estimating the Proportions of Immune and Cancer cells (EPIC), 
Microenvironment Cell Populations-counter (MCP-counter), 
quanTIseq, Cell type Identification by Estimating Relative Subsets 
of RNA Transcripts (CIBERSORT), xCell as well as Tumor 
Immune Estimation Resource 2 (TIMER 2) [20-26]. Immune 
Cell Abundance Identifier (ImmuCellAI) database, a gene set 
signature-based algorithm, may precisely estimate the abundance of 
24 immune cells covering 18 T-cell subpopulations based on gene 
expression profiling [27]. Herein, the abundance of immune cells 
was quantified by above algorithms across pan-cancer.

Drug response analysis

Genomics of Drug Sensitivity in Cancer (GDSC) project, a freely 
available public resource, covers drug sensitivity data in nearly 
809 cancer cell lines and marker genes of responses to 192 anti-
cancer drugs on the basis of 75,000 experiments [28]. Associations 
of SEC11A with IC

50
 values of anti-cancer drugs were estimated 

utilizing spearman correlation analyses. The top six drugs were 
visualized through ggplot-2 package.

Statistical analysis

Statistical analysis was achieved with R language. Comparison 
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Figure 2: Expression patterns of SEC11A messenger RNA (mRNA) in specific cancer types and pathological stages. (A-G) Comparison of SEC11A 
expression in Bladder Cancer (BLCA), Cholangiocarcinoma (CHOL), Esophageal Carcinoma (ESCA), Head and Neck Squamous Cell Carcinoma 
(HNSCC), Liver Hepatocellular Carcinoma (LIHC), Stomach Adenocarcinoma (STAD) and Kidney Chromophobe (KICH) and corresponding 
normal specimens curated from The Cancer Genome Atlas (TCGA) data. (H-L) Distribution of SEC11A expression in distinct pathological stages 
of BLCA, HNSCC, KICH, Lung Adenocarcinoma (LUAD) and Pancreatic Adenocarcinoma (PAAD). Note: ns: not significant; (*): P<0.05; (**): 
P<0.01; (****): P<0.0001. (A-G): ( ): Tumor type; ( ): Normal type.

Figure 1: SEC11A messenger RNA (mRNA) expression across pan-cancer. (A) Comparison of SEC11A expression in cancer and normal tissues 
curated from integrated data of The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Blue meant normal tissues 
while red meant cancer tissues. (B) Mean SEC11A expression in diverse cancer tissues in TCGA project. (C) Mean SEC11A expression in diverse 
cancer tissues in GTEx project. Note: (A) ns: not significant; (*): P<0.05; (**): P<0.01; (***): P<0.001; (****): P<0.0001. ( ): Tumor type (Normal);  
( ): Tumor type (Tumor).



5

Wu Q, et al. OPEN ACCESS Freely available online

Chemo Open Access, Vol.11 Iss.4 No:1000199

our findings indicated that high CNAs as well as low methylation 
contributed to high SEC11A expression across pan-cancer.

Prognostic implication of SEC11A across pan-cancer

We assessed the implication of SEC11A in cancer prognosis curated 
from TCGA data. Univariate-cox regression models were conducted 
for investigating the association of SEC11A expression with OS, 
DSS, DFI and PFI across pan-cancer. In Figure 5A, SEC11A acted 
as a risk factor of OS of ACC and HNSCC as well as a protective 
factor of OS of KIRC and OV. In Figure 5B, SEC11A up-regulation 
indicated unfavorable DSS of ACC, HNSCC, LGG and PAAD 
as well as favorable DSS of OV. Also, we investigated that high 
SEC11A expression was in relation to unfavorable DFI for ACC, 
CESC, CHOL and KIRP patients (Figure 5C). As shown in Figure 
5D, our data demonstrated that SEC11A up-regulation possessed 
the correlations to poorer PFI of ACC, HNSCC and LIHC as well 
as favorable PFI of KIRC and OV. Kaplan-Meier curves were then 
conducted for assessing the prognostic relevance of SEC11A across 
pan-cancer. Our data demonstrated that SEC11A acted as a risk 
factor of ACC, BLCA, CESC, COAD, HNSCC, KICH, LGG, 
LIHC, LUAD, MESO, PAAD, PDPG, PRAD, SARC, STAD and 
THYM (Figure 6).

Proteomic changes of SEC11A across pan-cancer and its 
interacted proteins

Through Clinical Proteomic Tumor Analysis Consortium (CPTAC) 
project, we evaluated the protein expression of SEC11A in tumor 
and normal tissues across pan-cancer. In Figure 3A, our results 
showed that SEC11A protein expression was markedly increased in 
BRCA, COAD, KIRC and UCEC compared with corresponding 
normal tissues. The PPI network revealed the potential proteins 
interacted with SEC11A, including SSR2, SEC61B, SEC11C, SPCS1, 
SPCS2, SPCS3, GCG, TMED10, GHRL and GIP (Figure 3B).

Genomic changes of SEC11A across distinct cancer tissues

Through cBioPortal, we observed genetic variations of SEC11A 
across distinct cancer tissues. In Figure 4A, amplification displayed 
the highest mutation frequency. This study further evaluated 
the association of SEC11A mRNA expression with linear copy-
number value. Our data demonstrated that CNAs exhibited 
prominent correlations to SEC11A expression in most cancer 
types, except TGCT and KICH (Figure 4B). Moreover, we observed 
the prominently negative correlations of SEC11A expression with 
methylation levels across most of cancer types (Figure 4C). Hence, 

Figure 3: Analysis of protein expression of SEC11A across pan-cancer and its interacted proteins. (A) Comparison of SEC11A protein expression 
in tumor and normal tissues across cancers based on Clinical Proteomic Tumor Analysis Consortium (CPTAC) project. (B) Functional analysis 
proteins interacted with SEC11A enrolled in Protein-Protein Interaction (PPI) network. Note: (A) ns: not significant; (****): P<0.0001.
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Figure 4: Genomic changes of SEC11A across distinct cancer tissues. (A) Alteration frequency of Copy Number Alterations (CNAs) across pan-
cancer based on structural variant, mutation and CNA data via cBioPortal. (B) Association of SEC11A messenger RNA (mRNA) expression 
with linear copy-number value across pan-cancer. Red meant significantly positive correlation while blue meant non-significant correlation. (C) 
Association of SEC11A mRNA expression with its methylation level in diverse cancer types. Red meant significantly positive correlation; blue meant 
significantly negative correlation and grey meant non-significant correlation. Note: (A) ( ): Mutation; ( ): Structural variant; ( ): Amplification; ( ):  
Deep deletion; ( ): Multiple alterations. (B) Label: ( ): Non-significant; ( ): Positive. (C) Label: ( ): Negative; (  ): Non-significant; (  ): Positive.
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Figure 5: Prognostic implication of SEC11A across pan-cancer via univariate-cox regression analyses. (A-D) Univariate-cox regression models were 
conducted for evaluating the association of SEC11A expression with (A): Overall Survival (OS), (B): Disease-Specific Survival (DSS), (C) Disease-
Free Interval (DFI) and (D) Progression-Free Interval (PFI) in diverse cancer types. Note: ACC: Adrenocortical Carcinoma; CESC: Endocervical 
Adenocarcinoma; CHOL: Cholangiocarcinoma; KIRP: Kidney Renal Papillary Cell Carcinoma; HNSCC: Head and Neck Squamous Cell 
Carcinoma; KIRC: Kidney Renal Clear Cell Carcinoma; LIHC: Liver Hepatocellular Carcinoma; OV: Ovarian Serous Cystadenocarcinoma; 
UCEC: Uterine Corpus Endometrial Carcinoma.
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Figure 6: Kaplan-Meier curves for assessing the prognostic relevance of SEC11A across pan-cancer. Patients were separated into high and low 
expression of SEC11A. Survival differences were compared via log-rank tests. Note: Strata ( ) get(gene): High; ( ) get(gene): Low.

while exhibited negative correlations to CD8+ T cell, especially 
HNSCC (Figures 9A-9C). Moreover, ImmuCellAI algorithm was 
applied for quantifying the abundance of immune cells especially 
including T cell subsets. In Figure 10A, SEC11A was negatively 
associated with CD8+ T cell, Natural Killer (NK) cell, gamma delta 
T cell (Tgd), B cell, follicular helper T cell (Tfh), cytotoxic T (Tc) cell, 
exhausted T (Tex) cell, CD4+ T cell and Natural Killer T (NKT) cell 
across pan-cancer. In contrast, SEC11A displayed positive correlations 
to T helper cell 17 (Th17) cell, monocyte, natural regulatory T (nTreg) 
cell and neutrophil across pan-cancer. These data suggested that 
SEC11A was in relation to immunosuppression. Especially, SEC11A 
displayed negative associations with immune infiltration score (r=-
0.12, P=0.0074), NK cell (r=-0.19, P<0.0001) and CD8+ T cell (r=-0.33, 
P<0.0001) while had positive correlation to macrophage (r=0.12, 
P=0.0056) in HNSCC (Figures 10B-10E).

Association between SEC11A and drug resistance

Through GDSC project, we estimated the correlations of SEC11A 
expression with IC

50
 values of antitumor drugs utilizing spearman 

correlation analyses. The results were listed in Supplementary 
Table 1. Figure 11 visualized the top six antitumor drugs positively 
correlated with SEC11A expression, as follows: OSI-027 (r=0.23, 
P=1e-04), ABT737 (r=0.23, P<0.0001), AMG-319 (r=0.21, 
P<0.0001), MIRA-1 (r=0.21, P<0.0001), WEHI-539 (r=0.21, 
P<0.0001) and Entinostat (r=0.2, P<0.0001). The data above 
indicated that SEC11A exhibited positive correlations to resistance 
to these antitumor drugs.

Prognostic implication of SEC11A in HNSCC subtypes

We also assessed the prognostic relevance in HNSCC subtypes. Our 
results demonstrated that high SEC11A expression was indicative 
of undesirable OS for HNSCC subtypes, including alveolar ridge, 
base of tongue, buccal mucosa, floor of mouth, hard palate, 
hypopharynx, larynx, lip, oral cavity, oral tongue, oropharynx, as 
well as tonsil (Figure 7).

Biological functions of SEC11A

To investigate the biological functions of SEC11A, GSEA was 
performed based on co-expressed genes of SEC11A that were 
identified via Pearson correlation analysis across HNSCC. The 
top 50 genes that were positively or negatively associated with 
SEC11A were separately shown in Figures 8A,8B. Based on GO 
database, we investigated that SEC11A was markedly correlated to 
RNA metabolism such as RNA splicing (Figure 8C). Based on the 
reactome pathway database, SEC11A displayed strong correlations 
with hallmarks of cancer such as cell cycle progression and TP53 
activity as well as antigen processing (Figure 8D).

Association between SEC11A and immunosuppression

Utilizing EPIC, TIMER, xCELL, MCP-counter, quanTIseq and 
CIBERSORT algorithms, we estimated the abundance of tumor-
associated macrophage and fibroblast and CD8+ T cell across pan-
cancer tissues. We observed that SEC11A expression displayed 
positive correlations to tumor-associated macrophage and fibroblast 
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Figure 7: Kaplan-Meier curves for assessing the prognostic relevance of SEC11A across Head and Neck Squamous Cell Carcinoma (HNSCC) 
subtypes. Patients were clustered into high and low expression of SEC11A. Survival differences were compared via log-rank tests. Note: Strata: ( ) 
get(gene): High; ( ) get(gene): Low.

Figure 8: Biological functions of SEC11A. (A) Heatmap visualized the top 50 co-expressed genes that were positively correlated to SEC11A in Head 
and Neck Squamous Cell Carcinoma (HNSCC). (B) Heatmap visualized the top 20 co-expressed genes that were negatively associated with SEC11A 
in HNSCC. (C) The top 20 Gene Set Enrichment Analysis (GSEA) results across HNSCC specimens based on Gene Ontology (GO) database. (D) 
The top 20 GSEA results across HNSCC specimens based on reactome pathway database.
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Figure 9: Association of SEC11A with the abundance of macrophage, cancer-associated fibroblast and CD8+ T cell across pan-cancer. (A) Heat 
map visualized the Pearson correlations between SEC11A expression and macrophage infiltration across pan-cancer by Estimating the Proportions 
of Immune and Cancer cells (EPIC), Tumor Immune Estimation Resource (TIMER), xCELL, Microenvironment Cell Populations-counter (MCP-
counter), quanTIseq and Cell Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithms. (B) Heat map 
showed the Pearson correlations between SEC11A expression and the abundance of cancer associated fibroblast across pan-cancer using EPIC, 
MCP-counter and xCELL algorithms. (C) Heat map demonstrated the Pearson correlations between SEC11A expression and CD8+ T cell infiltration 
across pan-cancer utilizing TIMER, EPIC, MCP-counter, CIBERSORT, quanTIseq and xCELL algorithms. Red meant positive correlation while 
blue meant negative correlation. Note: (A-C) ( ): p>0.05; ( ): p<0.05. Correlation: ( ): 1; ( ): 0; ( ): -1.
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Figure 10: Association of SEC11A with immune cell infiltration across pan-cancer. (A) Heat map depicted the Pearson correlations between SEC11A 
expression and abundance levels of immune cells that were quantified through ImmuCellAI algorithm in different cancer types. Red meant positive 
correlation while blue meant negative correlation. (B-E) Associations of SEC11A expression with immune infiltration score, macrophage infiltration 
score, Natural Killer (NK) cell infiltration score and CD8+ T cell infiltration score in Head and Neck Squamous Cell Carcinoma (HNSCC) 
specimens were determined with Pearson correlation analyses. Note: (A) (*): P<0.05; (**): P<0.01; (***): P<0.001; (****): P<0.0001.
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Figure 11: Association between SEC11A and drug resistance through Genomics of Drug Sensitivity in Cancer 2 (GDSC2) project. Correlation 
between SEC11A expression and IC

50
 of 192 drugs was calculated with spearman correlation analysis. The top six drugs positively correlated with 

SEC11A were shown with ggplot-2 package, including OSI-027, ABT737, AMG-319, MIRA-1, WEHI-539 and Entinostat.

33 cancer types. The methylation status of SEC11A was negatively 
correlated to SEC11A mRNA expression in most of cancer types, 
which demonstrated that there was homogeneity of SEC11A 
across cancers. DNA methylation in the gene body may enhance 
gene expression, while promoter methylation displays negative 
association with gene expression [33,34]. The negative association 
of SEC11A mRNA expression with methylation levels uncovered 
that methylation inhibitors might be applied on the basis of this 
promising therapeutic target SEC11A.

SEC11A displayed prominent correlations to several critical cancer 
hallmarks like cell cycle, regulation of TP53 activity, transcriptional 
regulation by TP53 [35]. Moreover, SEC11A was closely correlated 
with antigen processing. Neo-antigen plays a crucial role in 
cancer immunotherapy. SEC11A may induce a heightened neo-
antigen-reactive T cell [36]. Our study might offer several clues to 
subsequent research concerning SEC11A. Tumor immune escape is 
an important step during cancer development, which has been the 
main cause about failure of several cancer immunotherapies [37]. 
Immunosuppressive cells promote tumor immune escape through 
inhibition of anti-cancer immune response [38]. Many translational 
research indicated that blockade of immunosuppressive cells or 
elimination of immunosuppression mechanism modulated by 
immunosuppressive cells or tumor cells may block tumor immune 
escape. Moreover, several clinical trials suggest that targeting 
immunosuppressive cells have achieved favorable clinical outcomes. 
T-cell subpopulations may contribute to long-term clinical 

DISCUSSION

In this study, we conducted comprehensive multi-omics analysis 
of SEC11A at transcriptomic, proteomic and epigenetic levels 
to observe the function of SEC11A across pan-cancer with an 
extensive manner. Multi-omics data can be utilized for predicting 
new functional interactions between molecules at diverse levels. 
Moreover, these data possess the potential for uncovering 
important biological investigations into hallmarks and pathways 
in comparison to single-omics analysis. This study carried out an 
integrated analysis of SEC11A, which aimed to offer an available 
resource concerning future related studies.

At the transcriptome and proteome levels, we observed the 
prominent up-regulation of SEC11A in most of cancer types. The 
Protein-Protein Interaction (PPI) network revealed the potential 
interacted proteins of SEC11A, including SSR2, SEC61B, 
SEC11C, SPCS1, SPCS2, SPCS3, GCG, TMED10, GHRL and 
GIP. CNAs are almost ubiquitous across pan-cancer as well as pose 
huge effects on tumor genome as an important type of genomic 
mutations [29]. Genetic CNAs exhibit the diverse landscape across 
pan-cancer [30]. Moreover, specific CNAs are in relation to cancer 
prognosis [31]. Our results demonstrated that SEC11A displayed 
the characteristics of increased copy number gain frequency across 
diverse cancer types. DNA methylation represents a common 
epigenetic mechanism, which participates in cancer progression 
[32]. This study investigated the methylation level of SEC11A across 
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