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Introduction 
Differential expression analysis is a mainstay of clinical genomics 

and proteomics research, used to identify genes or proteins that are 
differentially expressed between two conditions. A traditional approach 
for data analysis uses a comparison of means such as Student’s t-statistic 
to compare the expression level of two groups, e.g. a normal “healthy” 
group and a disease group, or disease groups with different degrees 
of severity. To perform the analysis, a statistic is computed for each 
molecular feature (e.g. a protein), and the ensemble of such statistics is 
assessed using a statistical framework such as type-I/type-II error rates, 
sensitivity/specificity, or false discovery rates.

Statistics based on mean values, such as Student’s t-statistic, 
perform well when all samples in a group share a common mean, 
with approximately symmetric variation around the mean.  We 
consider this a “homogeneous situation”. In heterogeneous diseases 
such as some forms of cancer including breast [1], lung [2], prostate 
[3] and melanoma cancer [4], only a subset of the high risk samples
exhibit altered expression of a particular protein, resulting in a skewed
distribution. While such skew will shift the mean to some degree,
the sample mean may not be the most effective way to identify such
a pattern. Moreover, a differentially expressed feature could be up-
regulated in some samples, down-regulated in other samples and
normally-expressed in others. In this scenario, the mean expression
of this gene or protein could be similar among groups and thus avoid
detection using any mean-based approach.

One way to account for this heterogeneity and to improve the 
detection of differentially expressed genes or proteins is to adopt 
a modified differential expression statistic that it is more sensitive 
to heterogeneous patterns of differential expression. To this end, a 
number of methods have been developed to detect so-called “cancer 
outlier genes” or genes expressed in only a subset of cancer samples.  
Methods for cancer outlier profile analysis include the COPA approach 
of Tomlins et al. [5], the outlier sum (OS) test [6], the outlier robust 
t-test [7], the MOST method [8], the LSOSS method [9], distribution
based outlier sum statistics [10] and others. Compared to the traditional
t-statistic, outlier-associated methods have the potential to detect a

greater number of differentially-expressed genes in heterogeneous data 
sets, at a lower false discovery rate. However these methods are less 
powerful than approaches based on t-statistics when the differential 
expression is present throughout the distribution, or is concentrated 
in the center of the distribution, as opposed to being concentrated 
in the tails. Figure 1 illustrates this difference by showing quantile 
functions corresponding to two distributions that are different at all 
quantile values (Figure 1a), and quantile functions corresponding to 
two distributions that differ only in the upper quantiles, or in the right 
tail (Figure 1b).

Focusing on the OS approach to outlier analysis, we used three 
complementary approaches to better understand the circumstances 
in which outlier-based differential expression approaches have 
the potential to outperform traditional approaches based on mean 
differences (such as Student’s t-statistic). First, we used a simulation 
strategy in which the strength of the outlier-pattern of differential 
expression and the strength of differential expression in the center of the 
distribution can be independently varied. This allowed us to identify the 
transition point where the outlier pattern is sufficiently strong for the 
outlier-based methods to perform best. We then explored a graphical 
diagnostic that summarizes the patterns of differential expression in a 
dataset. This diagnostic can be used to reveal the relative amounts of 
outlier-like versus “central” differential expression in a dataset. Finally, 
we used a proteomics dataset of serum samples from melanoma patients 
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[11] to contrast the evidence for differential expression obtained using 
outlier-based versus mean-based approaches to differential expression 
analysis.  

Our simulation studies suggest that approaches based on means 
are most powerful when the differential expression is strongest in the 
center of the distribution, or is equally strong at all quantile points. 
The outlier-based approaches are most powerful when the differential 
expression is concentrated in the tails of the distribution.  Applying our 
graphical diagnostic to the melanoma data set revealed protein fractions 
that are differentially expressed primarily in the distribution centers, 
and protein fractions that are primarily differentially expressed in the 
distribution tails. However, even the latter proteins still showed shifted 
mean values, and in this moderate-sized dataset, the outlier approach 
did not identify any differential expression that was not also captured 
by the t-statistics (at a fixed significance level). However, inspection of 
distribution patterns did reveal an outlier-like pattern in several of the 
differentially expressed proteins, which may aid in understanding their 
mechanistic roles, or help to better define their utility as biomarkers.

Materials and Methods
Outlier sum

The outlier sum (OS) statistic is intended to detect a difference 
between two statistical distributions that is concentrated in one or both 
tails of the distributions.  In terms of data, the difference in the tails 
results in the presence of “outliers” in one of the two sets of samples 
being compared.  Outlier sum analysis contrasts a reference set of 
samples to a second set of samples in which outliers may be present. 
The reference set can be chosen as the one corresponding to lower risk 
subjects (e.g., subjects who are healthy, have benign lesions, or have 
slowly progressing disease), with outliers assessed in the contrasting 
higher risk group.  Alternatively, we can consider the reference set to 
be the higher risk set, based on the idea that the greater part of the 
low-risk set may already be moving toward a more adverse state, with 
a smaller fraction of the low-risk set (the outliers) not having yet made 
this transition.

For a given molecular feature, an outlier is defined as an observed 
value that is greater than the 75th percentile plus the inter-quantile 
range (IQR), or less than the 25th percentile minus the IQR. A high 

OS score means that either a large number of outliers is present (in 
the non-reference set relative to the reference set), or that a few strong 
outliers are present. The outlier score for molecular feature i is defined 
as max (|Wi|, |Wi’|), where:
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Note that x’ij denotes normalized expression value of molecular 
feature i in sample j, C2 denotes the non-reference set in which we 
are assessing for outlier samples, q25(i), q75(i), and IQR(i) represent, 
respectively, the 25th percentile, the 75th percentile, and the interquartile 
range for molecular feature i.

Simulation study

Previous simulation studies evaluating outlier-based differential 
expression methods have used Gaussian mixtures [6,10,12], or 
t-distributions [10] to produce synthetic data with outlier-type patterns 
of differential expression. To understand the operating characteristics 
of outlier-based differential expression analysis in more detail, we used 
a simulation approach in which the strength of differential expression 
in the tails and the strength of differential expression in the center of 
the distribution can be independently varied.

Our simulation studies are defined in terms of the quantile function 
Q(p) of the distribution of expression values. The defining property of 
the quantile function is that a value drawn from the distribution has 
probability p of being less than or equal to Q(p).  The simplest form 
of differential expression is a constant shift of the quantile function, 
shifting all quantiles, as well as the mean, by the same amount (Figure 
1a). To produce outlier-like differential expression (Figure 1b), we 
shifted the quantile function with a “hinge function” of the form H(p; 
k, k0) = k*(p-p0)*I(p>=p0), where I() is the indicator function that is 
equal to one when p>=p0 and zero otherwise. The slope parameter k 
controls how strongly H deviates from a constant function. When we 
compare a quantile function Q1(p) to a hinge-shifted quantile function 
Q2(p) = Q1(p) + H(p; k, k0), we find that the quantiles agree up to the 

Figure 1: Quantile functions of illustrating differential expression with a constant shift of all quantiles (a) and with outlier-like differential expression that is present only 
in the right tail (b).
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p0
th quantile, but the quantiles for p>p0 are greater under Q2 compared 

to Q1. This represents an ideal setting for outlier-based analysis, with 
the advantage becoming stronger as the slope parameter k increases. 
We note that this construction maintains continuity of the quantile 
function, consistent with proteomics and genomics data that we have 
observed.

To aid in interpretation of the simulation studies, all comparisons 
were made under a fixed value for Cohen’s-d effect size [13-14]. We 
make two types of comparisons – one in which Q1(p) and Q2(p) are 
constant shifts of each other (i.e. Q2(p) = Q1(p) + k), and one in which 
Q2(p) and Q1(p) are shifted by a hinge function. In the former case, the 
value of Cohen’s d is fixed by setting the value of k. In the latter case, the 
value of Cohen’s d is fixed by adjusting the values of p0 for a given value 
of k. Since Cohen’s d can be fixed by varying only the parameter p0 of 
the hinge function, the slope parameter was available for us to change 
to control the strength of the outlier pattern.  This gives us the ability 
to independently control the differential expression at the center of the 
distribution and in the tail of the distribution. In all our simulations, we 
used a normal distribution to determine the baseline quantile function 
Q1(p), but note that Q2(p) is not normal in the hinge-shifted case.

For each type of data distribution, we compared the power of 
the t-statistic and outlier sum approaches for detecting differential 
expression at the conventional type-I error rate of 0.05. This was done 
for various sample sizes (N=50, 100, 200) and Cohen’s-d effect sizes 
(0, 0.1, 0.2, 0.3, 0.4). The power for detecting differential expression 
using t-statistics under normal populations for Q1 and Q2 was based 
on the normal approximation to the power function. All other power 
results were obtained using simulation. Specifically, the power of the 
outlier sum approach was estimated as the proportion of simulation 
runs that reject the null hypothesis of no differential expression at the 
given significance level (0.05). Since the outlier sum statistic does not 
have a tractable null distribution, simulation under Q(p) was used to 
determine the decision threshold. We used 1000 replications for all 
simulation studies.

Graphical diagnostics

To summarize the pattern of differential expression in the ith 
protein, we considered the difference Di = Qi1 – Qi2   between the 
estimated quantile functions Qi1 and Qi2, for the two groups of 
samples being compared. For a fixed grid of probability points, the 
difference in quantile functions Di   was constructed for each protein, 
and summarized using principal components analysis (PCA). PCA 

captures the most important directions of variation in the Di, relative 
to their mean.  

For example, a constant principal component corresponds to 
constant translation between the quantile functions, producing equal 
levels of differential expression at all quantiles. A linearly increasing 
principal component corresponds to differential expressions that change 
linearly across the quantiles. In practice, these principal components 
are interpreted relative to the mean value of D, as demonstrated in 
the analysis of the melanoma data below. The proportion of variance 
explained by a given principal component indicates the extent to which 
a particular form of differential expression is present in a dataset. This 
in turn can be related to differences in statistical power for detecting 
differentially expressed proteins.  

Case study: melanoma dataset

In melanoma, metastasis to sentinel lymph nodes signals a more 
advanced stage of melanoma, and sentinel lymph node biopsy is 
common for its prognostic value. A melanoma dataset was used 
to explore the utility of serum auto-antibodies as biomarkers to 
distinguish between “node-negative” and “node-positive” melanoma 
as described by Liu et al. [11]. Node-positive status indicates metastasis 
to a sentinel lymph node, while node-negative status indicates the 
absence of metastasis, and thus an earlier stage of cancer. The dataset 
consisted of 43 serum samples from patients with melanoma - 26 
from node-negative melanoma and 17 from node-positive melanoma. 
Using methods described by Liu et al. [11], a panel of 47 glycoprotein 
fractions was extracted from a melanoma cell line to bind to (and enable 
detection of ) auto-antibodies in the patient serum samples. The dataset 
was presented as a matrix of signal intensity data with 43 columns 
corresponding to serum samples and 47 rows corresponding to cell 
line-derived protein fractions. We applied our graphical procedure to 
this dataset, and calculated t-statistics and OS statistics for each of the 
47 glycoprotein fractions.

Results
Simulation study

Figure 2 shows the results of power analysis based on simulation, 
in the setting where Q2 and Q1 are shifted relative to each other (or 
equivalently, D is constant). In this setting, the differential expression 
is homogeneous in that all quantiles, and the mean value, differ by the 
same amount.  The Student t-method provides greater power than the 
OS method for all effect sizes and sample sizes considered.

Figure 2:  Power for Student t analysis and outlier sum analysis for homogeneous data.
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Figure 3 shows selected results for the setting where Q1 and 
Q2 differ by a hinge function. The slope parameter k is plotted on 
the horizontal axis, and reflects the degree to which the differential 
expression is concentrated in the distribution tails. We thus expect that 
the OS method will perform relatively well compared to the Student-t 
method as this parameter increases. The effect size indicated in each 
plot is Cohen’s d.

The powers of both the OS and Student-t methods increase with 
increasing effect size. When the effect size is small, the OS method 
outperforms the Student-t method for all tested values of the slope 
(k), but when the power is somewhat greater, the Student-t method 
performs better for smaller values of the slope parameter. The first row 
of Figure 3 shows that when no differential expression is present, both 

methods maintain the correct type-I error rate. Taken together, Figure  
2 and Figure 3 indicate that when the data distribution is approximately 
homogeneous, the Student t-method outperforms the OS method. But 
when heterogeneity is present and the differential expression is stronger 
in the tails, the OS method can outperform the Student t-method. For 
a fixed level of strength of the outlier pattern (represented by the slope 
parameter k), the OS method performs increasingly better relative to 
the Student t-method as the power increases, either due to a larger 
sample size, or a larger effect size.

We applied our graphical diagnostic procedure to the melanoma 
dataset to capture the major patterns of differential expression in the 
47 glycoprotein fractions.  For each fraction, the estimated quantile 
differences Di between the node-positive group and the node-negative 

Figure 3:  Power for Student t analysis and outlier sum analysis for heterogeneous data (rows 2 and 3) and for equally distributed data (row 1).
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group were constructed using the eleven deciles (i.e. 0, 0.1, 0.2 … 1) as 
probability points.

Figure 4 shows the results of applying principal components 
analysis to the Di vectors.  The mean value of Di (across the 47 fractions) 
is shown as the broken line in both plots.  The solid curves show the 
mean plus two different multiples of the first principal component (left 
plot) and of the second principal component (right plot).  The multiples 
used in the plots were the 5th and 95th percentiles of the corresponding 
principal component scores.  These two dominant principal 
components explain 61% and 22% of the variance, respectively. The 
variation resulting from the dominant PC is approximately a vertical 
translation of the quantile function, in which all quantiles are shifted 
by roughly the same amount, but the slope is unaffected. The variation 
resulting from the second PC primarily affects the slope of the quantile 
function, shifting the pattern of differential expression from the center 
of the distribution to the tails. Thus we find that an outlier pattern of 
differential expression may play a role in these data, but it is not as 
prominent as a simple shifting pattern.

We next considered how the Student-t and OS statistics relate to 
patterns of differences in the quantile functions. The center panel of 
figure 5 shows a scatterplot of the t-statistics and OS statistics in the 47 
protein fractions.  The two statistics are weakly positively correlated, 
but there are numerous fractions where one statistic is large while the 
other is not. Thus the statistics are capturing partially overlapping 
information, with the potential for either statistic to capture 
information that is complementary to the other.

The five panels of Figure 5 surrounding the central scatterplot show 
examples of quantile functions corresponding to five of the 47 fractions. 
When the Student t statistic is large but the OS statistic is close to 
zero, as in fractions 14 and 23, the pattern of differential expression is 
approximately a translation.  When the OS statistic is large, the pattern 
of differential expression is more hinge-like, as in fractions 19 and 39.  
When both statistics are small (e.g. fraction 5), there is no differential 
expression of any type.  These plots show that the OS and t-statistics are 
capturing complementary patterns of differential expression, and that 

protein fractions showing both of these complementary patterns can be 
found in this data set.

Finally, we assessed the statistical evidence for differential 
expression in each fraction using the Student t-statistic and the OS 
statistic. Nominal p-values (not adjusted for multiple comparisons) 
were obtained using permutation analysis with 1000 permutation 
replications.  We found 15 fractions to have nominal significance using 
the t-statistic, and 1 fraction to have nominal significance using the OS 
statistic.  All fractions that were significant under the OS statistic were 
also significant under the t-statistic, indicating that in this dataset, the 
OS approach was unable to uniquely identify any significant fractions. 
We noted that the OS statistic p-values were non-monotonic functions 
of the OS statistic magnitudes, which can be explained by the strong 
dependence of the OS statistic’s sampling distribution on the overall 
shape of the distribution, including the shape of the tails. In contrast, 
the t-statistic p-values were perfectly monotone in the t-statistic 
magnitudes.

Discussion
A standard model of cancer holds that cancer-related pathways 

are activated by expression of oncogenes [15-16]. However, changes 
in oncogene expression levels, and of their targets are not universal 
among individuals with the same cancer [1,17]. This heterogeneity 
complicates efforts to identify cancer biomarkers for general use. For 
this and other reasons, regulatory agencies like the Food and Drug 
Administration often consider cancer biomarker assays as “high-risk”, 
and the regulatory path for biomarker-based diagnostic and prognostic 
tests is directed by this risk classification. Regulatory approval of 
cancer diagnostic devices requires a deep understanding of the device’s 
operating characteristics, especially in terms of false negative and 
false positive results. The presence of heterogeneity as explored here 
complicates efforts to understand these operating characteristics.

Here we have illustrated that when power considerations are 
favorable, the OS statistic has improved power relative to the Student 
t-statistic for identifying patterns of differential expression that are 

Figure 4:  The mean of the quantile function difference Di over the 47 protein fractions is shown (broken line), along with plots of the mean plus two different multiples 
of the first principal component (left) and the second principal component (right).
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Figure 5: Scatterplot of OS statistic values (vertical axis) against t-statistic values (horizontal axis).  Surrounding the central scatterplot are five examples of estimated 
quantile functions for the expression values of specific protein fractions.

concentrated in one or both tails of a distribution.  When the pattern 
of differential expression is present to an approximately equal degree at 
all quantiles of the distribution, or is concentrated in the center of the 
distribution, approaches based on means, like the Student t-statistic, 
can be more powerful than the OS approach.  The potential advantage 
of the OS approach depends on the sample sizes and effect sizes being 
such that the t-statistic dominates the OS statistic only for a small range 
of strongly symmetric distributions. Using our graphical diagnostic 
approach, and inspecting the test results for the melanoma data set, 
it seems that power considerations for the melanoma data favor more 
traditional mean-based approaches.  A further complicating factor for 
use of the OS statistic is the appearance of non-monotonic patterns 

between the test statistic magnitudes and the corresponding p-values. 
Nevertheless, by inspecting the pattern of differential expression in 
the protein fractions identified using Students t-statistic, we were able 
to identify several protein fractions showing a prominent hinge-like 
pattern of differential expression.

While outlier-based analysis approaches offer the potential to 
extract useful information from studies that yield minimal interesting 
results from conventional methods, these biomarkers are by definition 
limited in their predictive power in an unselected population. As 
illustrated in the melanoma study, even markers that are identified 
using traditional approaches like the Student t-method may turn out 
to have a heterogeneous pattern of differential expression. Thus, we 
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anticipate that while outlier-oriented statistics like the OS statistic 
may play a useful role, especially in larger studies, another important 
consequence of these efforts will result from the more widespread 
adoption of methods to characterize the detailed pattern of differential 
expression of candidate biomarkers identified through traditional 
approaches.    
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