

Open Access

On the Interfacial Potential Differences for the Extraction of Alkaline-Earth Metal Picrates by 18-Crown-6 Ether Derivatives into Nitrobenzene

Yoshihiro Kudo* and Tomoyo Takeuchi

Graduate School of Science, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan

Abstract

Individual distribution constants ($K_{D,A}$) of picrate ion (Pic⁻) into nitrobenzene (NB) were determined at 298 K and given values of ionic strength, together with the determination of an extraction constant (K_{ex}) for the extraction of alkaline-earth metal picrates, MPic₂, by 18-crown-6 ether (18C6) and benzo-18C6 (B18C6). Here, $K_{D,A}$ and K_{ex} were defined as [A⁻]_{NF}/[A⁻] and [MLA₂]_{NF}/[M²⁺][L]_{NF}[A⁻]², respectively: A⁻ shows Pic⁻, L does either 18C6 or B18C6 and the subscript "NB" refers to the NB phase. Interfacial potential differences ($\Delta \phi_{eq}$ in a V unit) at extraction equilibria were evaluated from differences between the experimental log $K_{D,Pic}$ and its standardized values (log KD'Pic) which have been determined by electrochemical measurements at a water/NB interface. By a combination with the K_{ex} values, other extraction constants, $K_{\text{ext}} = [\text{MLPic}^+]_{\text{NB}}[\text{Pic}^-]_{\text{NB}}/[\text{M}^{2+}][\text{L}]_{\text{NB}}[\text{Pic}^-]^2$, were also determined. Electrochemically-standardized log K_{ext} values, log $K_{\text{ext}}^{\text{s}}$ ones, were calculated from the relation of log $K_{\text{ext}} = (\Delta \phi_{\text{ext}}) (0.05916) + \log K_{\text{ext}}^{\text{s}}$ at 298 K. Using the $\log K_{ext}$ values, their correlation with the $\log K_{ext}$ ones was discussed. Additionally, ion-pair formation constants ($K_{1,NB} \& K_{2,NB}$) for the stepwise reactions of ML²⁺ with Pic⁻ in the NB phase were evaluated from K_{ext} , K_{ext} and another constant $(K_{ex2^{+}})$ reported before at $\Delta \phi_{eq} = 0$. Here, $K_{2,NB}$ was evaluated from $K_{ex}/K_{ex2^{+}}$ and $K_{1,NB}$ is defined as $[MLPic^{+}]_{NB}[ML^{2^{+}}]_{NB}$, which was evaluated from the relation of $K_{1,NB} = K_{ex2^{+}}/K_{ex2^{+}}$. Moreover, reproductions of the electrochemically-standardized $K_{ex\pm}$ and $K_{ex2\pm}$ values were tried, using the $\Delta \phi_{eq}^{EXE}$ values and relations between $K_{ex\pm}$ or $K_{ex2\pm}$ and component equilibrium constants constituting their extraction ones. Consequently, a functional expression of K_{ext} with $\Delta \phi_{\text{ext}}$ was extended into the MPic₂-L extraction systems, in addition to the AgPic-L extraction ones reported previously.

Keywords: Interfacial potential differences; Individual distribution constants of ions; Extraction into nitrobenzene; Alkaline-earth metal picrates; 18-Crown-6 ether derivatives

Introduction

Recently one of the authors has reported an expression by an interfacial potential difference ($\Delta \phi_{eq}$) of an extraction constant on silver picrate extraction with crown ethers (L) into 1,2-dichloroethane (DCE) or dichloromethane (DCM) [1]. In this study, its extraction constant has been defined as $[AgL^+]_0[Pic^-]_0/([Ag^+][L]_0[Pic^-])$, in addition to the well-known definition of $K_{ex} = [AgL^+Pic^-]_0/([Ag^+][L]_0[Pic^-]))$, where the subscript "o" and Pic- denote an organic (o) phase, such as DCE and DCM, and picrate ion, respectively. An introduction of $\Delta \phi_{eq}$ in extraction experiments also gave an answer for a problem of the deviation between the electrochemically-determined $K_{\rm D,A}$ values and extraction-experimentally-determined values [1,2]. Here, the symbol $K_{D,A}$ refers to an individual distribution constant (= $[A^-]_0/[A^-])$ of $A^$ into the o phase. Similar problems have been observed in the extraction of divalent metal salts, such as CdPic, PbPic, and CaPic, by L into various diluents [3-5].

In the present paper, we determined at 298 K the $K_{\rm D,Pic}$ values for the extraction of alkaline-earth metal picrates (MPic₂: M = Ca, Sr, Ba) by 18-crown-6 ether (18C6) or benzo-18C6 (B18C6) into nitrobenzene (NB) which shows the higher polarity. Then, the $\Delta \phi_{\rm eq}$ values were evaluated from differences between the $K_{D,Pic}$ values electrochemically-determined and those determined by the present extractionexperiments. Here, the electrochemically-determined constant was expressed as $K_{\text{D,Pic}}^{S}$, showing the equilibrium constant standardized at $\Delta \phi_{eq} = 0 \text{ V} [1, 6, 7]$. Moreover, the functional expressions of K_{ext} , K_{ex2t} and K_{ex} by $\Delta \phi_{eq}$ were examined; the symbols, K_{ext} , $K_{ex2\pm}$ and K_{ex} , refer to $[MLA^+]_{o}[A^-]_{o}/([M^{2+}][L]_{o}[A^-]^2)$, $[ML^{2+}]_{o}[A^-]_{o}^2/([M^{2+}][L]_{o}[A^-]^2)$ and $[MLA_2]_0/([M^{2+}][L]_0[A^{-}]^2)$, respectively [3,4,8]. On the basis of the above values determined, the M^{II}Pic₂ extraction system with L into NB was characterized.

Theory

Derivation of a potential difference at the water/o interface

Using properties of electrochemical potentials $\overline{\mu}_{i}$ [9,10], we had reported relations between $\Delta \phi_{e_1}$ and the constants expressing overall extraction equilibria, such as $M^+ + L_{o} + A^- = MLA_{o}$ and $M^+ + L_{o} + A^- = MLA_{o}$ and $M^+ + L_{o} + A^- = MLA_{o}$ and M^+ applied for the present extraction equilibria. For example, the authors will apply it to the process:

$$M^{2+} + L_{o} + 2A^{-} = MLA_{o}^{+} + A_{o}^{-}. (1)$$

This process was expressed by $\overline{\mu_{j}}$ as
$$\overline{\mu}_{M} + \overline{\mu}_{L,O} + 2\overline{\mu}_{A} = \overline{\mu}_{MLA,O} + \overline{\mu}_{A,O} (2)$$
$$\mu_{M}^{0} + RT\ln a_{M} + 2F\phi_{M} + \mu_{L,O}^{0} + RT\ln a_{L,O} + 2(\mu_{A}^{0} + RT\ln a_{A} - F)$$
$$= \mu_{MLA,O}^{0} + RT\ln a_{MLA,O} + F\phi_{MLA,O} + \mu_{A,O}^{0} + RT\ln a_{A,O} - F\phi_{A,O}. (2a)$$

Rearranging this equation for the $K_{ex\pm}$ definition, then we obtained

$$RT \ln K_{\text{ext}}^{0} + \mu_{\text{MLA},0}^{0} + \mu_{\text{A},0}^{0} - \mu_{\text{M}}^{0} - \mu_{\text{L},0}^{0} - 2\mu_{\text{A}}^{0}$$
$$= F\{(2\phi_{\text{M}} - \phi_{\text{MLA},0}) - (2\phi_{\text{A}} - \phi_{\text{A},0})\}.$$

. . . . -

*Corresponding author: Yoshihiro Kudo, Graduate School of Science, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan, Tel: +81 43 290 2786; E-mail: iakudo@faculty.chiba-u.jp

Received July 15, 2014; Accepted August 12, 2014; Published August 20, 2014

Citation: Yoshihiro K, Takeuchi T (2014) On the Interfacial Potential Differences for the Extraction of Alkaline-Earth Metal Picrates by 18-Crown-6 Ether Derivatives into Nitrobenzene. J Thermodyn Catal 5: 133. doi: 10.4172/2157-7544.1000133

Copyright: © 2014 Yoshihiro K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 $F\phi_A$)

Therefore, the following equations were derived:

$$\Delta \phi_{eq} = \Delta \phi_{ex^+}^0 + (2.3RT/F) \log K_{ex^+}^0 (3$$

with $\Delta \phi_{eq} = (2\phi_{M} - \phi_{MLA,o}) - (2\phi_{A} - \phi_{A,o}), \Delta \phi_{ext}^{0} = (\mu_{MLA,o}^{0} + \mu_{A,o}^{0} - \mu_{M}^{0} - \mu_{L,o}^{0} - 2\mu_{A}^{0})/F$ and $K_{ext}^{0} = a_{MLA,o}a_{A,o}/\{a_{M}a_{L,o}(a_{A})^{2}\}$. Here, $\phi_{j,\alpha}$ and $a_{j,\alpha}$ denote an inner potential for species *j* in the phase α (= 0) and an activity of *j* in the α phase, respectively; the symbols without α mean those to the water (w) phase, although there is an exception to this rule. From Equation (3), the interfacial potential difference $\Delta \phi_{eq}$ at an equilibrium was defined [1,11]; in principle, $\Delta \phi_{eq}$ has been defined as ϕ (w phase) – ϕ (o phase). Then, rearranging Equation (3) in a molar concentration unit, we immediately obtain

$$\Delta \phi_{eq} = \Delta \phi_{ex+}^{0'} + (2.3RT/F) \log K_{ex+} (3a)$$

with $\Delta \phi_{\text{ext}}^{0} = \Delta \phi_{\text{ext}}^{0} + (2.3RT/F)\log [y_{\text{MLA},0}y_{\text{A},0}/\{y_{\text{M}}(y_{\text{A}})^2\}]$ and $K_{\text{ext}} = [\text{MLA}^+]_0[\text{A}^-]_0/([\text{M}^{2+}][\text{L}]_0[\text{A}^-]^2)$. Here, $y_{j,\alpha}$ refers to an activity coefficient of the ionic species $j \in \text{MLA}(\text{I})$, A(-I), $M(\text{II})\}$ in the α phase; the symbol y without α shows the coefficient for the w phase; $\Delta \phi_k^{0'}$ means a standard formal potential. Similarly, equilibrium constants of other processes were expressed as functions of potential differences. These results are listed in Table 1. The condition of $\Delta \phi_{\text{eq}} = 0$ V was applied for some processes from their properties: namely, $\Delta \phi_{\text{eq}}$ essentially becomes zero, when all species relevant to the inner potentials are present in a single phase [1,9].

Using thermodynamic cycles and the various equilibrium constants

Process	Symbol	Relation ^a
Overall		
M ²⁺ + L _o + 2A ⁻ MLA _{2.o}	K _{ex}	$\log K_{\rm ex} = -2f\Delta \phi_{\rm ex}^{0'}$
M ²⁺ + L _o + 2A ⁻ — MLA ⁺ _o + A ⁻ _o	$K_{\rm ex\pm}$	$\log K_{\rm ex\pm} = f(\Delta \phi_{\rm eq} - \Delta \phi_{\rm ex\pm}^{0'})$
M ²⁺ + L _o + 2A ⁻ — ML ²⁺ _o + 2A ⁻ _o	$K_{\rm ex2\pm}$	$\log K_{\rm ex2\pm} = 2f(\Delta \phi_{\rm eq} - \Delta \phi_{\rm ex2\pm}^{0'})$
Component		
M ²⁺ M ²⁺	$K_{\rm d,m}$	$\log K_{\rm D,M} = 2f(\Delta_{\rm eq} - \Delta \phi_{\rm M}^{0})$
ML ²⁺ ML ²⁺	$K_{\rm d,ml}$	$\log K_{\rm D,ML} = 2f(\Delta \phi_{\rm eq} - \Delta \phi_{\rm ML}^{0'})$
A A	K _{d,a}	$\log K_{\rm D,A} = -f(\Delta \phi_{\rm eq} - \phi_{\rm A}^{0'})$
M ²⁺ _o + L _o ML ²⁺ _o	$K_{_{\rm ML.org}}$	$\log K_{\rm ML,org} = -2f \Delta \phi_{\rm ML,org}^{0'}$
M ²⁺ + L ML ²⁺	K _{ml}	$\log K_{\rm ML} = -2f \Delta \phi_{\rm ML,w}^{0' b}$
L = L°	$K_{\rm D,L}$	$\log K_{\rm D,L} = -f \Delta \phi_{\rm L}^{0'}$
$ML^{2+}_{o} + A^{-}_{o} = MLA^{+}_{o}$	$K_{\rm 1,org}$	$\log K_{1,\rm org} = -f \Delta \phi_{1,\rm org}^{0}$
$MLA_{\circ}^{+} + A_{\circ}^{-} \longrightarrow MLA_{2,\circ}$	$K_{2, \rm org}$	$\log K_{2,\rm org} = -f \Delta \phi_{2,\rm org}^{0}$
ML ²⁺ _o + 2A ⁻ _o MLA _{2.0}	${\pmb eta}_{{}_{\sf ip, org}}^{\rm c}$	$\log \beta_{\rm ip, org} = -2f \Delta \phi_{\rm ip, org}^{0'}$

^af = *F*/2.3*RT*. Hence, 1/*f* = 0.05916 V at 298 K. ^b $\Delta \phi_{\text{ML},w}^{\text{or}}$ shows a standard formal potential for the ML²⁺ formation in the w phase. ^c $\beta_{\text{lp,org}} = K_{1,\text{org}} K_{2,\text{org}}$. Accordingly, the relation of $2\Delta \phi_{\text{lp,org}}^{\text{or}} = \Delta \phi_{1,\text{org}}^{\text{or}} + \Delta \phi_{2,\text{org}}^{\text{org}}$ holds

Table 1: Relations between the potential differences, $\Delta \phi_{eq}$, $\Delta \phi_k^{o'}$ or $\Delta \phi_j^{o'}$, and log K_k values in an extraction system.

in Table 1, we can express the overall extraction processes [1]. Thereby, it becomes possible that we express the overall extraction constants as functions of some formal potentials with $\Delta \phi_{eq}$. As an example, $K_{ex2\pm}$ (see Introduction for its definition) is expressed as $K_{D,M}(K_{D,A})^2 K_{ML,org}$. Taking logarithms of both sides in this equation and rearranging it based on the corresponding relations in Table 1, we easily obtain

Page 2 of 6

$$\Delta \phi_{\text{ex2}\pm}^{0'} = \Delta \phi_{\text{M}}^{0'} - \Delta \phi_{\text{A}}^{0'} + \Delta \phi_{\text{ML,org}}^{0'} + \Delta \phi_{\text{eq}} (4)$$

from $\Delta \phi_{eq} - \Delta \phi_{ex2\pm}^{0'} = (\Delta \phi_{eq} - \Delta \phi_{M}^{0'}) - (\Delta \phi_{eq} - \Delta \phi_{A}^{0'}) - \Delta \phi_{ML,org}^{0'}$. The same was true of K_{ex} and $K_{ex\pm}^{0}$, where the condition of $\Delta \phi_{eq} = 0$ V was satisfied for K_{ex}^{0} , since all species relevant to the inner potentials were present in the single phase [1,9]. Table 2 summarizes these results. According to the previous paper [1], when the log $K_{D,A}^{0}$ values are determined experimentally and the $\Delta \phi_{A}^{0'}$ ones are available, we immediately can calculate the $\Delta \phi_{eq}^{0}$ values from the relation in Table 1.

For an analytical handling of extraction processes

The extraction-constant parameter, K_{ex}^{mix} , has been employed for the determination of $K_{D,A}$ and K_{ex} [3-5]:

$$\begin{split} &\log K_{\rm ex}^{\rm mix} = \log \left\{ ([{\rm MLA}_2]_{\rm o} + [{\rm MLA}^+]_{\rm o})/([{\rm M}^{2+}][{\rm L}]_{\rm o}[{\rm A}^-]^2) \right\} \\ &= \log \left\{ K_{\rm ex} + K_{\rm D,A}/([{\rm M}^{2+}][{\rm L}]_{\rm o}[{\rm A}^-]) \right\} (5) \end{split}$$

under the condition of $[A^-]_{o} \approx [MLA^+]_{o} (>> 2[M^{2+}]_{o} + 2[ML^{2+}]_{o})$. A regression analysis to the plot of log K_{ex}^{mix} versus $-\log ([M^{2+}][L]_{o}[A^-])$ yielded the $K_{D,A}$ and K_{ex} values [3-5]. Equation (5) can be also rearranged as

$$\log K_{\rm ex}^{\rm mix} = \log \{K_{\rm ex} + (K_{\rm ex\pm}/[{\rm M}^{2+}][{\rm L}]_{\rm o})^{1/2}[{\rm A}^{-}]^{-1}\}.$$
 (5a)

Then, this equation makes it possible that one obtains the $K_{ex\pm}$ value from the plot of log K_{ex}^{mix} versus $-\log \{([M^{2+}][L]_o)^{1/2}[A^-]\}$. In this study, the regression analyses with Equation (5a) were performed at a fixed condition of the K_{ex} value which was determined in terms of the analysis of Equation (5) and accordingly the thus-obtained $K_{ex\pm}$ value was checked by calculating it from each experimental point (Table 3).

Evaluation of stepwise ion-pair formation constants for MLA_2 in the o phase

Stepwise ion-pair formation constants for MLA_2 in the watersaturated o phase for given $I_{org,av}$ values were evaluated from the following relations.

$$K_{1,\text{org}} = [\text{MLA}^+]_o / [\text{ML}^{2+}]_o [\text{A}^-]_o = K_{\text{ext}} / K_{\text{ex2}\pm} (6)$$

$$K_{2,\text{org}} = [\text{MLA}_2]_o / [\text{MLA}^+]_o [\text{A}^-]_o = K_w / K_{\text{ort}} (7)$$

Here, the symbol, $I_{\rm org,av}$, was defined as $(\Sigma I_{\rm org})/N$ with a number (N) of run and ionic strength $(I_{\rm org})$ for the o phase. Table 3 lists the five equilibrium constants determined with the above procedures. The $K_{\rm ex2\pm}$ svalues which were available from references [8] were actually used as $K_{\rm ex2\pm}$ in the $K_{\rm 1,NB}$ -calculation with Equation (6). Strictly speaking, there

Overall process & Its cycle ^a	Relation ^b
$M^{2*} + L_{o} + 2A^{-} \longrightarrow MLA_{2,o}K_{ex} = K_{D,M}(K_{D,A})^{2}K_{ML,org}\beta_{Ip,org}$	$\Delta \phi_{\mathrm{ex}}^{}\mathrm{o}^{*}} = \Delta \phi_{\mathrm{M}}^{}\mathrm{o}^{*}} - \Delta \phi_{\mathrm{A}}^{}\mathrm{o}^{*}} + \Delta \phi_{\mathrm{ML,org}}^{}\mathrm{o}^{*}} + \Delta \phi_{\mathrm{ip,org}}^{}\mathrm{o}^{*}}$
$M^{2+} + L_{o} + 2A^{-} \qquad MLA^{+}_{o} + A^{-}_{o}$ (a) $K_{ex\pm} = K_{D,M}(K_{D,A})^{2}K_{ML,org}K_{1,org}$ (b) $K_{o} = K_{o}K_{o}K_{o}K_{o}X^{2}K_{o}K_{o}X^{2}K_{o}K_{o}X^{2$	(a) $\Delta \phi_{ext}^{0'} = 2\Delta \phi_{M}^{0'} - 2\Delta \phi_{A}^{0'} + 2\Delta \phi_{ML,org}^{0'} + \Delta \phi_{1,org}^{0'} + \Delta \phi_{eq}$ (b) $\Delta \phi_{ext}^{0'} = 2\Delta \phi_{ML,w}^{0'} + 2\Delta \phi_{ML}^{0'} + \Delta \phi_{1,org}^{0'} - 2\Delta \phi_{A}^{0'} - \Delta \phi_{L}^{0'} + \Delta \phi_{eq}$
$M^{2+} + L_o + 2A^{-} \qquad \qquad$	$\Delta \phi_{ex2t}{}^{O'} = \Delta \phi_M{}^{O'} - \Delta \phi_A{}^{O'} + \Delta \phi_ML,org{}^{O'} + \Delta \phi_eq$

^aA thermodynamic cycle of an extraction constant expressed by the component equilibrium constants. ${}^{b}\Delta\phi_{\mu,org}$ ${}^{o'}=(\Delta\phi_{1,org})^{o'}+\Delta\phi_{2,org})^{o'}$

Table 2: Some examples on relations between the $\Delta \phi_k^{0}$ values and the potential differences based on component equilibrium constants.

L	м	log K _{D,A}	log K _{ex} () ^a	log K	log K _{n.NB} () ^b	
				IOG A _{ex±}	n=1	2
18C6	Са	-1.43 ± 0.03	9.82 ± 0.02 (5.3×10 ⁻³)	5.44 ± 0.07 5.4 ₃ ± 0.1 ₈ °	5.9 [4.7]₫	4.38 ± 0.08 (8.9×10 ⁻⁴)
	Sr	-0.98 ± 0.07	11.44 ± 0.03 (3.1×10 ⁻³)	6.9 ₂ 0.1 ₂ 6.9 ₁ ± 0.1 ₃ ^c	5.3 [4.6]₫	4.5 ₂ ±0.1 ₂ (4.8×10 ⁻⁴)
	Ва	-0.69 ± 0.04	10.75 ± 0.08 (4.5×10 ⁻³)	$7.3_5 0.1_1 7.4_4 \pm 0.3_3^{\circ}$	4.9 [3.4] ^d	3.4 ₁ ± 0.1 ₄ (5.9×10 ⁻⁴)
B18C6	Са	-1.92 ± 0.04	7.35 ± 0.08 (3.6×10 ⁻³)	$2.7_1 \pm 0.1_0$ $2.8_0 \pm 0.2_9^{c}$	5.0 [5.5]₫	4.6 ₄ ± 0.1 ₃ (6.9×10 ⁻⁴)
	Sr	-1.34 ± 0.04	9.41 ± 0.02 (4.0×10 ⁻³)	4.34 ± 0.08 4.3 ₃ ± 0.1 ₃ ^c	4.7 [4.6]₫	5.07 ± 0.08 (2.3×10 ⁻⁴)
	Ва	-1.17 ± 0.02	9.51 ± 0.02 (4.7×10 ⁻³)	$5.0_1 \pm 0.1_1$ $5.0_8 \pm 0.4_2^{c}$	4.1 [4.2] ^d	4.5 ₀ ±0.1 ₁ (2.1×10 ⁻⁴)

^aAverage values of *I* in the w phase. ^bAverage values of $I_{\rm NB}$ in the NB phase. ^cLogarithms of average values calculated from each values of $K_{\rm ext}$ and their propagation errors simultaneously-calculated. ^dNumber, *h*, of water molecules coextracted with ML²⁺ into the NB phase. See ref. [17]

 Table 3: Fundamental equilibrium constants for the extraction of alkaline-earth

 metal picrates by L into nitrobenzene at 298 K.

is a difference between actual contents calculated from Equations (6) and (7). See Appendix for this details.

Materials and Methods

Chemicals

Purities of commercial Ca(NO₃)₂·4H₂O {Kanto Chemical Co. (Kanto), guaranteed reagent (GR)}, Sr(NO₃), (Kanto, GR) and Ba(NO₂), {Wako Pure Chemical Industries (Wako), GR} were checked by a chelatometric titration with disodium salt of EDTA. Also, a purity of commercially-available picric acid, HPic, with amount of 10-15%(w/w) water (Wako, GR) was checked by an acid-base titration [1,5]. Commercial crown ethers, 18C6 (99%, Acros) and B18C6 (98%, Aldrich), were dried at room temperature for >20 h under a reduced pressure. Their purities were checked by measurements of the melting points: 39.7-40.1 or 37.2-39.9 °C for 18C6; 42.3-42.8 for B18C6. Additionally, their water contents were determined by a Karl-Fischer titration: 0.462,%(w/w) for 18C6 and 0.410, for B18C6. Nitrobenzene (Kanto, GR) was washed three-times with water and then kept at a water-saturated condition. Other chemicals were of GR grades and used without further purifications. A tap water was distilled once with a still of the stainless steel and then purified by passing through the Autopure system (type WT101 UV, Yamato/Millipore). Thus purified water was employed for the present work.

Extraction procedures

Alkaline-earth metal nitrates $M(NO_3)_2$, HPic and L were mixed with 0.002 mol dm⁻³ HNO₃ in a stoppered glass-tube of about 30cm³ and then the same volume of NB was added in its solution. Their total concentrations were $[Ca(NO_3)_2]_t = 0.0012 \text{ mol dm}^{-3}$, $[HPic]_t = 0.0024$ and $[18C6]_t = (0.70-7.0) \times 10^{-4}$; $[Sr(NO_3)_2]_t = 6.8 \times 10^{-4}$, $[HPic]_t = 0.0014$ and $[18C6]_t = (0.86-6.4) \times 10^{-4}$; $[Ba(NO_3)_2]_t = 8.8 \times 10^{-4}$, $[HPic]_t = 0.0018$ and $[18C6]_t = (0.071-2.6) \times 10^{-3}$ and $[Ca(NO_3)_2]_t = 8.0 \times 10^{-4}$, $[HPic]_t = 1.6 \times 10^{-3}$ and $[B18C6]_t = (0.080-2.4) \times 10^{-3}$; $[Sr(NO_3)_2]_t = 4.1 \times 10^{-4}$, $[HPic]_t = 8.2 \times 10^{-4}$ and $[B18C6]_t = (0.082-2.5) \times 10^{-3}$; $[Ba(NO_3)_2]_t = 3.5 \times 10^{-4}$, $[HPic]_t = 7.1 \times 10^{-4}$ and $[B18C6]_t = (0.032-2.0) \times 10^{-3}$. The thus-prepared glass tube was shaken for 1 minute by hand and was agitated at 298 \pm 0.2 K for 2 h in a water bath (Iwaki, type WTE-24) equipped with a driver unit (Iwaki, SHK driver) and a thermoregulator (Iwaki, type CTR-100). After this operation, its mixture was centrifuged with a Kokusan centrifuge (type 7163-4.8.20) for 7 minutes.

A portion of the separated NB phase was transferred into another

stoppered glass-tube and then 0.1 mol dm³ HNO, was added in this tube. By shaking the tube, all M(II) species in the NB phase were backextracted into the HNO₃ solution. If necessary, the operation for this back extraction was repeated. An amount of all the M(II) species in the aqueous HNO, solution was determined by a Hitachi polarized Zeeman atomic absorption spectrophotometer (type Z-6100) with a hollow cathode lamp of Ca (type 10-020, Mito-rika Co. under the license of Hitachi, Ltd.; measured wavelength: 422.7 nm) or Sr (type 10-038, Mito-rika Co.; 460.7 nm). A calibration-curve method was employed for the determination of the M(II) concentration by AAS. For the Ba(II) determination, a >0.1 mol dm⁻³ NaOH solution was added in the back-extracted solution with Pic- and then its Ba(II) solution was measured at 355 nm based on the Pic- absorption and 298 K by a spectrophotometer (Hitachi, type U-2001). The Ba(II) concentration was determined with a calibration curve which had been prepared at 355 nm. On the other hand, the pH value in the separated w phase was measured at 298 K with the same electrode and pH/ion meter [1,4,5].

Determination of K_{ex}^{mix}

We used here the same extraction model as that [5] for subanalysis described previously. Its component equilibria are 1) $M^{2+} + A^{-}$ $\longrightarrow MA^{+} [12], 2)^{*} A^{-} \longrightarrow A^{-}_{o}, 3)^{*} M^{2+} \longrightarrow M^{2+}_{o}, 4)$ $MLA^{+}_{o} + A^{-}_{o} \longrightarrow MLA_{2,o}, 5) ML^{2+} \longrightarrow ML^{2+}_{o}, 6)^{*} L$ $\longrightarrow L_{o}, 7)^{*} M^{2+} + L \longrightarrow ML^{2+}, 8)^{*} M^{2+}_{o} + L_{o} \longrightarrow ML^{2+}_{o}, 9)^{*} H^{+} + A^{-} \longrightarrow HA [4], 10)^{*} HA \longrightarrow HA_{o} [4], 11)^{*} HA_{o} \longrightarrow H^{+}_{o} + A^{-}_{o} [13], 12)^{*} H^{+} \longrightarrow HA_{o} [6], 13)^{*} X^{-} \longrightarrow X^{-}_{o} [11] and 14)^{*} H^{+}_{o} + X^{-}_{o} \longrightarrow HX_{o} [11], where the symbol HX shows a strong acid, such as HNO₃ and HCl, in water. In particular, the two reactions, 7) and 8), indirectly yielded the process 5). Also, the parentheses with the asterisks show that their equilibrium constants at 298 K have been already determined by several methods (see below for some values).$

The equilibrium constants for the reactions 1) and 9) were estimated taking account of the ionic strength, *I*, for the w phases in a successive approximation [3,5]. Here, the formation constants (K_{MA}) for MA⁺ = MPic⁺ (M = Sr, Ba) in the w phase were determined by the same method as that [4] reported before: as the log K_{MPic} values at 298 K and $I \rightarrow 0$ mol dm⁻³, 2.1₈ for M = Sr and 2.0₈ for Ba were obtained. While the K_{CaPic} value was estimated with the value available from reference [12].

The procedure for the calculation of K_{ex}^{mix} values by the successive approximation was essentially the same as that [3] described previously (see the theoretical section). Plots of log $(D_{expl.}/[Pic^-]^2)$ versus log $[L]_{_{NB}}$ gave a straight line with a slope of 0.56 and an intercept of 7.9 for the CaPic₂-18C6 system, 0.91 and 11.1 ($\approx \log K_{ex}$) for SrPic₂-18C6, 0.62 and 9.4 for BaPic,-18C6, 0.38 and 5.9 for CaPic,-B18C6, 0.65 and 8.5 for SrPic,-B18C6 and 0.44 and 7.9 for BaPic,-B18C6. Here, the distribution ratio $D_{expl.}$ is defined as [AAS-analyzed M(II)]_{NB}/{[M(NO₃)₂]_t - [AASanalyzed $M(II)]_{NB}$ and the intercept corresponds to the log K_{ex} value only when the slope is about unity [3-5]. Except for the SrPic₂-18C6 system, the compositions of M(II):L:Pic(-I) were assumed to be 1:1:2 in the determination of $K_{\text{D,Pic}}$, K_{ex} and $K_{\text{ex\pm}}$ [3-5]. The slope's values less than unity indicate dissociations of MLPic₂ in the NB phases [4]. Figures 1 and 2 show the plots for the BaPic₂-18C6 extraction system based on Equations (5) and (5a), respectively, yielding the $K_{D,Pic}$, K_{ex} and $K_{ex\pm}$ values (Table 3). The less correlation coefficient (R) of the plot in Figure 2 may reflect the defect in the sub-analytical extraction model

Figure 1: Plot of log K_{ex}^{mix} versus log ([Ba²⁺][L]_{NB}[Pic⁻]) for the extraction of BaPic₂ by L = 18C6 into NB. A broken line shows a regression one with R = 0.965 analyzed by Equation (5). Its analysis yielded $K_{D,Pic} = 0.20 \pm 0.02$ and K_{ex} /mol⁻³ dm⁹ = (5₋₆ ± 1₋₀) × 10¹⁰.

[4,5], that is, the absence of the ion-pair formation for $MLPic_2$ in the w phase. Also, the other extraction systems yielded similar plots, from which we got similarly these three kinds of values (Tables 3).

In the determination of $K_{\text{D,Pic}}$, K_{ex} and K_{ext} for the BaPic₂-L extraction system, it was assumed that a total amount, [Ba(II)]_{NB,}, of Ba(II) in the NB phase nearly equals the half of that, [Pic⁻]_{NB,}, of Pic⁻ in the NB one. This assumption was derived as follows. A charge balance equation for the NB phase was essentially

$$2[Ba^{2+}]_{NB} + 2[BaL^{2+}]_{NB} + [BaLPic^{+}]_{NB} + [H^{+}]_{NB} = [Pic^{-}]_{NB} + [X^{-}]_{NB}, (8)$$

where the distribution of BaPic⁺ into the NB phase was neglected, because its data were not available. When $[H^+]_{NB} \approx [X^-]_{NB}$ holds, Equation (8) becomes $2[Ba^{2+}]_{NB} + 2[BaL^{2+}]_{NB} + [BaLPic^+]_{NB} \approx [Pic^-]_{NB}$. Rearranging this equation and adding $2[BaLPic_2]_{NB}$ in its both sides, we can immediately obtain

$$[\operatorname{Pic}^{-}]_{NB} + 2[\operatorname{BaLPic}_{2}]_{NB} = [\operatorname{Pic}^{-}]_{NB,t}$$

 $\approx 2[Ba^{2+}]_{NB} + 2[BaL^{2+}]_{NB} + [BaLPic^{+}]_{NB} + 2[BaLPic_{2}]_{NB}. (8a)$

Hence, when the condition of $2[BaLPic_2]_{NB} > [BaLPic^+]_{NB}$ (> $2[BaL^{2+}]_{NB} + 2[Ba^{2+}]_{NB}$) holds, the half of the left hand side of Equation (8a) approximately becomes $[Ba^{2+}]_{NB} + [BaL^{2+}]_{NB} + [BaLPic^+]_{NB} + [BaLPic_2]_{NB}$, namely $[Ba(II)]_{NB,t}$. We were able to determine spectrophotometrically the $([Pic^-]_{NB} + 2[BaLPic_2]_{NB})$ value at least by the back extraction experiments.

Results and Discussion

Tendencies of $K_{\text{D,Pic}}$, K_{ex} , $K_{\text{ex+}}$ and $K_{n,\text{NB}}$ at n = 1, 2

As can be seen from Table 3, the log $K_{D,Pic}$ values are different from each other in spite of the same definition. These are in the orders of Ca < Sr < Ba for a given L. Also, the orders are B18C6 < 18C6 for a given M(II). Thus, these $K_{D,Pic}$ orders are influenced by sizes [14,15] of M^{2+} and L, not cavity sizes of L; molar volumes of L were reported to be 214 cm³ mol⁻¹ for L = 18C6 and 252 for B18C6 [15].

The values of both log K_{ex} and log K_{ext} were in the orders of Ca < Sr < Ba (Table 3). These tendencies are similar to those for log $K_{D,M}^{S}$ and log $K_{ML,NB}$ (see below for these values). Such facts suggest the presence of these equilibrium constants in the thermodynamic cycles (Table 2). Also, two procedures for evaluating the log K_{ext} values in Table 3 well agreed within calculation errors. These facts support that the regression analyses based on Equation (5a) are essentially valid under the conditions of constant K_{ex} values.

Orders of the log $K_{1,\rm NB}$ values were Ca > Sr > Ba for the both L, when we neglected differences in $I_{\rm NB}$ among the extraction systems (see Table 3 for $I_{\rm NB}$). On the other hand, the log $K_{2,\rm NB}$ values were Ca < Sr > Ba. These differences suggest that sizes of M(II) are more-effectively reflected to stability of the 1st-step ion-pair formation than to that of the 2nd-step formation. In other words, these results seem to be due to differences in a size and/or charges, such as the formal and net charges, between ML²⁺ and MLPic⁺ as reaction species in NB saturated with water. Also, such effects may be reduced in the more-bulky SrPic₂- and BaPic₂-B18C6 systems.

As another explanation for the $K_{2,\rm NB}$ orders, it can be considered that the $I_{\rm NB}$ values of the Ca(II) system are largest of all the systems. The $I_{\rm NB}$ orders were of M = Ca > Sr < Ba for L = 18C6 and Ca > Sr ≥ Ba for B18C6 (Table 3). The highest $I_{\rm NB}$ values for the Ca(II) systems may cause the lowest $K_{2,\rm NB}$ values. While their values were less effective for the $K_{1,\rm NB}$ values, because $K_{1,\rm NB}$ is constituted by the concentrations of all the ionic species.

If the 1st-step ion-pair formation is assumed to be

 $ML^{2+} \cdot hH_2O_{NB} + Pic_{NB} = MLPic^+ \cdot mH_2O_{NB} + pH_2O_{NB} (9)$

with p = h - m, then $K_{1,NB}$ can be expressed as $K_{1,NB}'/([H_2O]_{NB})^p$ with $K_{1,NB}' = [MLPic^+]_{NB}([H_2O]_{NB})^p/[ML^{2+}]_{NB}[Pic^-]_{NB}$ (as an expression without a hydrated H_2O). Here, the hydration of Pic⁻ in the NB phase was neglected [16]. From Table 3, the larger the *h* values [17] are, the larger the $K_{1,NB}$ values become. These facts suggest that the *m* values are about a constant and thereby the *p* values are proportional to the *h* ones. Taking logarithms of the both sides of the equation, $K_{1,NB} = K_{1,NB}'/([H_2O]_{NB})^p$, we can immediately obtain the equation, $\log K_{1,NB} = \log K_{1,NB}' - p \times \log [H_2O]_{NB'}$. Under the conditions of $[H_2O]_{NB}$ (= 0.178 mol Citation: Yoshihiro K, Takeuchi T (2014) On the Interfacial Potential Differences for the Extraction of Alkaline-Earth Metal Picrates by 18-Crown-6 Ether Derivatives into Nitrobenzene. J Thermodyn Catal 5: 133. doi: 10.4172/2157-7544.1000133

dm⁻³ at 298 K [17,18]) < 1 and *p* > 0, the equation becomes log $K_{1,NB}$ = log $K_{1,NB}$ '+ 0.750*p*. Therefore, the log $K_{1,NB}$ values basically increase with an increase in *p* and consequently can increase with that in *h* (Table 3). The above results suggest the existence of the reaction (9) with H₂O molecules in NB phase, as reported before on the process of M⁺ + L_{NB} + A⁻ = ML⁺_{NB} + A⁻_{NB} [8].

Calculation of the $\Delta\phi_{\rm eq}$ values from the experimental $\log K_{\rm D,Pic}$ values

Using the relation of log $K_{\rm D,A} = -(\Delta \phi_{\rm eq} - \Delta \phi_{\rm A}^{0})/0.05916$ at 298 K (Table 1), we calculated the $\Delta \phi_{\rm eq}$ values from the log $K_{\rm D,Pic}$ and $\Delta \phi_{\rm Pic}^{0'}$ ones, where the $\Delta \phi_{\rm Pic}^{0'}$ value of 3.0×10^{-3} V [6] at the w/NB interface was employed. Thus obtained values are summarized in Table 4. The $\Delta \phi_{\rm eq}$ range for the 18C6 system was a little smaller than that for B18C6 one. From a comparison with the log $K_{\rm ext}$ values in Table 3, the smaller the $\Delta \phi_{\rm eq}$ values are, the larger the log $K_{\rm ext}$ ones become. This trend is similar to that reported previously for the extraction of AgPic by B18C6 and benzo-15-crown-5 ether B15C5 into DCE or DCM [1].

Determination of the log K_{ex+}^{S} and log K_{ex2+}^{S} values

The $\Delta \phi_{ext}^{0'}$ values were evaluated from the $\Delta \phi_{eq}$ and log K_{ext} values (Tables 3&4) using log $K_{ext} = (\Delta \phi_{eq} - \Delta \phi_{ext}^{0'})/0.05916$ listed in Table 1. After these evaluations, the log K_{ext}^{s} values were calculated from the same equation at the condition of $\Delta \phi_{eq} = 0$ V. The same values were evaluated from $\Delta \phi_{ex}^{0'} = 2\phi_{M}^{0'} - 2\Delta \phi_{A}^{0'} + 2\Delta \phi_{ML,org}^{0'} + \Delta \phi_{L,org}^{0'} + \Delta \phi_{eq}$ in Table 2 and then log $K_{ext}^{s} = -\Delta \phi_{ext}^{0'}/0.05916$. Here, we calculated the $\Delta \phi_{M}^{0'}$ values from log $K_{D,M}^{s} = -11.799$ for M = Ca, -11.562 for Sr and -10.818 for Ba [19] and similarly the $\Delta \phi_{ML,NB}^{0'}$ values from log $K_{ML,NB} = 11.2$ for ML²⁺ = Ca(18C6)²⁺, 13.1 for Sr(18C6)²⁺, 13.4 for Ba(18C6)²⁺, log $K_{ML,NB} = 9.43$ for Ca(B18C6)²⁺, 11.1 for Sr(B18C6)²⁺ and 11.6 for Ba(B18C6)²⁺ [20]. Also, the $\Delta \phi_{1,NB}^{0'}$ values were calculated from the relation of log $K_{L,NB} = -\Delta \phi_{1,NB}^{0'}/0.05916$ (Table 1) and the log $K_{L,NB}$ values in Table 3. Similar evaluations were performed for the log K_{ex2t}^{s} values using the relation among the potentials listed in Table 2.

As can be seen from Table 4, the log $K_{ex\pm}^{s}$ values calculated from the relation in Table 1 are equal or close to those calculated from that in Table 2. Especially, a little larger deviations for the BaPic₂-L systems may be due to the approximation of $[Ba(II)]_{NB,t} \approx [Pic^{-}]_{NB,t}$ (see Materials and Methods). On the other hand, the log $K_{ex2\pm}^{s}$ values calculated from the relation in Table 2 are very small, compared to those [8] reported before, although the order in magnitude of the calculated values is the same as that of the reported ones [8]. A correlation between these two orders was expressed by the following equation: log $K_{ex2\pm}^{s}$ (calcd) = $(1.54 \pm 0.05)\log K_{ex2\pm}^{s}$ (found) – (2.62 ± 0.07) at R = 0.998. Also, differences between the log $K_{ex2\pm}^{s}$ (calcd) and log $K_{ex2\pm}^{s}$ (found) values

L		$\Delta \phi_{ m eq}/{f V}^{ m a}$	log K _{ext} s		log K _{ex2±} s	
	IVI		Found⁵	Calcd ^c	Found	Calcd ^e
18C6	Ca	0.088	3.96	3.9 ₆	-0.5	-3.4 ₆
	Sr	0.061	5.89	5.93	1.6	-0.42
	Ва	0.044	6.61	6.8,	2.4	1.2
B18C6	Ca	0.12	0.75	0.78	-2.3	-6.20
	Sr	0.082	2.95	2.99	-0.4	-3.1 ₄
	Ва	0.072	3.79	4.07	0.6	-1.5

^aEssentially based on $\Delta\phi/V$ versus Ph₄As ^aBPh₄⁻ electrode. ^bCalculated from the relation of log K_{ext} = f($\phi_{eq} - \Delta\phi_{ext}^{0'}$) in Table 1. ^cCalculated from the relation of $\Delta\phi_{ext}^{0'} = 2(\Delta\phi_{M}^{0'} - \Delta\phi_{A}^{0'} + \Delta\phi_{ML,org}^{0'}) + \Delta\phi_{erg}^{1} + \Delta\phi_{eq}$ in Table 2. ^cCalculated from the thermodynamic cycle, log K_{ext} = log K_{D,M} + 2log K_{D,E} + log K_{M,org}^{0'} + \Delta\phi_{eq} in Table 2. ^cCalculated from the relation of $\Delta\phi_{exz}^{0'} = \Delta\phi_{M}^{0'} - \Delta\phi_{A}^{0'} + \Delta\phi_{eq}$ in Table 2. Table 4: $\Delta\phi_{eq}$ and the log K_{ext} and log K_{ext} values at 298 K standardized by their potentials.

Figure 3: Plot of log K_{ext} versus log K_{ext}^{S} for all the MPic₂-L extraction system. The regression analysis gave the straight line (- - -) of log $K_{\text{ext}} = 0.81 \times \log K_{\text{ext}}^{S} + 2.0_{\gamma}$ with R = 0.998. The label log K_{ext}^{S} on the abscissa is identical to log K_{ext}^{S} (found) in Table 4.

were in the range of 1.2 to 3.9 (Table 4). (i) These differences can be due to experimental errors of data, because estimated fractions, $[ML^{2+}]_{NB}$ / [AAS-analyzed M(II)]_{NB}, were in the ranges of 0.001₂-0.043% for M = Ca, 0.02₄-0.33 for Sr and 0.0₅-3.1 for Ba. That is, these values indicate that the amounts of ML²⁺ in the NB phases are negligible, compared to those of all species with M(II) in the phases and accordingly the $K_{ex2\pm}$ evaluations may cause the larger errors. (ii) Or the difference can come from the fact that the original extraction model does not take account of the overall process, $M^{2+} + L_{NB} + 2Pic^- \qquad ML^{2+}_{NB} + 2Pic^-_{NB}$. While the overall process, $M^{2+} + L_{NB} + 2Pic^- \qquad ML^{2+}_{NB} + 2Pic^-_{NB}$, has been included in the model [3-5] {see Equation (5a)}. However, it is unclear whether the two above facts, (i) and (ii), cause the negative errors of log K_{ex2}^{S} or not.

Figure 3 shows a plot of log $K_{ex\pm}$ versus log $K_{ex\pm}^{S}$ (found) for all the MPic₂-L systems. Here, the former logarithmic values are listed in Table 3, while the latter values in Table 4. The plot gave a good correlation between both the values: log $K_{ex\pm} = (0.81 \pm 0.03)\log K_{ex\pm}^{S}$ (found) + $(2.0_7 \pm 0.1_3)$ at R = 0.998. This fact indicates that the experimental log $K_{ex\pm}$ values clearly reflect the log $K_{ex\pm}^{S}$ ones at $\Delta\phi_{eq} = 0$. The result is the same as that [1] reported before for the AgPic extraction by B15C5 and B18C6 into DCE or DCM. On the other hand, in this study, we were not able to obtain the log $K_{ex2\pm}$ values which are comparable to the above log $K_{ex\pm}$ ones.

Accordance of $\Delta \phi eq$ with the distribution of ML2+ into NB

The individual distribution constants ($K_{D,ML}$) of ML^{2+} into the NB phase can be evaluated from the other thermodynamic cycle, $K_{ex\pm} = K_{ML}K_{D,ML}K_{1,org}(K_{D,A})^2/K_{D,L}$ (Table 2). Here, K_{ML} and $K_{D,L}$ (Table 1) are defined as $[ML^{2+}]/[M^{2+}][L]$ and $[L]_o/[L]$ [15], respectively, and these values at 298 K were available from references; log $K_{M18C6} = 0.48$ for M = Ca, 2.72 for Sr and 3.87 for Ba [4]; log $K_{D,L} = -1.00$ [18] for L = 18C6 and 1.57 [20] for B18C6. Using the logarithmic form of the above equation, we obtained log $K_{D,M18C6} = 0.8_8$ for M = Ca, -0.1_7 for Sr and -0.9_9 for Ba and log $K_{D,M18C6} = 2.6_2$ for M = Ca, 1.4_4 for Sr and 1.6_1 for Ba. There was a tendency that these values increase with an increase in the log $K_{D,M1}^{N}$ sones: log $K_{D,M1} = (1.6_1 \ 0.5_0) \log K_{D,M1}^{S} + (3.6_7 \pm 0.9_2)$ at R = 0.848. Here, the log $K_{D,ML}$ values [20] determined in terms of ion-transfer

polarography were employed as log $K_{\text{D,ML}}^{\text{S}}$. Also, the $\Delta \varphi_{\text{eq}}$ values can be easily evaluated from a modified form, log $K_{\text{D,ML}} = 2(\Delta \varphi_{\text{eq}}/0.05916) +$ log $K_{\text{D,ML}}^{\text{S}}$, of the relation in Table 1: $\Delta \phi_{\text{eq}} = 0.08_{\text{g}}$ V for the CaPic₂-18C6 system, 0.06₀ for SrPic₂-18C6, 0.04₇ for BaPic₂-18C6, 0.1₂ for CaPic₂-B18C6, 0.08₁ for SrPic₂-B18C6 and 0.07₁ for BaPic₂-B18C6 at 298 K. These $\Delta \phi_{\text{eq}}$ values were in good agreement with those listed in Table 4. This fact indicates that the expression of K_{ext} and $K_{\text{D,Pic}}$ by $\Delta \phi_{\text{eq}}$ in the MPic₂ extraction systems with L into NB does not conflict with the data [20] obtained from the electrochemical measurements. Additionally, the $\Delta \phi_{\text{ext}}^{\text{or}}$ values calculated from the relation in Table 1 were well reproduced by the $\Delta \phi$ -relation (b) in Table 2.

Conclusion

Expressions of the extraction constants by $\Delta\phi_{\rm eq}$ were extended into $K_{\rm ext}, K_{\rm ex2\pm}$ and $K_{\rm ex}$ of the ${\rm M^{II}Pic_2}$ extraction systems with L, in addition to $K_{\rm ext}$ and $K_{\rm ex}$ of the AgPic-L systems [1]. These expressions were summarized in Tables 1 and 2. However, the matters for precision of the values in the analyses have been present for the determination of $K_{\rm ex2\pm}^{~~S}$. Also, there may be self-inconsistency for the estimation of the $K_{\rm n,NB}$ values. It was demonstrated that the log $K_{\rm ext}$ values well reflect the log $K_{\rm ext}^{~~S}$ ones. So, one can see markedly the relation between $K_{\rm ext}$ obtained from an extraction experiment and $K_{\rm ext}^{~~S}$ from an electrochemical one. This result fundamentally enables us to discuss the extraction-ability and -selectivity of L against M^{2+} from both the values. Moreover, it was shown that the expressions of $K_{\rm ext}, K_{\rm D,ML}$ and $K_{\rm D,Pic}$ by $\Delta\phi_{\rm eq}$ do not conflict with data obtained from the electrochemical measurements.

Acknowledgement

The authors thank Mr. Shinichi Nakajima for his experimental assistance in the ${\rm K}_{\rm _{MPic}}$ determination.

Appendix

In practice, we have calculated the values of

 $\log K_{\text{ext}} - \log K_{\text{ex2t}}^{S} = f(\Delta \phi_{\text{eq}} - \Delta \phi_{\text{ext}}^{0}) - \log K_{\text{ex2t}}^{S} (A1)$

from Equation (6) and the relation in Table 1. Rearranging this equation, the following equation can be easily obtained

 $\log \mathcal{K}_{_{\text{ext}}} - \log \mathcal{K}_{_{\text{ex2t}}}{}^{\text{S}} = \log \mathcal{K}_{_{\text{ext}}}{}^{\text{S}} - \log \mathcal{K}_{_{\text{ex2t}}}{}^{\text{S}} + f \Delta \phi_{_{\text{eq}}}. (A2)$

Also, Equation (7) gave

$$\log K_{ex} - \log K_{ex\pm} = \log K_{ex}^{S} - \log K_{ex\pm} = \log K_{ex}^{S} - f(\Delta \phi_{eq} - \Delta \phi_{ex\pm}^{0'})$$

= log K_{ex}^{S} - log $K_{ex\pm}^{S}$ - $f\Delta\phi_{eq}$ (A3)

Log $K_{1,\rm NB}$ and log $K_{2\rm NB}$ in Table 3 are equal to Equations (A2) and (A3), respectively. As examples, the log $K_{1\rm NB}$ and log $K_{2\rm NB}$ values for the SrPic₂-B18C6 system were calculated from these equations to be 4.7₃ and 5.0₇, respectively. These values were in good accord with those listed in Table 3.

Why do Equations (A2) and (A3), the functions expressing log $K_{_{1,NB}}$ and log $K_{_{2,NB}}$, contain $\Delta\phi_{_{eq}}$? This question comes from the fact that log $K_{_{n,NB}}$ (n = 1, 2) in Table 1 were derived from the condition of $\Delta\phi_{_{eq}} = 0$ V. Also, the above results are self-consistent to the fact that all the log $K_{_{n,NB}}$ values in Table 3 are conditional equilibrium-constants, such as $K_{_{n,NB}}$ fixed in an I_{NB} value. Unfortunately, the authors cannot now explain these inconsistencies.

References

- Kudo Y, Ogihara M, Katsuta S, Takeda Y (2014) An electrochemical understanding of extraction of silver picrate by benzo-3m-crown-m ethers (m = 5, 6) into 1,2-dichloroethane and dichloromethane. American Journal of Analytical Chemistry 5: 433-444.
- Kudo Y, Harashima K, Katsuta S, Takaeda Y (2011) Solvent extraction of sodium permanganate by mono-benzo-3m-crown-m ethers (m = 5, 6) into 1,2-dichloroethane and nitrobenzene: a method which analyzes the extraction system with the polar diluents. International Journal of Chemistry 3: 99-107.

- Kudo Y, Horiuchi N, Katsuta S, Takeda Y (2013) Extraction of cadmium bromide and picrate by 18-crown-6 ether into various less-polar diluents: analysis of overall extraction equilibria based on their component equilibria with formation of their ion pairs in water. Journal of Molecular Liquids 177: 257-266.
- Kudo Y, Takahashi Y, Katsuta S, Takeda Y (2013) Extraction of several divalent metal picrates by 18-crown-6 ether derivatives into benzene: a refinement of methods for analyzing extraction equilibria. International Journal of Chemistry 5: 90-102.
- Kudo Y, Takahashi Y, Numako C, Katsuta S (2014) Extraction of lead picrate by 18-crown-6 ether into various diluents: examples of suib-analysis of overall extraction equilibrium based on component equilibria. Journal of Molecular Liquids 194: 121-129.
- Kudo Y, Harashima K, Hiyoshi K, Takagi J, Katsuta S, et al. (2011) Extraction of some univalent salts into 1,2-dichloroethane and nitrobenzene: analysis of overall extraction equilibrium based on elucidating ion-pair formation and evaluation of standard potentials for ion transfers at the interfaces between their diluents and water. See comment in PubMed Commons below Anal Sci 27: 913-919.
- Markin VS, Volkov AG (1989) The Gibbs free energy of ion transfer between two immiscible liquids. Electrochimica Acta 34: 93-107.
- Kudo Y, Katsuta S, Takeda Y (2012) Evaluation of overall extraction constants for the crown ether-complex ions of alkali and alkaline-earth metal with counter picrate ions from water into nitrobenzene based on their component equilibrium constants. Journal of Molecular Liquids 173: 66-70.
- Bard AJ, Faulkner LR (2001) Electrochemical Method: Fundamentals and Applications (Edn 2), John Willey & Sons, New York, pp. 60-62
- Guggenheim EA (1928) The conceptions of electrical potential difference between two phases and individual activities of ions. Journal of Physical Chemistry 33: 842-849.
- Takeda Y, Ezaki T, Kudo Y, Matsuda H (1995) Distribution study on electroneutral and protonated amino acids between water and nitrobenzene. Determination of the standard ion-transfer potentials of protonated amino acids. Bulletin of the Chemical Society of Japan 68: 787-790.
- 12. Kudo Y, Takeuchi S, Kobayashi Y, Katsuta S, Takeda Y (2007) Potentiometric determination of ion-pair formation constants for cadmium, calcium salts, and cadmium-18-crown-6 ether derivative complexes with a sulfate ion in water. Journal of Chemical and Engineering Data 52: 1747-1752.
- Ohkouchi T, Kakutani T, Senda M (1991) Electrochemical study of the transfer of uncouplers across the organic/aqueous interface. Biochemistry and Bioenergetics 25: 71-80.
- Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A32: 751-767.
- Takeda Y (2002) Extraction of alkali metal picrates with 18-crown-6, benzo-18crown-6, and dibenzo-18-crown-6 into various organic solvents. Elucidation of fundamental equilibria governing the extraction-ability and -selectivity. Bunseki Kagaku (Analytical Chemistry) 51: 515-525.
- Osakai T, Ebina K (1998) Non-Bornian theory of the Gibbs energy of ion transfer between two immiscible liquids. Journal of Physical Chemistry B 102: 5691-5698.
- 17. Iwachido T, Minami M, Kimura M, Sadakane A, Kawasaki M, Tôei K (1980) The coextraction of water into nitrobenzene with alkali and alkaline-earth metal salts of 2,2',4,4',6,6'-hexanitrodiphenylamine in the presence of several crown ethers and cryptands. Bulletin of the Chemical Society of Japan 53: 703-708.
- Iwachido T, Minami M, Sadakane A, Tôei K (1977) The coextraction of water into nitrobenzene with alkaline-earth metal 2,2',4,4',6,6'-hexanitrodiphenylaminates in the presence of crown ethers. Chemistry Letters 1977: 1511-1514.
- Marecek V, Samec Z (1983) Determination of calcium, barium and strontium ions by differential pulse stripping voltammetry at a hanging electrolyte drop electrode. Analytica Chimica Acta 151: 265-269.
- 20. Kudo Y, Miyakawa T, Takeda Y, Matsuda H (1996) Ion-transfer polarographic study of the distribution of alkali and alkaline-earth metal complexes with 3m-crown-m ether derivatives (m = 6, 8) between water and nitrobenzene phases. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 26: 331-341.
- Takeda Y, Kohno R, Kudo Y, Fukada N (1989) Stabilities in water and transfer activity coefficients from water to nonaqueous solvents of benzo-18-crown-6metal ion complexes. Bulletin of the Chemical Society of Japan 62: 999-1003.
- Takeda Y, Nishida M (1989) Solvent extraction of various metal picrates with benzo-18-crown-6 into CHCl₃. Bulletin of the Chemical Society of Japan 62: 1468-1471.

Page 6 of 6