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Abstract

Mercury represents one of the main environmental pollutants and human exposure to this heavy metal occurs
primarily through nutritional sources, including contaminated fish. This highly toxic compound is known to pose
serious threats to human health, including neurological alterations. Moreover, based on its effects on cardiovascular
health, mercury exposure is now considered an independent risk factor for cardiovascular diseases. The possibility
of reducing heavy metal toxicity through diet has attracted the interest of those responsible for the public health
service. In this respect, the use of phytochemicals able to significantly counteract oxidative alterations as an
attractive tool for the reduction of mercury toxicity has been proposed. Here we review recent evidence supporting
the beneficial role of olive oil hydroxytyrosol in preventing mercury-induced alterations in both human erythrocytes
and neuroblastoma cells. This novel biological effect exerted by hydroxytyrosol represents an additional mechanism
responsible for the much-claimed health benefits of this dietary phenol. Taken together the reported findings
encourage the use of virgin olive oil, characterized by a high hydroxytyrosol content, as an innovative approach in
designing combined dietary and/or nutraceutical strategies to contrast mercury toxicity in humans.
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Introduction
The primary role of nutrition is to provide sufficient quantities of

nutrients in order to prevent syndromes of deficiency or excess [1].
Nevertheless, a healthy diet is a vital key in reducing morbidity and
mortality from chronic diseases [2]. In recent years nutritional research
has focused on studies of dietary components which are able to
strengthen biological functions with the aim of preventing and/or
reducing the risk of disease [3]. Among these compounds, several
secondary plant metabolites are included endowed with important
biological activities, in addition to their basic nutritional benefits. Fruit
and vegetables, indeed, contain thousands of different biomolecules
(phytochemicals), some of which have the potential to promote health
and/or retard diseases [4]. In this respect, these bioactive dietary
components are believed to play a major role in the positive correlation
between adherence to the Mediterranean Diet and a low incidence of
several pathologies, including cardiovascular diseases (CVD) and
cancer [5]. Moreover, these phytochemicals have been proved to
actively counteract the heavy metal-induced body burden and
biochemical alterations [6-7].

Mercury Toxicity
Mercury (Hg) is a highly toxic volatile heavy metal, liquid at room

temperature [8]. It can exist in three oxidation forms: elementary
(Hg0), mercurous (Hg+) and mercuric (Hg2+), and it can form both
inorganic and organic compounds. Among organic compounds,
methylmercury (MeHg) is the most important biologically and
ecologically [9]. Mercury is one of the main environmental pollutants.
The natural sources of emission of metals are superficial waters, the

soil, volcanic activity and the combustion of vegetation. Among
anthropic sources we may consider combustion of fuel and those of
incinerators [10]. The biogeochemical cycle of mercury (Figure 1)
occurs both in air and in the soil [11]. However, mercury cycling in the
aquatic system represents the critical point for human contamination
[12-13]. In aquatic sediments, a small fraction of Hg2+ is converted to
the organic forms. Methylation reaction is mediated by several kinds of
bacteria including some strains of sulfate- and iron-reducing anaerobic
bacteria [14]. The organic form penetrates inside the aquatic trophic
network via plankton (phytoplankton and zooplankton) and
invertebrates [15]. Once it is absorbed by living organisms it tends to
bioaccumulate in the passage through the aquatic food chain,
continuing through small fish and accumulating even further via the
process of biomagnification, reaching its greatest concentration in
carnivorous fish at the top of the food chain [16]. Thus, sources of Hg
exposure to humans are air and water as well as dental amalgam and
certain types of vaccines [13]; however, the dominant pathway is
through eating contaminated food. In fact, diet plays an important role
in exposure to Hg, given that certain foods, especially fish, can contain
high concentrations of this contaminant [12,15]. Furthermore, even
contaminated soil may represent a risk related to its potential transfer
of this metal to crops. Finally, Hg can be transferred into human milk,
causing severe damage to infants [17]. The molecular mechanisms
underlying Hg toxicity are related to its binding capacity to thiol
groups, potentially leading to severe alteration of enzymatic as well as
structural proteins [18]. Hg is a well-known inhibitor of glycolytic
enzymes; in particular, Ramírez-Bajo et al. report Hg inhibitory
activity on both hexokinase and phosphofructokinase in mice, by
reacting with crucial cysteine [19]. Furthermore, the human
thioredoxin system is reported to be inhibited by Hg [20]. The impact
of Hg on the cytoskeleton protein tubulin is well known [21-22]. The
metal, binding to SH-groups of the protein, induces depolymerisation
of microtubules therefore interfering with cellular processes, including
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cell survival, proliferation, migration and differentiation [23]. Besides,
sulfur-containing low molecular weight molecules such as glutathione
(GSH) can be inactivated, thus reducing the antioxidant endogenous
defense system [24]. In this respect, disruption of cellular redox
homeostasis, associated with increased levels of reactive oxygen species
(ROS), is considered to be one of the main Hg-related toxic
mechanisms [25].

Figure 1: The Hg biogeochemical cycle. In aquatic sediments, a
small fraction of Hg2+ is converted into organic forms. These latter
penetrate inside the aquatic trophic network via plankton; once it is
absorbed by living organisms it tends to bioaccumulate through the
aquatic food chain, via the process of biomagnification.

Hg Exposure and Human Health
In the last decade, Hg exposure has increased considerably,

especially in relation to anthropic sources, causing serious problems
for public health [13]. Health risks for mankind following Hg exposure
have been well documented by a long series of epidemiological and
experimental studies. Pathologies correlated to mercury include renal
damage [26] and neuronal disorders [27]. Hg has also been considered
as a contributory factor in Alzheimer’s and Parkinson’s disease [28] and
is able to induce genotoxicity in cultured mammalian cells [29]. A
positive correlation between Hg exposure and CVD has also been
proposed [30]. Recently, the negative effects of chronic Hg exposure on
cardiovascular health have assumed even greater importance and Hg
toxicity is now considered by some authors as a new independent
cardiovascular risk factor [31]. An increasing number of studies have
been undertaken to investigate the possible molecular mechanisms at
the basis of Hg-induced damage to the cardiovascular system.
Endothelial dysfunction plays a central role in Hg toxicity [32].
Exogenous substances once absorbed come inevitably into contact with
endothelial vessels before reaching other organs and tissues, which
puts the cardiovascular system at risk of a toxic insult on the part of
xenobiotics. Potential mechanisms of the toxic action of Hg on the
endothelial cells include a decrease in the bioavailability of nitric oxide,
altering the property of dilation of the vessels [33-34]. Interestingly, in
a human study aimed to investigate the link between Hg exposure and
the metabolic syndrome, Tinkov et al. report a correlation between its
concentration in the blood and blood pressure [35]. Moreover,
smoking is positively associated with hair Hg accumulation, which in
turn results in increased blood pressure [36]. Alteration of coagulation
factors, such as Factor V, represents an additional potential molecular

mechanism through which Hg exerts its cytotoxic effects [30]. Finally,
Hg exposure enhances pro-coagulant activity of red blood cells (RBC),
resulting in a contributing factor for Hg-related thrombotic events
[37]. This metal, indeed, preferentially accumulates in RBC and
induces morphological changes [38] which are associated with
phosphatidylserine (PS) exposure [37]. Ps exposure enables the active
participation of RBC to vasocclusion through directly enhancing
adhesion PS-expressing RBC to endothelial cells and providing a site
for the assembly of the prothrombinase and tenase complex, leading to
thrombin generation and clotting (Figure 2).

Figure 2: Hg-induced procoagulant activity in RBC. Hg induces
phospatidylserine (PS) exposure on RBC surface, providing a site
for assembling prothrombinase complex, leading to thrombin
generation and ultimately to clotting. Furthermore, PS-exposing
enhances RBC adhesion on endhothelial cell (EC).

Hg and Nutrition
Although Hg toxic effects have been well known for a long time, the

exposure of humans to this metal still presents a serious health
problem, and it is one which is dramatically increasing in certain parts
of the world [39]. As previously emphasized, diet represents one of the
most important pathways of Hg exposure [40]. However, while there
are foods which may favour human exposure to this metal, there are
also foods which may reduce its toxicity. Naturally derived products
capable of chelating heavy metals, in order to encourage their
expulsion, are currently being used and this use is increasing [41,42].
In particular, current research has brought to light the ability of dietary
fibers to perform Hg chelation during gastric-intestinal transit [43].

Metal chelation properties have also been found in several
compounds of dietary origin including curcumin [44], which is present
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in the rhizome of Curcuma longa, a spice widely used in the Indian
and Chinese cuisines. Apart from its chelating properties curcumin
also exerts a protective action against lipid peroxidation, induced by
heavy metals, due to its anti-oxidant activity [45]. In fact, since one
mechanism at the basis of Hg toxicity is the deterioration of the
antioxidant defence system, molecules with scavenger properties
against free radicals have been proposed as potential protective agents
[46-50]. Furthermore, there has been a notable increase in the
utilization of organoselenium compounds, either for therapy and/or as
treatment against Hg-induced toxic effects [51]. Due to the high
content of these compounds in the herb garlic [52], it is a dietary
component which has an important detoxifying action on heavy
metals including Hg [53]. Depending on the conditions of its
cultivation, garlic may contain at least 33 different organosulfur
compounds, the most abundant being allicin [54]. Garlic is also rich in
selenium, an important mineral which hinders Hg toxicity by
strengthening the antioxidant defence system, being a co-factor of
antioxidant enzymes such as glutathione peroxidase and thioredoxin
reductase [55], and directly binds to Hg. Finally, in recent years several
studies have revealed the possible protective role of olive oil, against
metal toxicity [56-57].

Olive Oil Hydroxytyrosol in the Prevention of Hg
Toxicity

Olive oil, the typical lipidic source of the Mediterranean Diet, has
been associated with a low incidence of several pathologies [58-59],
including CVD [60] and neurological disorders [61]. Olive oil is an
excellent source of oleic acid, vitamin E and nonessential nutrients.
The olive flesh components are transferred to the oil, which consists of
two major fractions, the saponifiable one, made of triglycerides,
accounting for 98-99% of the total, and unsaponifiable fraction,
containing several liposoluble molecules, including tocopherols,
phytosterols, coloring pigments and squalene [25]. Part of the
unsaponifiable fraction is several phenolic compounds, plant
secondary metabolites. This class includes phenolic acids, phenolic
alcohols, hydroxy-isocromans, flavonoids, lignans and secoiridoids
such as oleuropein and ligstroside. There is general agreement that the
health benefits of olive oil intake result from the combined properties
of all its constituents. In particular, converging evidence indicates that
the antioxidant fraction, including polyphenols, significantly
contributes to its health promoting effect [62-63]. The phenol content
is also important for the quality of virgin olive oil, and the contribution
of these components to the shelf-life of this food is widely accepted
[64].

Hydroxytyrosol (3,4-dihydroxyphenylethanol; HT) is mainly
responsible for the antioxidant properties of this food, due to an
efficient scavenger activity [65]. This molecule, recalling the structure
of the cathecol, is present either simple phenol or esterified with
elenolic acid to form oleuropein aglycone (Figure 3). Experiments
from our group demonstrated that HT, which effectively permeates cell
membranes via passive diffusion [66], counteracts the cytotoxic effects
of reactive oxygen species (ROS) in various human systems, including
Caco-2 cells [67] and RBC [68-69]. The effects of HT on inflammation/
atherogenesis have also been thoroughly investigated. HT inhibits in
vitro low-density lipoprotein oxidation and modulates the oxidative/
antioxidative balance in plasma [70]. Moreover, due to its strong
antioxidant activity and presumably counteracting the oxidative stress-
induced endothelial dysfunction, HT is able to modulate key
mechanisms implicated in the development of atherosclerosis,

including the expression of adhesion molecules [71]. In this respect, it
has been demonstrated that this phenol inhibits the expression of
adhesion molecules in a human endothelial cell line (HUVEC)
exposed to pro-inflammatory cytokines [72]. Even though the majority
of HT biological activities can be directly ascribed to its antioxidant
activity, emerging evidence [73] supports the view that some effects of
this molecule are independent of its scavenging properties. In this
respect, several olive oil phenols are able to inhibit homocysteine-
induced increased endothelial cell adhesion, regardless of their
different antioxidant activity [74]. Additional biological effects include
neuroprotection [75] and anti-cancer properties [76]. The interference
of polyphenols in the apoptotic model of cell death in nucleated cells is
well documented [77] and mainly involves protection against
mitochondrial-mediated mechanisms by virtue of their antioxidant
capacity. Finally, HT ameliorates acrolein-induced cytotoxicity in
retinal pigment epithelial cells, showing a protection from oxidative
damage and mitochondrial dysfunction [78] and reduces acrylamide-
induced cytotoxicity, preventing DNA damage and intracellular ROS
formation in HepG2 cells [79]. In the last few years, several papers
report data indicating that this dietary component is able to counteract
the toxic effects linked to exposure of heavy metals, including Hg
[80-82].

Figure 3: HT chemical structure. HT derives from hydrolysis of
oleuropein, naturally present in olives and olive leaf.

HT Prevents ROS Formation and Hg-induced
Morphological Alterations in Human RBC

RBC are anucleated cells without organelle cells, thus representing a
simplified cellular model of the metabolism. This is particularly
advantageous for the study of oxidative stress caused by the high
tension of oxygen and the highly toxic free radicals derived from it. In
addition, RBC have been utilized as a model for pharmacological and
toxicological studies which investigate heavy metal toxicity. Thus,
intact human RBC, subjected in vitro to treatment with mercury
chloride (HgCl2) were utilized to test the potential protective effects of
HT. HT has the potential to modulate cytotoxicity and to counteract
GSH decrease and the OS induced in RBC by Hg treatment [80]. In
this experimental system, Hg-induced ROS generation is a late event
(Figure 4) and probably occurs subsequently to a significant decrease
of essential antioxidant thiols, which could render cells more
susceptible to ROS-mediated OS. Also of great clinical importance is
the finding that HT prevents Hg-induced RBC morphological
alteration (echinocyte formation), which makes cells more
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atherogenic. As pointed out before, Hg exposure enhances pro-
coagulant activity of these cells, resulting in a contributing factor for
Hg-related thrombotic disease (Figure 5).

Figure 4: HT prevents Hg-induced ROS formation in human RBC.
Cells were subjected in vitro to treatment with HgCl2. The 2′,7′-
dichlorodihydrofluorescin diacetate (DCFH-DA) assay was
performed to quantify ROS generation (Courteously granted by
Tagliafierro et al. [80]).

Figure 5: HT prevents morphological alterations in human RBC.
Cells were subjected in vitro to treatment with 20 µM HgCl2 for 4
hours. After incubation, cells were analyzed by microscopy
electronic scan (SEM). (A) Untreated RBC. (B) Hg-treated RBC.
(C) HT-pretreated RBC before adding HgCl2 (Courteously granted
by by Tagliafierro et al. [80]).

HT Prevents Hg-induced Programmed Cell Death
(eryptosis) in Human RBC

Hg-induced programmed cell death has been well documented in
both nucleated and anucleated cells [83]. Similarly to apoptosis, RBC
may encounter programmed cell death, also called eryptosis [84-85].
This process is characterized by an increase of intracellular calcium
and by depletion of ATP and GSH. These biochemical alterations result
in RBC morphological changes, associated with a reorganization of the
cellular membrane, in which exposure of PS on the cell surface is the
major event [37]. Experimental evidence of the efficacy of HT in
preventing eryptosis in human RBC exposed in vitro to HgCl2

treatment has been recently published by our group [81]. Cell
conditioning with HT micro-molar concentrations prior to exposure
to Hg causes a decrease in PS-exposing RBC, along with the
restoration of ATP and GSH cellular content (Figure 6). Conversely,
HT pretreatment shows no effect against influx of extracellular calcium
and thus does not interfere with Ca-mediated mechanisms in
eryptosis. These data reveal that HT has the potential to modulate
suicidal death induced by Hg treatment in anucleated cells, also devoid
of mitochondria and thus lacking any mitochondria-mediated
apoptotic pathways. Furthermore, no increase in ROS production was
observed in the mild experimental conditions utilized, indicating that
HT biological activities, which are different from the scavenging
potential, are involved in the protective process. In this respect, GSH
enhancement may represent a key mechanism, as reported in different
cellular systems. In particular, Mohan et al. [82] report that the ability
of HT to promote the expression of nuclear factor erythroid 2-related
factor 2 (Nrf2), which in turn elevates GSH levels, is crucial in
ameliorating the neurotoxic effect of MeHg, as discussed in the next
paragraph.

Figure 6: HT prevents PS exposure and GSH depletion in human
RBC. Cells were subjected in vitro to treatment with HgCl2. After
incubation, flow cytometry (FACS) analysis was utilized to
determine PS exposure (annexin-V binding, panel A-B) and GSH
level (5-chloromethylfluorescein binding, panel C-D) (Courteously
granted by Officioso et al. [81]).

HT Prevents Hg-induced Genotoxicity and Apoptosis
in Human Neuroblastoma Cells

A recent study highlights the efficacy of HT in preventing MeHg-
induced neurotoxicity, using IMR-32 human neuroblastoma cells as a
surrogate model for studying the effects of heavy metal on neuronal
dysfunction. In this study, Mohan et al. [82] report that cell pre-
incubation with HT inhibits MeHg-induced cytotoxicity along with
reduction of ROS formation and the maintenance of an efficient
endogenous defence system, including GSH levels and superoxide
dismutase and catalase activities. Furthermore, HT also prevents
genotoxicity and apoptosis, causing downregulation of p53, bax,
cytochrome c, and caspase 3 and upregulation of prosurvival proteins
including Nrf2 and metallothionein. In particular, the ability of HT to
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promote the expression of Nrf2 and, in turn, to modulate GSH levels,
appears crucial for the neuroprotective effect of HT. It is well known
that ROS accumulation has been implicated as a relevant cofactor
contributing to both DNA damage and the cascade of events leading to
programmed cell death in nucleated cells. The lowering of oxidative
stress, which may be endorsed by its anti-genotoxic and anti-apoptotic
properties probably, represents the main molecular mechanism of the
observed cytoprotective potential of HT against MeHg-induced
toxicity.

Conclusion
Taken together, the data discussed in this review provide

experimental evidence that HT, a component normally present in high
concentrations in olive oil, has the potential to modulate Hg toxicity,
therefore representing an ideal candidate for nutritional/nutraceutical
strategies to counteract the adverse effects of Hg exposure in humans.
The reported novel biological effect of HT reinforces the nutritional
importance of the phenolic fraction which greatly contributes to the
beneficial effects of the olive oil on human health. Finally, an
interesting observation is that HT protective concentrations utilized in
the experimental systems could be approached in vivo upon strict
adherence to the Mediterranean dietary habit, in the context of a
balanced diet. Furthermore, HT has been proved to be devoid of
toxicity [86-87], is highly bioavailable [88-89] and potentially able to
cross the blood-brain barrier [86].
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