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Abstract
The 13CF3 group is a promising label for heteronuclear (19F,13C) NMR studies of proteins. Desirable locations for 

this NMR spin label include the branched chain amino acid methyl groups. It is known that replacement of CH3 by 
CF3 at such locations preserves protein structure and function and enhances stability. 13CF3 may be introduced at the 
δ position of isoleucine and incorporated biosynthetically in highly deuterated proteins. This paper reports our work in 
synthesis and purification of 5,5,5-trifluoroisoleucine, its perdeutero and 5-13C versions and of 2-13C-trifluoroacetate 
and its utility as a precursor for introduction of the 13CF3 group into proteins.

Keywords: 13C; 19F; Heteronuclear; Paramagnetic; NMR; Spin label;
Methyl TROSY; Unnatural amino acid; Fluorous; Lipophilic; Protein 
expression

Introduction
Fluorine NMR and labelling strategies in proteins

Fluorine NMR spectroscopy is a powerful method for the study 
of both structure and dynamics of proteins and their interactions 
with other proteins or ligands [1-4]. Because of the ability of the 19F 
lone-pair electrons to participate in non-bonded interactions with 
the local environment, 19F chemical shifts are sensitive to changes in 
van der Waals contacts, electrostatic fields and hydrogen bonding. 
As such, 19F chemical shifts (or changes in shifts) are often indicative 
of conformational changes [5-8] binding [9] and protein folding or 
unfolding events [10-12]. Fluorinated probes are also frequently used to 
assess solvent exposure, via chemical shift changes or relaxation effects 
resulting from: 1) substituting H2O for 2H2O [2] paramagnetic additives 
such as Gd3+: EDTA2 heteronuclear nuclear Over Hauser effects [13]. In 
membranous systems, analogous paramagnetic effects are also observed 
upon addition of nitroxide spin-labels [14] or dissolved oxygen [15,16] 
facilitating the study of topology and immersion depth via fluorinated 
probes. Finally, associated 19F spin-spin and spin-lattice relaxation rates 
are useful for studying conformational dynamics over a wide range 
of timescales, due to the significant chemical shift dispersion, shift 
anisotropy, and large heteronuclear dipolar relaxation terms [17-20]. 

Fluorine labelling of proteins is achieved in many ways. 
Via biosynthetic means, monofluorinated versions of tyrosine, 
phenylalanine, and tryptophan may be substituted for their 
nonfluorinated equivalents, often with little effect on overall expression 
yields [2,4]. Fluorinated versions of methionine [7,21] proline 
[22], leucine [23] and isoleucine [24] have also been successfully 
incorporated into proteins. An alternative approach to 19F labelling 
of proteins is to make use of a thiol specific fluorinated probe, which 
frequently consists of a terminal trifluoromethyl group [4]. In this way, 
a fluorine tag may be placed at virtually any site in the protein, using 
successive single cysteine mutations of the protein under study. Thus, 

the majority of 19F labels used in protein NMR fall under the category 
of isotopic fluoroaromatic or trifluoromethyl species. For very large 
proteins, spectral overlap may become problematic for biosynthetically 
labelled proteins. However, a doubly (13C, 19F) labeled amino acid 
should provide greater resolution in two-dimensional (19F,13C) NMR 
spectra, with further possibilities of assignment without mutational 
analysis. Moreover, such two-dimensional NMR schemes should 
benefit from the relatively large one bond (13C,19F) coupling which is 
between 265 and 285 Hz for both fluoroaromatics and trifluoromethyl 
groups. Finally, the possibilities for studying dynamics from a 13C,19F 
pair encompasses a much greater range, since various zero, single, 
and double quantum coherences in addition to Zeeman and two-spin 
longitudinal order, may be separately evolved and studied [25,26]. In 
this paper, we present a method for the preparation of perdeuterated 
isoleucine, in which the terminal trifluoromethyl group consists of a 
13C-19F pair. The motivation for this work is to develop a useful doubly 
labelled species for subsequent nD NMR studies of proteins, whose 
isoleucine residues have been fluorinated. 

Advantages of a trifluoromethyl group

The trifluoromethyl group is expected to be a useful probe of 
molecular structure and dynamics, particularly in the hydrophobic 
core of proteins, at the interface between protein complexes, and in 
the membrane or detergent interior in studies of integral membrane 
proteins. Expressed within proteins, the CF3 group offers additional 
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these amino acids account for 75% of the amino acids in transmembrane 
regions. In contrast, isoleucine (10% abundance versus 4% conserved), 
valine (8% versus 4%), methionine (4% versus 1%) and threonine 
(7% versus 4%) are less prevalent in conserved positions [33]. Large 
hydrophobic (Phe, Leu, Ile, Val) residues show a clear preference for the 
protein surfaces facing the lipids for β-barrels, but in α-helical proteins, 
no such preference is seen, with these residues equally distributed 
between the interior and the surface of the protein [34].

Synthesis outline

The scheme shown below shows the route used to make 
5,5,5-trifluoroisoleucine as a racemic mixture of diastereomers [35]. 
This scheme is modified for perdeuteration by substitution with 
cyanoacetic acid-d3, acetone-d6, CF3CO2D, ammonium-d4 acetate-d3 
and D2/Pd. Modification of this scheme for the 13CF3 amino acid 
requires electrochemical trifluoromethylation using 13CF3CO2-.

Experimental
Melting points are uncorrected. 1H, 19F and 13C NMR spectra 

were recorded on Varian Gemini 200 MHz and Unity Inova 600 
MHz spectrometers. 2H NMR spectra were recorded on the Varian 
Unity Inova 600 MHz spectrometer. UV spectra were recorded using 
a Biochrom Libra S22 UV/Visible spectrophotometer. IR spectra 
were recorded using a Nicolet Avatar 360 E.S.P. FT-IR spectrometer. 
GC/MS was done using a Shimadzu GCMS-QP5050 system. LC/MS 
was performed using a system comprised of a Waters/Alliance 2690 
liquid chromatography module and a Waters Micromass ZQ ESI mass 
spectrometer. Hydrogenation was performed with a Parr high-pressure 
hydrogenation apparatus. Electrochemical trifluoromethylation 
was performed with a Sargent Slomin analyzer with (one spinning) 
platinum mesh electrodes.

Synthesis of methallylcyanide and methallylcyanide-d7

Synthesis of methallylcyanide and methallylcyanide-d7 relies on 
‘active hydrogen’ chemistry, i.e., exchangeable protons/deuterons. 
Wang et al. cite a synthesis reported by Marson et al. [36]. Cyanoacetic 
acid (e.g., 50.0 g, 0.59 mol), acetone (34.2 g, 0.59 mol), and ammonium 
acetate (4.0 g, 0.05 mol) (or their perdeutero counterparts) in dry 
benzene (100 mL) were refluxed with a Dean-Stark trap. Reflux was 
performed until one equivalent of water (or D2O) was collected in 
the trap. Due to the cost of perdeuteroammonium acetate, a minimal 
amount of this catalyst was used. The quantity was observed not to be 
critical to yield. One gram of ammonium-d4 acetate-d3 will suffice for 
the synthesis of methallylcyanide-d7. The Dean-Stark unit was replaced 
with a distillation head and the fraction collected between 110°C and 

benefits of sensitivity and relatively long transverse relaxation times. 
However, the inherent slow rotational tumbling associated with large 
proteins or protein complexes, and membrane proteins, results in 
line broadening and reduced sensitivity. 19F spin labels also suffer 
extensively from dipolar relaxation with nearby proton spins of the 
protein [2], which may be largely avoided by extensive deuteration. 
Furthermore, in situations where 13C,19F two-dimensional NMR 
schemes are employed, the use of transverse relaxation optimized 
spectroscopy (TROSY) techniques [27,28], may be considered. The 
TROSY effect in methyl groups, results from interference between intra-
methyl dipolar interactions [29]. As such, the effect is independent of 
field, to the extent that chemical shift anisotropy does not contribute 
to relaxation. Since the geometry of the trifluoromethyl group is like 
that of a CH3 group, while the gyromagnetic ratio of the 19F nucleus 
is 0.83 times that of 1H, the methyl TROSY effect would be expected 
to be preserved in appropriate (19F,13C) two-dimensional schemes. 
In particular, in the rigid limit, the maximum peak intensities in the 
(1H,13C) HMQC are predicted to depend on terms which are derived 
from relaxation via reorientation of either the CF or FF intramolecular 
bonds i.e., transverse rates proportional to 
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local order parameter of the methyl rotor and the global correlation 
time associated with rotational tumbling of the protein. Finally, γC and 
γF represent the magnetogyric ratios of 13C and 19F, respectively while 
rCF and rFF designate the intramolecular bond lengths. In the (19F,13C) 
HMQC, where we estimate the CF and FF intramolecular bond lengths 
in a trifluoromethyl group to be 1.33 Å and 2.12 Å respectively, the 
above transverse rates are predicted to be more than three times smaller 
than those for the CH3 groups, in the absence of external dipolar 
relaxation or relaxation due to chemical shift anisotropy.

The trifluoromethyl probe in isoleucine

Considering these anticipated advantages for 1D and 2D NMR, 
we have developed a protocol for the synthesis and purification of 
perdeuterated 5,5,5-trifluoroisoleucine, in which the carbon nucleus of 
the trifluoromethyl group is 13C enriched. Incorporation, using a cell-
free protein expression technique, is reported [30]. We also describe 
herein a synthesis strategy for 2-13C-trifluoroacetate and purification 
of the ammonium salt (or hypothetically CF3CO2H), to produce 
perdeutero 5-13C-5,5,5-trifluoroisoleucine. This report is intended to 
communicate some of the subtleties involved in these efforts.

Isoleucine has some additional features that make it attractive 
for (19F, 13C) double labelling. At neutral pH, isoleucine is the most 
hydrophobic of the aliphatic side chain amino acids and it is often 
highly conserved at positions involved in hydrophobic interactions. 
Consequently, isoleucine often functions at the hydrophobic binding 
cleft. For example, isoleucine residues 737 and 898 in the human 
androgen receptor ligand binding domain mediates interdomain 
communication with the NH2-terminal domain, which in turn mediates 
transcriptional activation [31]. Calmodulin provides another example. 
1H NMR studies of amide proton exchange rates of Ca2+-saturated 
calmodulin and a Ca2+-saturated calmodulin-mastoparan complex 
showed a reduction in solvent accessibility of Ile27 upon mastoparan 
binding [32]. Genomic analysis of membrane protein families informs 
us of amino acid abundances and conserved motifs. The most abundant 
amino acids in transmembrane regions are leucine, isoleucine, valine, 
phenylalanine, alanine, glycine, serine, and threonine. Taken together, 
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115°C.

Compton et al. reports the existence of both 3-methyl-2-butenenitrile 
and 3-methyl-3-butenenitrile in a sample of methallylcyanide. This 
is consistent with an equilibrium arising from ‘active hydrogen’ 
chemistry as evidenced by the 2H NMR spectrum in Figure 1, below. 
The predicted boiling points for these isomers are within 2°C, so they 
cannot be separated by fractional distillation. Accordingly, this product 
is properly called methallylcyanide [37] rather than 3-methyl-but-
3-enenitrile [27]. Appreciation of the active hydrogen nature of this 
product is required to make methallylcyanide-d7.

Synthesis of methallylcyanide-d7 requires the preparation of 
cyanoacetic acid-d3, first and then its condensation with acetone-d6, 

catalyzed by ammonium-d4 acetate-d3. 50 grams of cyanoacetic acid 
was dissolved with warming in a minimum quantity of D2O, then 
left overnight to affect exchange. Excess H2O/D2O was subsequently 
removed with a rotary-evaporator, and the wet crystals further dried 
overnight in a vacuum desiccator. Because not all H2O/D2O can be 
removed by this procedure, subsequent steps require less D2O to affect 
dissolution. The proton/deuteron exchange procedure was executed three 
times and the product submitted for mass spectral analysis. Three more 
H/D exchange steps were performed. The resulting cyanoacetic acid-d3 
was condensed with a molar excess of actetone-d6 in the presence of 
ammonium-d4 acetate-d3 and the water of condensation was analyzed by 
1H NMR. The trace aqueous solubility of benzene is known. Comparison of 
integrated peak intensities showed that the water of condensation contained 
0.6% H2O and 99.4% D2O. Given that all H/D sites are exchangeable, it is 
concluded that methallylcyanide-d7 obtained after decarboxylation and 
distillation of the condensation product was 99.4% isotopically pure. This 
isotopic purity is consistent with that of the reagents used. See the 2H NMR 
spectrum in Figures 1 and 2.

Electrochemical trifluoromethylation of methallylcyanide-d7

Muller chose to perform electrochemical trifluoromethylation 
of methallylcyanide in aqueous 90% methanol between platinum 
electrodes whereas we chose a later system of CH3CN and H2O (8:1) 
[35]. An electrochemical solvent system of acetonitrile and water 
necessitates further use of acetonitrile and D2O for methallylcyanide-d7.

Because of hydrogen exchange chemistry of methallylcyanide-d7, 
special care needs to be applied to the adaptation of this reaction to 
a perdeuterated substrate. H2O needs to be replaced by D2O. Both 
MeOD and CH3CN methyls ought to be resistant to H/D exchange 
under the conditions of the reaction but CH3CN is cheaper than MeOD 
and so is a better choice. Muller chose to use a 73% molar excess of 
CF3CO2H relative to methallylcyanide and to use a slight coulombic 

Figure 1: Deuterium NMR spectrum of methyallylcyanide-d7, an equilibrium mixture of 3-methyl-2-butenenitrile-d7 and 3-methyl-3-butenenitrile-d7. The predicted boiling 
points of these two components are within 2°C, thus these isomers cannot be separated by fractional distillation.
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Figure 2: These images show conformational changes in calmodulin. On the 
left is calmodulin without calcium and on the right, is calmodulin with calcium. 
Sites that bind target proteins are indicated by red stars.
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excess [37]. Dmowski chose to use a 20 times molar excess of TFA 
relative to substrate and 1.5 Faradays per mole of TFA. Because both 
methallylcyanide-d7 and 2-13C-trifluoracetate are very expensive these 
should be used in 1:1 molar ratio and with 50% excess current. Both 
authors achieved mild basic condition with 10% Na.

We used a Sargent Slomin S-29460 electrolytic analyzer, for radical 
trifluoromethylation. Both rotating and stationary electrodes were 
platinum. The rotating platinum electrode was chosen to be the anode. 
At the anode, reactions CF3CO2

-→CF3CO2+e-→ CF3+CO2↑ and at the 
cathode 2H++2e- → H2↑, both yield gases. The spinning electrode 
helps stirring and shakes off gas bubbles. Upon entering the limiting 
current region increasing the applied voltage is counterproductive. Gas 
production observation aids adjustment.

Muller’s workup [37] was followed, as described below. For 
methallylcyanide-d7, H2O should be replaced by D2O, H2 by D2 and 
MeOH by MeOD or some other exchange resistant solvent such 
as CH3CN. An iron (steel) cathode would minimize loss of valuable 
substrate by electrolytic hydrogenation.

The mixture was poured into 700 mL of water, the dense oil 
collected, and the aqueous layer extracted with two 40 mL portions of 
dichloromethane. The combined organic layers from three identical runs 
were distilled to remove the solvent and then steam distilled. The non-
aqueous layer was a mixture of 3-methyl-5,5,5-trifluoropentanonitrile, 
several isomeric 3-methyl-5,5,5-trifluoropentenonitriles, methallyl 
cyanide, and unidentified by-products. It was diluted with methanol 
and hydrogenated at low pressure over 5% Pd/C. Distillation afforded 
66 g of nearly pure 3-methyl-5,5,5-trifluoropentanonitrile, b.p. 166-
171°C.

For the perdeutero route, once the various isomeric perdeutero- 
3-methyl-5,5,5-trifluoropentenonitriles are reduced by D2, exchange 
is no longer possible. Subsequent steps closely follow the protocol 
outlined by Muller as does this exposition. Quantities were adjusted 
proportionately.

The distillation product, 3-methyl-5,5,5-trifluoropentanonitrile 
was stirred with sufficient concentrated aqueous hydrochloric acid to 
bring most of the organic material into solution, for several days, then 
diluted with water and refluxed overnight. The separated organic layer 
was isolated, dried over Na2SO4, and distilled at 6 torr, giving 58.3 g of 
3-methyl-5,5,5-trifluoropentanoic acid, b.p. 76-81°C.

58.3 g (0.343 mol) of 3-methyl-5,5,5-trifluoropentanoic acid, 19.1 
mL of bromine and 0.6 mL of phosphorus trichloride were refluxed 
with a trap to absorb gaseous hydrogen bromide until the colour of 
bromine had disappeared. On distilling at 6 torr, about 6 g of 3-methyl-
5,5,5-trifluoropentanoic acid were recovered. 60 g of distillate boiling 
at 100-106°C consisted mainly of nearly equal amounts of the two 
diastereomers of 2-bromo-3-methyl-5,5,5-trifluoropentanoic acid. 
This mixture was used for the preparation of 2-amino-3-methyl-5,5,5-
trifluoropentanoic acid without further purification. 64.4 g (0.259 
mol) of this nearly pure 2-bromo-3-methyl-5,5,5-trifluoropentanoic 
acid and 225 mL of concentrated aqueous ammonia were cautiously 
mixed and stored in a closed flask at 44-48°C for 5 days. The stopper 
was removed and the mixture gently heated with a water bath to drive 
off excess ammonia and reduce the volume to about 90 mL.

We observed the formation of polymeric materials and so we could 
not crystallize the product from our reaction mixture. Accordingly, we 
developed several purification methods discussed in the next section.

Purification of a reaction mixture containing 2-amino-3-
methyl-5,5,5-trifluoropentanoic acid

Two factors are likely to alter the physical properties of 
5,5,5-trifluoroisoleucine relative to native isoleucine. The inductive 
effect of the CF3 group will make the amino acid and amino groups 
more acidic and the greater hydrophobicity of the CF3 group will 
enhance the hydrolytic stability of its polymers [38,39].

In our hands, reaction of a mixture of diastereomers of 2-bromo-3-
methyl-5,5,5-trifluoropentanoic acid with aqueous ammonia produced a 
product mixture that contained a significant quantity of polymeric material. 
Some of this material was readily soluble in diethyl ether and CDCl3. 
That fraction that was soluble in organic solvent could be hydrolysed by 
dissolution in TFA followed by gradual addition of water. We found that 
the reaction mixture could be stabilized by formation of the TFA salt.

We first chose a method of chemical purification that was 
appropriate for the partial fluorous character of the amino acid [40-42]. 
The use of a C8F17 BOC derivative [43] proved to be problematic because 
the only rational method for its hydrolysis was the use of TFA and we 
already had made the TFA salt. Exploitation of the C8F17 Cbz derivative 
[43] proved to be more fruitful. A product mixture was dissolved in 
THF and a minimal quantity of water and reacted with a small molar 
excess of N-[4-(1H,1H,2H,2H-perfluorodecyl) benzyloxycarbonyloxy] 
succinimide. The resulting C8F17 Cbz derivative was purified by solid 
phase extraction on fluorous silica [44]. This derivative was subjected to 
atmospheric pressure hydrogenolysis over 5%Pd/C and the subsequent 
product mixture subjected to fluorous SPE. Lyophilization yielded 
a soluble product that was white. Incorporation of this product in 
calmodulin [30] (M. Kainosho: private communication) using a 
cell free protein expression system proved that the product mixture 
contained ≤ 25% 5,5,5-trifluoro-L-isoleucine and proved the efficacy of 
the chemical purification.

During lyophilization, much of the product was lost due to 
sublimation. Sublimation has recently been revisited as a means for 
purification of amino acids [43]. We found that our chemically purified 
product mixture could be sublimed at 150°C and 6 mm Hg, but that 
fractional sublimation would require better vacuum and temperature 
control.

Finally, we exploited ion exchange chromatography using cellulose 
phosphate to separate monomeric and polymeric fractions. Elution 
with distilled H2O yielded a microcrystalline fraction while elution 
with dilute aqueous ammonia yielded a waxy fraction identifiable as 
polymeric material. Refinement of ion exchange column purification 
should be developed using ion exchange TLC on cellulose phosphate 
paper.

We explored the use of analytical HPLC-MS first using an 
acetonitrile gradient in 0.1% aqueous TFA on a C18 column. 2-amino-
3-methyl-5,5,5-trifluoropentanoic acid has a molecular weight of 
185. We identified two separated peaks corresponding to [M+] and 
[M+H+] on an ESI-MS instrument. We conclude that these are the 
diastereomers and that differential inductive effects due to CF3 cause 
differing acid/base properties of the diastereomers. These peaks were 
followed at longer time by peaks due to polymers. We wished to explore 
the possibility of preparative scale chromatography where TFA would 
be counterproductive. An isocratic method was developed using 5% 
acetonitrile in 0.2% aqueous formic acid on an analytical C18 column.

Ammonium 2-13C-trifluoroacetate
To embed the 13CF3 group into a synthetic scheme for 
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5,5,5-trifluoroisoleucine following the synthetic scheme above, a route 
to 2-13C-trifluoroacetate is required. Trifluoro acetic acid has been 
made via electrochemical fluorination [44]. Since this electrolysis 
would entail use of anhydrous hydrogen fluoride within a customized 
Teflon reaction vessel, a refrigeration unit, a high current power supply 
and a process control system, we chose to explore an alternate route 
involving halogen exchange with 2-13C-tribromoacetic acid. We devised 
a new route to 2-13C-tribromoacetic acid starting with 2-13C-ethanol, 
discussed below.

Halogen exchange reaction design considerations

Preliminary experiments were performed following the halogen 
exchange reaction originated by Ref. [45]. Mass spectral analysis of an 
early natural abundance test reaction showed that trifluoro acetic acid 
was formed by reaction of AgBF4 with CBr3CO2H in DCM. However, 
13C NMR multiple analysis of a test reaction with 13CBr3CO2H showed 
a conversion to 13CF3CO2H of only 18% after stirring at for 10 days at 
room temperature. A longer reaction time in glassware was found to 
be counterproductive because of failure of containment. AgBF4 releases 
highly aggressive BF3 during the reaction. The reaction between BF3 and 
silica gel [46,47], is useful at the purification stage, however, reaction 
with ground glass joints may give rise to leakage.

A procedure for making 2-13C-trifluoroacetic acid

The following procedure was designed to avoid the necessity of 
handling hydrogen fluoride, either as a solvent, reagent, or product. 
Synopsis: 2-13C-ethanol is converted to the tribromoacetaldehyde, 
2-13C-bromal (hydrate) using a molar excess of bromine, Br2. One 
equivalent of water converts the product mixture to bromal hydrate. 
Reaction with excess nitric acid at a temperature less than 50°C 
converted bromal hydrate to 2-13C-bromoacetic acid. This product is 
isolated and converted to 2-13C-trifluoroacetic acid using AgBF4 under 
pressure in dichloromethane. The 2-13C-trifluoroacetate is extracted 
into ammonia. Impure ammonium 2-13C-trifluoroacetate can be 
enhanced in purity by sublimation at 85°C and with a vacuum less than 
10 microns Hg. The yields were very low.

Conversion of 2-13C-ethanol to 2-13C-bromal (hydrate)

The reaction proceeds according to:

2-13C-ethanol+4Br2 → 2-13C-bromal+5HBr

In a closed system, the above is an equilibrium reaction. To drive the 
reaction to completion, product HBr gas must be permitted to escape. 
This loss of mass results in a considerable reduction in the volume of 
the reaction mixture. We have tried sulphur and I2 as catalysts. TFA is 
probably a better catalyst for this reaction. The oxidation potential of Br2 
is not sufficient to carry oxidation beyond the aldehyde. The aldehyde 
is required for tribromination, because each bromination step proceeds 
via the enol. To avoid loss of volatiles, 2-13C-ethanol and excess Br2 were 
combined at liquid nitrogen temperature and warmed very slowly to 
reflux temperature. When the reaction has been driven to completion, 
13C NMR shows the presence of only 2-13C-bromal (~40 ppm) and its 
hydrate (~12 ppm). Prior to the next step, it may be desirable to isolate 
2-13C-bromal via distillation, and its hydrate by crystallization but it is 
not essential. One equivalent of H2O is added to convert all to hydrate.

Conversion of 2-13C-bromal hydrate to 2-13C-tribromoacetic 
acid

13CBr3CH(OH)2+HNO3 → 13CBr3CO2H+½N2O4+H2O

The more stable hydrate of tribromoacetaldehyde is the species 
oxidized. Completion of this reaction can be determined by 13C NMR 
(~34 ppm). At completion of reaction, excess nitric acid is removed 
under vacuum. Purity can be determined by melting point, 128°C.

Conversion of 2-13C-tribromoacetic acid to 2-13C-trifluoroacetic 
acid

13CBr3CO2H+3AgBF4+3(C2H5)2O→13CF3CO2H+3AgBr+3[BF3∙(
C2H5)2O]

This reaction is conducted in dichloromethane. This three-step 
reaction is exceedingly slow. For practical synthesis, it is necessary 
to conduct this reaction in a sealed pressure reaction vessel at above 
75°C. The completion of this reaction can be determined by 13C NMR 
(quartet at 116.6 ppm is dominant) or 19F NMR (doublet at -76.55 
ppm is dominant). Under standard conditions BF3 is a gas, whereas 
BF3∙(C2H5)2O is liquid. A strong Lewis acid, BF3 forms a complex with 
diethyl ether. This reduces the pressure. At the completion of the reaction, 
the DCM reaction mixture is eluted through silica gel. SiO2 reacts with 
BF3. 2-13C-trifluoroacetate is extracted into aqueous ammonia and 
excess removed under vacuum. Ammonium 2-13C-trifluoroacetate was 
converted into a fine powder by lyophilization, to aid in sublimation. 
Ammonium 2-13C-trifluoroacetate was sublimed to improve purity 
by sublimation at 85°C and less than 10 microns Hg vacuum. Because 
initial purity was poor, yield was poor. Gram scale quantities of material 
could be processed in this way.

Manipulation of 13C haloacetates

The halogen exchange reaction between 2-13C-tribromoacetic acid 
and AgBF4 proceeds in a stepwise fashion and hence yields a mixture 
of haloacetates. The target compound, 2-13C-trifluoroacetic acid is too 
volatile and so the haloacetate mixture is best manipulated as a salt. The 
ammonium salts have volatilities that were exploited for purification 
by high vacuum sublimation and the progress of purification was 
monitored by 19F and 13C NMR. Whereas high vacuum sublimation 
has only one theoretical plate, the greater load capacity compared to 
chromatography affords it an advantage for the first stages of purification. 
Repeated stages of high vacuum sublimation yielded a product that 
gave three spots on silica gel TLC. Neutral alumina TLC gave streaks. 
One spot showed an Rf=0.78 on silica gel TLC that was identical to 
the Rf of natural abundance ammonium trifluoroacetate, eluted with 
10% aqueous ammonia in methanol. Based on this observation, the 
ammonium 13C haloacetate mixture was subjected to preparative TLC 
under the same conditions. 19F and 13C NMR of the product from the 
preparative TLC target band showed that the mixture consisted of 
ammonium salts of 2-13C-trifluoroacetate, 2-13C-bromodifluoroacetate 
and 2-13C-dibromofluoroacetate (Table 1).

It is interesting to note that CF3I has been enriched to 86% in 13C 
by selective multiphoton dissociation of 12CF3I at pressures less than 
1.0 torr [48]. A more practical method would rely on enrichment in 
the condensed phase. An isotope effect is often observed on melting 

δ (19F) ppm* δ (2-13C) ppm 1JCF Hz
13CF3CO2

- -76.68 116.6 291.58
13CBrF2CO2

- -60.18 112.76 318.39
13CBr2FCO2

- -56.51 89.21 327.75
*Relative to TFA, -76.55 ppm

Table 1: 19F and 13C NMR of the product from the preparative TLC target band 
showed the mixture consisted of ammonium salts of 2-13C-trifluoroacetate, 
2-13C-bromodifluoroacetate and 2-13C-dibromofluoroacetate.
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points [49]. In recent work, boron has been enriched to 93.21% in 10B 
and 99.01% in 11B by zone refining [50]. It is known that isotope effects 
on heat capacity and crystal transition temperature can be detected by 
differential scanning calorimetry [51]. Zone refining of low melting 
ammonium trifluoroacetate (M.P 123°C) would be more energy efficient 
than that of high melting boron (M.P 2079°C). In future, we plan to 
develop an analytical HPLC method and to use preparative HPLC for the 
purification of ammonium 2-13C-trifluoroacetate. Infrared difference 
spectroscopy may be able to resolve the carbon isotope effect for 
ammonium 2-13C-trifluoroacetate in the condensed phase. Differential 
scanning calorimetry of ammonium 2-13C-trifluoroacetate will provide 
the thermodynamic information needed to plan and develop a zone 
refining method for the extraction of ammonium 2-13C-trifluoroacetate 
from an inexpensive natural abundance melt.

Another promising route to 13C enriched TFA that we may explore 
is that of fluorodeoxygenation [52], starting with glycine. Recently a 
new and better synthesis of arylsulfur trifluorides has been reported for 
reagents that may provide a convenient route to fluorodeoxygenation of 
carboxylic acids [53].

Conclusion
We have presented a critical scientific narrative of a promising 

technology. The advantage of the 13CF3 NMR spin label in protein NMR 
has been explained. Progress in incorporation of this spin label in a 
perdeuterated amino acid and in an important protein is reported. We 
comment on some of the synthetic subtleties encountered.

Whereas incorporation of monofluorinated aromatic amino acids 
in proteins using in vivo or in vitro expression systems is now routine, 
incorporation of trifluoromethyl analogs of branched chain amino 
acids is at present a challenging technology. A biochemical hurdle is the 
specificity of an aminoacyl tRNA synthetase. Wang et al. determined 
that the specificity constant, kcat/KM of 5,5,5-trifluoroisoleucine is 
only 1/134 that of isoleucine for E. coli isoleucyl tRNA synthetase [27]. 
Considerations of enzyme kinetics and competitive inhibition dictate 
that the background concentration of isoleucine needs to be effectively 
zero for tRNAIle to be charged with 5,5,5-trifluoroisoleucine by isoleucyl 
tRNA synthetase. In addition to the catalytic domain, where the amino 
acid and tRNAaa are specifically ligated, aminoacyl tRNA synthetase also 
has an editing domain for the hydrolysis of mischarged tRNA. In the 
case of isoleucyl tRNA synthetase, the editing domain has been evolved 
most specifically for the hydrolysis of val∙ tRNAIle. The successful 
incorporation of 5,5,5-trifluoroisoleucine in mDHFR, mIL II (27) and 
in calmodulin [54] (Kainosho M: private communication) implies that 
5TFI∙ tRNAIle is too large for the editing site. Practical questions remain. 
Is an expression system based upon E. coli more advantageous than one 
based upon a eukaryotic organism? Is a cell free lysate system preferable 
to in vivo expression system?

This paper covers many areas of synthetic chemistry, organic, 
fluoro, isotopic, and biochemical. We have identified ammonium 
2-13C-trifluoroacetate as an important synthon for introduction 
of the 13CF3 group into amino acids. Completed synthesis of 
methallylcyanide-d7 and conceptual synthesis of 5-13C-5,5,5-
trifluoroisoleucine-d7, provide an important building block for the 
exploitation of 13CF3 in protein NMR.

5,5,5-TFI is an unnatural AA, more so than monofluorinated amino 
acids. Either as uniform, or site specific isotopic labels, deuterium and 
13C amino acids are readily synthesized and incorporated. Fluorine is 
the 13th most abundant isotope in the earth's crust, yet even after 3.5 
billion years of biology only about a dozen fluorinated natural products 
have been evolved, attributed to fluorine's chemistry as a "superhalogen" 
[55]. Organofluorine compounds as polymers or as drugs have proven 

useful in material science and pharmacology. The target spin 13CF3 label 
should prove useful in multidimensional heteronuclear NMR structure 
dynamics studies of proteins [56]. Synthesis of 5,5,5-TFI has been 
proven by its incorporation in the calcium binding protein calmodulin. 
Methallylcyanide-d7 has been produced with military grade deuterium 
isotope purity, 99.4%. Trace quantities of 2-13C-trifluoroacetate have 
been characterized by 13C-19F NMR coupling. This contribution may 
pave the way to future study [57-59].
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