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Abstract

Brown Adipose Tissue (BAT) has a major role in thermoregulation, producing heat by non-shivering
thermogenesis. Primarily found in animals and human infants, the presence of significant brown adipose tissue was
identified only recently, and its metabolic role in adults was reconsidered. BAT is believed to have an important role
in many metabolic diseases, such as obesity and diabetes, and also to be associated with cancer cachexia.
Therefore, it is currently a topic of great interest in the research community, and many groups are investigating the
mechanisms underlying BAT metabolism in normal and pathological conditions. However, well established non-
invasive methods for assessing BAT distribution and function are still lacking. The purpose of this review is to
summarize the current state of the art of these methods, with a particular focus on PET, CT and MRI.
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Introduction
Brown adipose tissue (BAT) has been identified in healthy human

adults and, because of its role in energy expenditure and
thermogenesis; it has been regarded as a potential therapeutic target
for treatment of obesity and cancer cachexia.

Monitoring the dynamics of BAT is critical for evaluating the effect
of such treatments, but there are still no well-established non-invasive
methods for assessing BAT distribution and function. In the first part
of this paper we will overview BAT biology, including its definition and
physiological function, the molecular pathways of its metabolism and
its importance in pathological research.

In the second part we will review the current methods for non-
invasive assessment of BAT, focusing on positron emission
tomography (PET), computed tomography (CT) and magnetic
resonance imaging (MRI), discussing their advantages, limitations and
potential developments.

Biology of Brown Adipose Tissue

Definition of BAT and physiological function
BAT is a type of adipose tissue with distinct structural and

metabolic properties compared to white adipose tissue (WAT). In
particular, BAT plays an important role in thermogenesis, for both
basal and inducible energy expenditure, because it contains a high
number of mitochondria that can produce heat by burning
triglycerides and glucose [1-6]. Although primarily being found in
infants and young children, the presence of physiologically significant
BAT was identified in healthy adult humans only less than a decade
ago [1,7-9]. In humans, the anatomical distribution of BAT was mainly
in cervical, supraclavicular and axillary areas [1]. Two different brown
adipocytes lineages have been identified within the body: the classical
constitutive brown adipocytes in the cervical and supraclavicular
depots; and the inducible beige adipocytes in the supraclavicular,
abdominal areas and other sites [10,11].

The activation of BAT thermogenic properties is initiated by the
sympathetic nervous system during cold exposure for maintaining
body temperature [12]. The activation of β3-adrenergic receptors (β3-
AR) has also been identified as a trigger of thermogenesis in BAT [13].
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Molecular pathways of BAT metabolism
BAT’s capacity for activating energy expenditure without increasing

physical activity is mediated by the mitochondrial uncoupling protein
1 (UCP-1) [14]. UCP-1 short-circuits the electron transport chain by
increasing the permeability of the inner mitochondrial membrane,
reducing the proton gradient generated in oxidative phosphorylation
and allowing mitochondrial membrane potential to be transduced to
heat [15-17]. The two distinct types of brown fat within the human
body have been found to be associated with different levels of UCP1
expression: The classical brown fat has high UCP1 expression, while
the beige fat that emerges in white fat has extremely low expression of
UCP1 originally [11]. Under sympathetic stimulation and the
interaction of norepinephrine with β3-ARs, beige fat is stimulated to
up regulate UCP1 expression, leading to WAT browning [18]. Some
key factors regulating UCP1 activation include the peroxisome
proliferator-activated receptor γ coactivator-1α (PGC-1α) and the PR
domain-containing protein 16 (PRDM16). Specifically, recruitment of
PGC-1α to PRDM1, a transcription regulator of BAT formation, leads
to powerful activation of BAT-selective gene expression and
suppression of WAT-specific gene expression [19,20].

BAT is also regulated by blocking of TGF-β/Smad3 signaling, which
contributes to white-to-brown fat transformation by regulating
PGC-1α and PRDM16 target genes [21]. Recently, the nuclear
respiratory factor 1(Nrf1) was found to mediate the proteasomal
activity, which is required for BAT thermogenic function [22].

Importance of BAT in pathological research
Due to the critical role of BAT in body energy metabolism, changes

in BAT mass and activity could have great impact on metabolic
disorders, especially in obesity and type-II diabetes [23-25]. As the
activity of BAT was found to be decreased in mice with diet-induced
obesity [26], activating BAT could be an effective way to increase
energy expenditure. Treatment of rats with a highly selective β3-AR
agonist, CL-316,243, has been reported to stimulate the multilocular
brown adipocytes that reside in WAT, which could be a potential
therapeutic strategy for obesity [27]. Recently, Berberine, a compound
from Coptis chinensis, was found to activate BAT thermogenesis and
WAT browning [28]. Miglitol, an alpha-glucosidase inhibitor, was also
reported to have anti-obesity activity through stimulating brown
adipose tissue and energy expenditure, independent of its function in
preventing post-prandial hyperglycemia [29].

Besides its potential in obesity treatment, BAT also plays an
important role in glucose metabolism. BAT was found to have a much
higher sensitivity to insulin than WAT, as the glucose uptake in BAT
could be enhanced up to 5-fold after insulin perfusion [30].
Meanwhile, it is reported that patients with detectable BAT have higher
insulin sensitivity and lower incidence of diabetes [31,32]. In addition,
the triglyceride content in BAT was an independent factor associated
with reduced insulin sensitivity, indicating the importance of BAT in
type II diabetes [33].

On the other hand, the metabolic properties of BAT are thought to
pathologically promote energy hyper metabolism in patients with
cancer-associated-cachexia (Figure 1) [34], a syndrome of significant
weight loss refractory to nutritional supplementation. It is believed that
BAT hyperactivity and WAT browning switch contribute to the high
energy expenditure in patients with cancer cachexia, which is induced
by IL-6 and tumor-derived parathyroid-hormone-related protein
(PTHrP) [35,36]. Therefore, blocking the hyperactivity of BAT is

increasingly considered as an effective method for reversing cancer
cachexia.

Figure 1: Mechanisms and consequences of WAT browning in
cancer cachexia. At the “cell” level, beige adipocytes are induced in
WAT by a combination of signaling pathways, including β-
adrenergic stimulation, inflammation mediated by IL-6, and the
presence of parathyroid-related peptide (PTHrP); as a result, UCP1
levels and mitochondrial content are increased. At the “tissue” level,
CAC is associated with the appearance of islets of beige adipocytes
in WAT, surrounded by white adipocytes of reduced size due to
ongoing lipolysis. WAT browning and lipolysis result in decreased
energy storage and increased production of heat. In the context of
obesity, WAT browning is beneficial, while in cancer patients, it is
detrimental. Reproduced from [34] under CC-BY-NC license.

Non-invasive Measurement of BAT
Despite the increased interest in BAT as a target for treatment of

metabolic disorders and cachexia, there is still no well-established
approach and standard protocol for the evaluation of BAT mass and
function. Although histological stains can clearly discern BAT from
WAT, biopsy sampling is limited and cannot reflect the volume and
function of BAT in the whole body. Furthermore, biopsy is invasive
and cannot be repeated multiple times in the same patient, as needed
for clinical dynamic evaluations or longitudinal research studies.
Recent reports using Cerenkov luminescence and Near Infrared
Fluorescence showed potential for the in vivo study of BAT mass and
function [37-40]. However, these studies have been performed only on
mice, where the interscapular fat depot is superficial, whereas the
human BAT is sparser and located more deeply, which makes it much
harder to image with optical methods. A number of studies have
shown that infrared thermography can detect BAT activation after cold
stimulation and differentiate active and inactive BAT in animals and
humans, but it still suffers from the same limitations as optical imaging
[41-44].

Non-invasive imaging techniques for tracking and monitoring the
BAT dynamic in patients are still much needed [45]. Currently, [18F]
Fluorodeoxyglucose (18FDG)-PET imaging is the most commonly
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used method for measuring BAT function. Magnetic resonance
imaging (MRI) and computed tomography (CT) techniques for BAT
detection and characterization have been developed, and they have
great potential for clinical diagnosis and management.

PET
PET is a highly sensitive and specific imaging tool for studying BAT

physiology. Many radioactive tracers involved in energy metabolism
have been applied for PET studies of BAT, including 18F-FDG, 15O
tracers, 11C-Acetate, and 18F-Fluoro-thia-heptadecanoic acid
(18FTHA) [46]. 18F-FDG is the most widely used PET tracer in general,
due to its relatively low cost, long half-life and physiological relevance

to human metabolism, and it is also the most popular tracer for BAT
studies. In combination with CT, 8F-FDG PET was the first method
that brought to the rediscovery of BAT in adult humans [1,7]. Many
studies have applied 18F-FDG PET/CT for the quantitative
characterization of BAT in different conditions, especially in cold
exposure and insulin stimulation [47]. Furthermore, combining 18F-
FDG PET/CT and 123/125I-β-methyl-p-iodophenyl-pentadecanoic acid
(123/125I-BMIPP) SPECT/CT, the depots of BAT tissue in rodents were
identified, allowing the visualization of an adipose tissue atlas
including a large number of additional areas of novel BAT pads. These
animal studies suggest that additional regions may also exist in
humans (Figure 2) [48].

Figure 2: A: Regions of High-Level glucose Uptake in Humans as Assessed by 18F-FDG-PET/CT. Frontal and lateral maximal PET intensity
projection images in an adult male subject imaged at room temperature show distribution of glucose uptake, mainly in the cervical,
supraclavicular, axillary, intercostal, mediastinal, ventral spinal, and perirenal areas. Paravertebral tissue is also activated. Fat pads are also
illustrated in multi-level transaxial or coronal PET/CT images (a–f). B: Anatomical Location of Metabolically Active Fat Pads in mice as
Assessed by PET/CT and SPECT/CT. 18F-FDG-PET/CT images show glucose uptake and distribution in the thermogenic tissues (left) and
123I-BMIPP-SPECT/CT show the patterns of fatty acid uptake in the metabolic active tissues (right) of an adult mouse kept at room
temperature treated with 7 days of PBS (top) or β3 agonist (bottom). Reproduced with permission from [48].

Although 18FDG PET/CT has become the most common used
platform for BAT imaging in clinics, several limitations still exist. First,
PET results show a certain degree variability across different
procedures and environmental conditions, since they are influenced by
the injected amount and activity of radioactive tracers, by temperature
and by the normalization of standard uptake values to body weight.

Also, as a glucose analog, the bio distribution of 18FDG could be
substantially altered by insulin injections levels. Thus, in order to
provide guidelines and directly compare results among laboratories for
describing the epidemiology and biology of human BAT, a set of
criteria named “BARCIST1.0” has been published and recommended
to researchers [49].

Another limitation is that 18FDG PET is not specific to BAT but to
any tissue with high glucose uptake, and it can only detect active as
opposed to resting state BAT. More fundamentally, the precise
correlation between 18F-FDG uptake and thermogenesis is still
unknown. In fact, 18F-FDG uptake can be fully maintained even when
oxygen consumption and BAT thermogenesis are diminished,
suggesting that increased BAT 18F-FDG uptake can occur
independently of thermal function [50]. An interesting alternative is

the use of tracers like 18FTHA and 11C-acetate, which can target BAT
more specifically since fatty acids are the primary fuel for
thermogenesis, and thus overcome some of the limitations associated
to the glucose metabolism. However, increased uptake of fatty acids in
BAT following cold exposure has not been conclusively demonstrated
and experiments show somewhat contrasting results [46,51-53].

Furthermore, the exposure to radiations and the high cost of
radiological equipment limit the feasibility of PET/CT for longitudinal
studies or for some categories of subjects, such as pregnant women or
children [54].

CT
In regular CT imaging, tissues with different chemical compositions

could have similar attenuations. In particular, areas with negative
Hounsfield Units (HU) are interpreted as fat, with no further
discrimination between different types of adipose tissue. However,
retrospective studies have found a HU increase during BAT activation,
correlated with the uptake measured by PET [55,56]. Dual energy CT
also has the potential of BAT measurement, as it is able to better
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differentiate the two fatty tissues by addition of an attenuation
measurement at a secondary energy.

A recent study reported a method of xenon-enhanced CT for BAT
imaging. As an excellent contrast agent, the inert lipophilic gas xenon
preferentially accumulates in active BAT, therefore enhancing radio
density of BAT in CT imaging and enabling the accurate quantification
of the BAT mass [57].

MRI
Due to the limitations of PET/CT in identifying BAT, the

application of MR imaging has been increasingly investigated.
Versatility, higher spatial resolution, absence of ionizing radiation and
lower cost make MRI the most promising technique for imaging BAT
in clinics.

Different from the uni-locular adipocyte composition in WAT, BAT
has multi-locular adipocytes with dense capillary and mitochondria,
and thus its ratio of water to fat is compositionally distinct from that of
WAT. By relying on protons signal, MRI is therefore able to image the
distribution, structure and function of BAT.

The most well-established MRI method for BAT identification is
water-fat separated MRI, which was originally introduced by Dixon for
the purpose of fat suppression [58]. The protons of water and fat
resonate at close but distinct frequencies, or chemical shifts. By
acquiring two or more sets of images at different echo times, the
contributions of water and fat to the signal can be deconvolved and a
map of the fat-water proton ratio (fat fraction, FF) can be derived
(Figure 3). Since BAT and WAT have different fat content, they can be
differentiated based on FF values, which resulted to be above 90% for
WAT and generally lower for BAT [59].

Figure 3: In situ identification of BAT in mice. A-C: Reconstructed water (A) and fat (B) images, and fat fraction map (C), with interscapular
BAT depot (red contours in B). D: fat fraction map overlaid on water image, illustrating the peri-renal and inguinal adipose tissue depot in one
adult (top) and one juvenile (bottom) mouse. Significant differences in the fat fraction maps are evident. Note particularly that the juvenile
depot contains a mixture of WAT and BAT, whereas the adult depot is almost entirely WAT. E: Axial reformats highlighting the interscapular
BAT (gray arrows) depot along the dorsal aspects of an adult (top) and a juvenile (bottom) mouse. F: Representative photo from axial
cryosection of a separate animal (same gender, similar age and weight), Reproduced with permission from [59].

Several modifications to the original two-point Dixon technique
have been implemented. The most relevant are the extension to
asymmetric multi-echoes schemes [60,61]; the more detailed
descriptions of the lipid spectral complexity, including up to 9 peaks
[62,63]; the use of iterative algorithms for the decomposition of the
signal [64,65]. Local changes due to field inhomogeneity or
susceptibility variation can also be taken into account at the cost of a
more refined processing algorithm. Despite the number of application
in clinics and research [59,66-71], some critical aspects remain
unsolved. As the technique is dependent on chemical shift, significant
phase changes in the imaged volume can affect the reliability of the
algorithms and lead to artifacts. In addition, the technique is mostly
capable of imaging BAT distribution, whereas BAT function can be
detected solely through FF variation over time [63,72,73].

Blood Oxygen Level Dependent (BOLD) MRI is another technique
that is being applied for BAT evaluation. The BOLD effect is based on
the difference in susceptibility between oxygenated and deoxygenated
hemoglobin, which causes changes in T2*-weighted signal. As BAT
usually has a greater capillary density than WAT, it is more sensitive to
the changes in oxygen saturation level, blood flow and/or vascular
volume. Thus, BAT activation, with greatly increased oxygen
consumption, can be detected by BOLD MRI [74]. This has also been

shown after stimulating BAT with cold challenge, showing a better
resolution than 18F-FDG-PET/CT in distinguishing BAT from WAT
(Figure 4) [75]; another study utilized the BOLD for identifying
inactive and active BAT in the same adult combined with water-fat
separation MRI and PET-CT [63].

The T2*-weighted signal was also exploited for the detection of
superparamagnetic iron oxides embedded in triglycerides-rich
lipoproteins, which undergo uptake during BAT activation and
therefore allow an almost real-time monitoring of the lipid metabolism
[76].

Diffusion weighted MRI contrast has been shown to differentiate
BAT from WAT based on the size of lipid droplets by utilizing
extremely high diffusion weighting [77,78]. However, such high
diffusion weighting is currently limited to NMR spectroscopic studies
and poses challenges for clinical translation.

Recently, a study has proposed, Z-spectrum imaging as an
alternative approach for FF quantification, inherently insensitive to
field inhomogeneity and phase artifacts, showing promising results in
mice and humans [79]. The technique is also currently under
development for detection of BAT function, by measuring thermally-
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induced chemical shifts and chemical exchange processes during
activation.

Figure 4: MRI detection of BAT activity upon cold challenge
(13°C-16°C). Degree of BOLD signal changes (red-yellow map) is
superimposed on anatomical images (in grey scale). Upon cold
stimulation, significant BOLD signal increases were found in the
regions identified as having BAT for subjects #1 - #3 (such as areas
indicated by green circles). Reproduced from [75] under CC-BY-
NC license

Other innovative and promising approaches continue to emerge,
such as multiple quantum coherence MRI [80,81], hyperpolarized Xe
gas imaging [82] and multispectral optoacoustic tomography in
combination with MRI [83]. Although they have interesting contrast
mechanisms, these techniques still face challenges in low signal to
noise ratio and the requirement of exogenous contrast agents and/or
special instruments that are not readily available in most of the clinical
MRI scanners.

Conclusion
In recent years, the important role of BAT in maintaining body’s

metabolism and in development of diseases has been increasingly
investigated. Therefore, the demand of methods for BAT
characterization also increased.

Non-invasive imaging techniques have great potential to be applied
in clinics. However, the potential of imaging methods that could be
translated is also greatly influenced by the safety, cost and
reproducibility, which determines the feasibility of wider application.
Furthermore, as BAT could have changes in volume and activity in

diseases, multimodal or multiparametric approaches capable of
assessing both BAT morphology and function should be pursued.
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