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Introduction
Use of myogenic cells for the treatment of Duchenne’s disease was 

first suggested by Partridge et al. [1]. The development of the genetically 
authentic model of this desease – mdx mice allowed to test myoblasts 
and other types of stem cells in the therapy of this pathology [1]. In the 
experiments with GFP-marked cells it was shown that bone marrow 
(BM) stem cells take part in the regeneration of mdx mice striated 
muscle fibres (SMF) [2-6]. Our attention to this type of stem cells due 
to the data that BM, being the source of stem cells plays the leading part 
in the system of mammalian stem cells [7].

In the skeletal muscle stem cell niches of wild type mice as well 
as of the mdx mice [8] are sites for BM stem cells differentiation into 
satellite cells and other types of muscle stem cells [8-11] [10]. It is 
essential to say that cells expressing the hematopoietic marker CD45 
are predominantly present in the BM but also reside in the skeletal 

muscle and participate in muscle repair [12,13] and in muscle of mdx 
mice after BM stem cells transplantation [6].

Except blood and muscle cells BM stem cells are also involved 
in the cell differentiation and regeneration in lungs, liver, skin, 
gastrointestinal tract and of epithelium of thyroid gland [6,14,15].

Irradiation is a mandatory preliminary step of BM stem cells 
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Abstract
Background: Mdx mice are experimental model of cureless human monogenic disease Duchenne Muscular 

Dystrophy (DMD). Hope for а cure is associated with the use of stem cells therapy particular but not exclusively. 
Analysis of multiple experimental results shows what intramuscularly transplantation of different types of cells of 
different origins with stem cells properties can’t convert mutant striated muscles fibers (SMF) into wild type SMF. 
It was concluded that only replacement of mutant bone marrow (BM) by wild type BM cells can convert mutant 
SMF into SMF of wild type. Unfortunately X-ray irradiation of mdx mice at a lethal dose of 11, 7 or 5 Gy followed 
by transplantation of wild C57BL/6 mice BM cells did not increase SMF dystrophin synthesis. The aim of this study 
was to analyse a dystrophin synthesis by mdx mice striated muscles after x-ray irradiation with the dose of 3 Gy 
followed by C57BL/6 bone marrow cells transplantation. Also we investigate the reparation of structure of diaphragm 
muscle fibers NMJs. To confirm the functional significance of observed structural changes of NMJs an investigation 
of resting membrane potential of diaphragm muscle fiber NMJs was also conducted.

Methods: 1-1.5 months old mdx mice were irradiated by x-ray at a dose of 3 Gy. Next day freshly prepared BM 
cells were injected intravenously in the amount of (15-20) x 106 cells per mouse. Animals were studied through 2, 4, 
and 6 months after transplantation. Each experimental group of mice included 3-8 animals. Mus. quadriceps femoris 
and diaphragm muscle fibers with their nerve-muscle junctions (NMJs) were under investigation.

For chimerism registration a special study was conducted using transplantation of GFP-positive C57BL/6 BM 
cells to mdx mice after 3 Gy irradiation. Through 6 months BM cells were separated from long bones and smears 
were prepared. After carbinol fixation smears were stained by propidium iodide and studied on confocal microscope 
LSM 5 Pascal (Carl Zeiss, Germany) to count the part of GFP-positive cells in relation to whole quantity of nuclear 
cells.

Results: We observed a stable growth of dystrophin synthesis after nonlethal X-ray irradiation at a dose of 3 
Gy. The part of dystrophin positive SMF of M. quadriceps femoris increased from 1% up to 4% (2 months), 12% 
(4 months) and 27% (6 months) after transplantation. Growth of dystrophin synthesis was accompanied by the 
decrease of SMF death level, by increase of part of SMF without central nuclear up to 22%, by accumulation of MNJ 
branches and by reparation of resting membrane potentials. The part of GFP-positive cells between all cells with 
nuclear on the BM smears of chimeric GFP transplanted mdx mice at 6 months after transplantation was 3.3 ± 0.8 
% that show for chimeric nature of mice. 

Conclusion: Non myeloablative bone marrow cell transplantation of mdx mice after X-ray irradiation 3 Gy is 
accompanied by formation of chimerism, stable growth of dystrophin synthesis and reparation of structure and 
function of NMJs.
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transplantation in recipient, as it suppresses the immune system of 
the recipient, making it possible to replace mutant bone marrow 
with the bone marrow of wild-type. The aim of this work was to 
study the recovery of dystrophin synthesis after C57BL/6 mice BM 
transplantation in mdx mice irradiated at a non-lethal dose of 3 Gy 
[28,29]. To estimate the significance of change of dystrophin synthesis 
for physiology of striated muscles there was study of structure and 
function of nerve-muscle junctions of diaphragm muscle fibers. 

Materials and Methods
Animals

C57BL/6 mice have been received from Rappolovo animal farm (St. 
Petersburg, Russia). Mdx mice were provided by Professor Partridge 
(Hammerssmith Hospital, UK) [1]. Mice were maintained in animal 
nursery (Institute of Cytology RAS) with standard feeding and light 
regimes. 

Transplantation

1-1.5 months old mdx mice were irradiated by x-ray at a dose of 
3 Gy using roentgen device rum-17 (Russia) using 0.5 mm CU + 1.0 
Alu filters. Energy of X-ray was 45 R/min. Next day freshly prepared 
bone marrow (BM) cells were injected intravenously in dose (15-20) x 
106 cells per mouse. Animals were studied through 2, 4, and 6 months 
after transplantation. Each experimental group of mice included 3-6 
animals. Mus. quadriceps femoris and diaphragm muscle fibers with 
their nerve-muscle junctions (NMJs) were under investigation.

For chimerism registration a special study was conducted with 
transplantation of GFP-positive BM cells, friendly provided by Dr. V. 
Serikov (CHORI, Okland, USA) after 3 Gy irradiation. At 6 month 
after transplantation BM cells were separated from long bones and 
smears were prepared by propidium iodide and studied on confocal 
microscope LSM 5 Pascal (Carl Zeiss, Germany) to count the part 
of GFP-positive cells to whole quantity of cells. There were used 8 
C57BL/6 and 45 mdx mice. 

Immunohistochemistry

10 µm cryosections were cut with cryostat (Bright Co, Ltd, UK) 
after preliminary muscle freezing in liquid nitrogen. Dried sections 
were fixed in ethanol mixed with carbinol (1:1 v/v) for 1 min at -20°C 
or in 10% formalin for 30 minutes at room temperature [30].

For dystrophin staining sections fixed in ethanol/carbinol (1:1 v/v) 
solution were treated with 1% bovine serum albumin (BSA) for 30 
min, washed with PBS for 5 min and incubated with rabbit polyclonal 
antibodies to dystrophin (Abcam, US) dilution 1 : 100 for 1 h. Samples 
were washed with FITS-labeled goat anti-rabbit antibody (Sigma, US), 
1:150, 1 h. Sections washed with DAPI or propidium iodide, were 
mounted in glycerol, and assayed under LSM 5 Pascal microscope (Carl 
Zeiss, Germany). The number of SMFs with dystrophin and fraction of 
dystrophin-positive fibers in central muscle were counted on sections. 

To estimate the number of dead SMFs and SMFs without centrally 
located nuclei sections were stained with hematoxylin-eosine, passed 
through ethanol and xylol grades and mounted in Canada balsam. 
Stained sections were visualized under Axiophot microscope (Carl 
Zeiss, Germany). 

NMJs assessment

Muscle longitudinal and cross sections fixed with 10% formalin 
were treated with 1 µg/ml tetramethylrhodamine-α-bungarotoxin 

(TMR-α-BTX) (Biotium, US) for 1 h. Then the sections were washed 
three times with PBS for 5 min, mounted into reagent that reduced 
unspecific fluorescence (Biomeda Co, US) and visualized under LSM 5 
Pascal (Carl Zeiss, Germany).

NMJ structure was examined in records of single NMJ. NMJ area 
was calculated on muscle cross sections with ImageJ software (National 
Institute of Health, US). The area of single acetyl-choline receptor 
(AChR) clusters that makes the NMJ and the number of AChR clusters 
in each NMJ were estimated on the longitudinal sections with ImageJ 
software. The area of each NMJ includes area of AChR and areas of 
gaps between single clusters. The data were statistically processed with 
Microsoft Excel. The differences between groups were assessed using 
Student’s t-test. The differences were considered to be significant at p 
< 0.05 [30]. 

Membrane potential recording

The experiments were performed on freshly isolated diaphragm 
muscle as described previously [31,32]. A diaphragm strip with nerve 
stump was placed in a Plexiglas chamber. The chamber was continuously 
perfused with a physiological solution containing (mM): NaCl, 137; 
KCl, 5; CaCl2, 2; MgCl2, 2; NaHCO3, 24; NaH2PO4, 1; glucose, 11; pH 
7.4. The solution was continuously bubbled with 95% O2 and 5% CO2 
gas mixture and maintained at 28°C. The muscle was equilibrated for 
1 hour prior to the start of recording. The resting membrane potential 
(RMP) were recorded intracellularly using standard microelectrode 
techniques. Recordings were made in extrajunctional membrane 

Time after BMC 
transplantation, 
months 

Dystrophin (+) SMF, % Dead SMF, % CN(−) SMF, %

Control, 2, (3) 1.1 ± 0.4 2.2 ± 0.6 10.5 ± 1.0 
2, (4) 4.1 ± 0.9 (3) 1.4 ± 0.3 (4) 16.1 ± 1.7 (4)
4, (3) 12.4 ± 3.9 (3) 0.88 ± 0.2 (3) 20.6 ± 1.3 (3)
6, (5) 27.6 ± 6.7 (5) 0.7 ± 0.1 (5) 22.6 ± 1.9 (5)
BMC: Bone marrow cells; SMF: Striated muscle fibers; CN(-): Muscle fibers without 
central nuclei

Here and in Tables 2, 3, and 4 the number of animals indicated in parentheses

Table 1: Dystrophin synthesis by SMF of mdx mice M. quadriceps femoris after 
x-ray irradiation at a dose of 3 Gy followed by BMC transplantation (%, X ± mx).

Mice
Explored region of synapsis 

Junctional region Extrajunctional region
mdx mice, 4 months 
after bone marrow transplantation, (3) 11.23 ± 3.3 0.0

nonirradiated mdx mice, 6 months old, 
(3) 1.3 ± 0.5 0.0

Table 2: Mdx mice diaphragm dystrophin-positive striated muscle fibers (%, X ± 
mx) 4 months after bone marrow transplantation.

Figure 1: Transverse sections of M. quadriceps femoris of control С57BL/6 
mice (a), of control mdx mice (b), and of chimeric mdx mice after 3 Gy irradiation 
and  6 months BMSCs transplantation (c). Immunostaining for dystrophin with 
biotin labeled  second antibody and streptoavidin with peroxidase targeted. 
Nuclei were observed  by Gimsa staining. Mag. Ob.10x, Oc.10x. Bar 60 mkm.
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regions within 1–2 mm from visually identified terminal branches 
of the nerve, and directly at the nerve terminal (end-plate region, 
junctional membrane) of the same muscle. RMPs were recorded 
from 15 to 25 different fibers within each muscle. The entire protocol 
was repeated in muscles from different animals to obtain the average 
resting potential for that condition. Data are given as the mean ± SEM. 
Statistical significance of the difference between group’s means was 
evaluated using a Student’s t-test (ORIGIN 6.1. software).

Results
There was an accumulation of dystrophin positive mdx mice SMF 

through 2 months after syngenic bone marrow transplantation up to 
4.1% in compare with 1.1% of control animals. Dystrophin synthesis 
accelerates 2 times for every 2 months and reach 27.7 ± 6.7% at 6 months 
after transplantation (Table 1 and 2) (Figure 1). We observed also the 
duplication of SMF without central nuclei up to 22.6% and loss of dead 
SMF up to 0.7 ± 0.1%. The obtained level of dystrophin synthesis (27.7 
± 6.7%) is consistent with data of other authors concerning 20% level 
of dystrophin-positive SMF as critical minimal working level for the 
function of dystrophin-deficient muscles [21,22]. Also we observed 
11.2 ± 3.3% of dystrophin-positive SMF in diaphragm in four months 
after transplantation (Table 2) which is consistent with data obtained 
from skeletal muscle. The part of GFP-positive cells between all cells 
with nuclear on the BM smears of chimeric GFP transplanted mdx 
mice at 6 months after transplantation was 3.3 ± 0.8 % that indicates 
the chimeric nature of mice. All results point to the increase of 
differentiation level of mdx mice SMF after change of mutant bone 
marrow for bone marrow of wild type. 

Study of NMJs structure and their resting potential was conducted 
for two reasons. We have shown early that local transplantation of BM 
stem cells to M. quadriceps femoris of unirradiated mdx mice partly 
restore the structure of NMJs [30]. To confirm the results we studied 
a structure of diaphragm NMJs on the transverse section of synapsis 

region of diaphragm SMFs by staning with Tetramethylrhodamine-α-
bungarotoxin after general transplantation of BM cells. The synapsis of 
diaphragm mdx mice are formed by islets (75.8%) and branches (14%). 
In four months after BM transplantation we observed a significant 
increase in quantity of branches (43 %) and decrease in the part of 
islets in the diaphragm NMJs up to 53.7 ± 6.0 % (Figure 2 and Table 
3). Development of branches and decrease of islets are considered to be 
the markers of the fractional reparation of NMJs structure. In case of 
local transplantation of BMSCs we did not observed the formation of 
branches. High concentration of islets and growth of square of NMJs 
taken place on the background of negligible dystrophin synthesis near 
2% [30]. To estimate functional significance of the structural changes 
of diaphragm NMJs we studied the electrophysiological properties of 
NMJs through 4 months after BM transplantation (Table 4).

In the control C57B1/6 mice, the value of resting membrane 
potential (RMP) in the junctional (end-plate) region of NMJs was 
–81.4 ± 0.5 mV being more negative than that in the extrajunctional 
region of sarcolemma (–78.0 ± 0.4 mV) (p < 0.01). The value of the 
observed local hyperpolarization corresponds well to the previous 
results and is specific for intact muscle fibers [28,31]. In mdx mice 
the value of RMP was lower than in the control C57B1/6 mice. The 
observed depolarization is in agreement with the well-known facts [33]. 
Moreover, the values of RMP through overall membrane did not differ. 
However, in mdx mice after 4 months of BM cells transplantation, the 
values of RMP in the junctional and extrajunctional regions increased 
to the level of control C57B1/6 mice. In the end-plate region, the value 
of RMP increased by 5.6 mV while in the extrajunctional region, it 
increased by 2.6 mV. As a result, local hyperpolarization of the end-
plate increased by 3.7 ± 0.9 mV (p < 0.01), which was characteristic of 
the control animals and is a reliable indicator of a normal functioning 
of a neuromuscular synapse after BM transplantation (Table 4). 

Discussion 
Originally our choice for the dose of 3 Gy for irradiation was 

A B

Figure 2: A. Diaphragm of C57BL/6 mice. Red –acetylcholine receptors; green – neurofilaments, NMJ consists from acetylcholine receptors organized as branches; 
bar -25 mkm
B. Diaphragm of mdx mice. Red colour  – acethylcholine receptors, green colour – neurofilaments, NMJ is consists from acetylcholine receptors organized and formed 
by islets.
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triggered by Abedi et al. [5] and our results [6], as it was impossible 
to get high stable level of dystrophin synthesis by mdx mice SMF 
by varying lethal doses of X-ray irradiation. Early we described the 
positive influence of 3 Gy irradiation and change of mutant BM for 
bone marrow of wild type for dystrophin synthesis by SMF [28,29]. 
X-ray irradiation doses between 1.5 and 3 Gy induce the acquisition of 
stable mixed chimerism in recipients. Such type of nonmyeloablative 
stem cells transplantation permits rapid engraftment from sibling and 
related donors with minimal toxicity, induce stable mixed chimerism 
and donor specific transplantation tolerance [34,35]. There are also 
some descriptions of successful cure of patients with nonmalignant 
hematologic diseases and congenital immunodeficiencies [36,37]. 
Level of figures of chimerism depends on used methods. Low range of 
chimerism in our experiment (3.3 %) may be explained by imperfection 
of used methods of chimerism determination in comparison with 
results of other authors. In case of successful allo-BM transplantation 
of patient with Diamond-Blackfan anemia and Duchenne muscular 
dystrophy the mixed chimerism was observed with 8-10.4 % donor 
cells in the muscle biopsy too [38].

Our results demonstrates that transplantation of wild type BM cells 
into mdx mice after 3 Gy irradiation is more effective for dystrophin 
synthesis reparation then after irradiation at a dose of 5 Gy or higher. 
The growth of dystrophin was observed in М. quadriceps femoris 
and in SMF of diaphragm. Through 6 months the part of dystrophin 
positive SMF reached 27.6 ± 6.7 % which is a critical minimal working 
level for the function of dystrophin-deficient muscles (20%, [21,22]). 
Practically it means the cure of mdx mice after BM transplantation. 

There are several reasons that may explain the success of BM 
cells transplantation after 3 Gy irradiation. We speculate that except 
suppression of immunological conflict the suppression of dystrophin 
synthesis after irradiation in lethal doses and bone marrow stem 
cells transplantation is caused by the disturbance of SMF sarcoplasm 
molecular systems that take part in regulation of nuclei differentiation 
of transplanted SMFs. Moreover, mdx mice have an altered expression 
level of 1735 genes from the studied 7776 genes, including genes of 

Notch-Delta and Neuregulin 3 signaling pathways that cause activation, 
proliferation and differentiation of satellite cells [39]. There is no doubt 
that after the radiation exposure in mdx mice at a lethal dose of 5 Gy or 
higher the disturbance of this signal paths increase even more. In our 
experiments the dose of 5 Gy was lethal for mdx mice [6].

We believe that the reparation of NMJs structure after BM 
transplantation, as well as dystrophin synthesis restoring, are the 
evidences of effectiveness of BM exchange in nonmyeablative bone 
marrow transplantation. We suggest that positive effects of BM cells 
exchange are connected with dystrophin synthesis. Local transplantation 
of Lin(-) BM cells in M. quadriceps femoris of mdx mice aggregates 
islets of bungarothoxin-positive substance for large NMJs but without 
branches. In this case the level of dystrophin synthesis did not exceed 
2% [30]. The more extensive level of dystrophin synthesis in case of 
whole body irradiation 3 Gy followed by BM cells transplantation 
(Table 2) correlates with reparation of NMJs and branches enrichment. 
Our results support the conclusions of Kong and Anderson [40] and 
Banks et al. [41] for the importance of dystrophin participation in 
NMJs formation.

To confirm the nonrandomness of structural changes a study of 
electrophysiological properties of NMJs was conducted. We observed 
reparation of resting membrane potential of diaphragm muscle after 
BM exchange. Value of local hyperpolarization of the end-plate 
reached 3.7 ± 0.9 mV. It is typical for the wild-type animals and is a 
reliable indicator of normal functioning of a neuromuscular synapse 
[42,43] after BM transplantation (Table 4).

The use of of nonmyeablative bone marrow transplantation may 
be a next step in the cure of mdx mice and recipients with Duchenne 
muscular dystrophy disease. 
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