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Abstract

Chemotherapy drugs reduce quality of life often causing acute and delayed central side-effects, termed
Chemotherapy-Induced Cognitive Impairment (CICI). Another dose-limiting chemotherapy-induced side-effect is oral
and intestinal mucositis which results in significant Gastrointestinal Tract (GIT) damage and intestinal inflammation.
Recent interest has been paid to neurological complications arising in patients with gut disorders, yet little attention
has been paid to the role GIT damage plays in CICI. Our current understanding of neuronal adaptations and
behavioral consequences resulting from immune system dysregulation has paved the way for investigation into the
neuroimmunological manifestations associated with chemotherapy. In a clinical setting cancer patients experience a
cluster of symptoms, similar to that manifested in cytokine-induced sickness responses. Accordingly, it is suggested
that peripheral inflammatory events, such as chemotherapy-induced mucositis, may indirectly cause glial
dysregulation and potentiate cognitive changes in CICI. Perhaps it is time to examine the cancer experience in a
multidisciplinary manner, in order to encapsulate the direct and indirect mechanisms underlying treatment-related
side-effects. Specifically, understanding the neuroimmunological implications of chemotherapy-induced mucositis
will provide further insight into the direct and indirect mechanisms underlying CICI pathogenesis.
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Introduction
Chemotherapy drugs have proven invaluable in treating many

cancers and improved the outcome for millions of cancer patients
worldwide. Whilst the ultimate goal of chemotherapy is to prevent
malignant cells from metastasizing, chemotherapy drugs are generally
non-specific as they also target healthy, non-malignant cells.
Chemotherapy induces a range of acute and delayed side-effects. In the
Central Nervous System (CNS) the phenomenon is clinically
recognized as CICI [1]. Peripherally, chemotherapy drugs negatively
affect the GIT lining causing oral and/or intestinal mucositis. Although
mucositis is an acute disorder which usually resolves upon treatment
cessation, it is often a dose limiting side-effect due to the painful nature
of the disorder [2,3]. Traditionally, these chemotherapy-induced side-
effects have been considered to be separate disorders. However, recent

evidence suggests that bidirectional communication pathways
connecting the GIT and CNS may be implicated in the pathogenesis of
both disorders. These pathways regulate a myriad of physiological and
immune functions in health and various disease states manifesting
from the periphery or centrally [4].

Peripheral inflammatory events or immune insults trigger a
characteristic cluster of behavioural, cognitive, and affective changes,
which are commonly referred to as cytokine-induced sickness
responses [5,6]. Interestingly, many symptoms associated with
cytokine-mediated sickness responses mimic the cognitive and
behavioural changes commonly reported by chemotherapy recipients,
including learning and memory dysfunction, fatigue and depression
[7]. Cancer and chemotherapy exposure are associated with substantial
immune dysregulation, involving inflammation [8], changes in
cytokine levels [9] and mucositis which may be contributing to
cognitive changes. Nonetheless, previous studies have failed to
determine whether a link exists between these already established, yet
disparate side-effects of chemotherapy. This review proposes that
neuroimmune mechanisms and glial dysregulation may contribute to
CICI symptoms both directly and indirectly via a peripherally driven
inflammatory event: chemotherapy-induced mucositis.

As we unravel the complex aetiology of CICI, it soon becomes clear
that the challenge in examining CICI lies within the cluster of
symptoms cancer patients’ experience. In a clinical setting, cancer
patients reporting cognitive dysfunction often concurrently experience
depression, anxiety, sleep deprivation, fatigue and pain [10-13].
Accordingly, Lee, et al. proposed a biological basis for cancer (and
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cancer treatment) related symptom clusters; a cytokine-based
neuroimmunological mechanism [14]. This concept stems from well-
established studies which indicate that cytokine-induced sickness
behaviours can be evoked by exposing animals to either infectious,
inflammatory or certain pro-inflammatory cytokines [5,6].
Additionally, various gut disorders have been associated with
psychological and cognitive comorbidities (reviewed below). From this
it can be concluded that direct and indirect mechanisms may be
contributing to cognitive changes observed in the chemotherapy
setting. Neuroimmunological approaches in managing cancer and
treatment-related side-effects may pave the way for novel and effective
therapeutic and preventative approaches, ultimately improving the
quality of life of cancer patients and survivors worldwide.

Gut disorders and cognition
CNS dysfunction has been recognised as a prominent feature in

functional gut disorders, including Inflammatory Bowel Disease (IBD)
and Irritable Bowel Syndrome (IBS) [15,16]. The idiopathic diseases
comprising IBD include Ulcerative Colitis (UC) and Crohn’s Disease
(CD). UC usually involves the colon and ileum whereas CD mainly
involves the rectum and colon. IBS, however, is currently viewed as
being caused by dysregulation of the gut-brain axis. Whilst the
symptomatology of both disorders includes pain, altered bowel
movements and a host of physical, emotional, psychological and
cognitive responses, IBD is strongly associated with intestinal
inflammation unlike IBS.

The aetiology of functional gut disorders is complex and
multifactorial, however it has been suggested and somewhat accepted
that IBD and IBS may be triggered by psychological, environmental or
physical stressors [17,18]. Consequently, several pathophysiological
factors negatively affecting the gut-brain axis are pivotal to the
disorders and include stress, chronic pain and immune activation
[19,20]. Although a substantial body of literature exists, linking stress,
chronic pain and immune activation to cognitive deficits, this area in
the context of functional gut disorders has received little attention.
Nonetheless, primary studies assessing these pathological factors in
this patient population have shown deficits in specific aspects of
cognition, such as verbal IQ [21]. In CD, regional morphological
differences in cortical and subcortical structures have been critically
linked to abdominal pain [22].

Psychopathological factors, such as depression and anxiety, are
frequently observed to have effects in patients with functional gut
disorders, and have been shown to play a role in cognitive deficits [23].
Approximately, 70% of patients with functional gut disorders
experience some psychological comorbidity [24]. It is unclear as to
which disease develops first, however it is well accepted that stress and
anxiety is associated with IBS/IBD. Regardless of this, the impact of
functional gut disorders on psychological processes is undeniable as
the stress associated with symptom progression severely affects
patients’ quality of life. Taken into account, a biopsychosocial model
has been proposed to clinically approach and conceptualize IBS
pathophysiology [25]. This model encompasses a lifetime perspective
from the patient’s childhood through to their adult life integrating
genetic, environmental, learning, stress and traumatic events.
Fundamentally, it takes into account the interaction of the mind and
emotions, the brain, the Enteric Nervous System (ENS) (discussed
later) and the intestinal microenvironment, including food, the
immune system and microbiota. Literature evidence demonstrates that
functional gut disorders are strongly associated with a range of

psychological comorbidities, specifically cognitive impairment; yet our
understanding of the central consequences of other gut disorders, such
as chemotherapy-related mucositis remains undetermined. Many
chemotherapy drugs, such as Oxaliplatin and 5-Fluororuacil (5-FU)
are responsible for inducing gut disorders and cognitive impairment,
yet whether these comorbidities interact, remains to be elucidated.

Gut disorders caused by chemotherapy: mucositis
The pathogenesis of mucositis was defined in five phases by Sonis

[2]. Mucosal barrier injury may occur throughout the entire GIT and
result in oral and/or intestinal mucositis. The rapidly dividing
epithelial layer lining the GIT is particularly prone to tissue injury
from different chemotherapy drugs including 5-FU, methotrexate and
cyclophosphamide. Consequently, apoptotic pathways are initiated in
healthy mucosal tissue causing reduced cellular proliferation in the
small intestine. Some hallmark characteristics of intestinal mucositis
include villus atrophy, shallow crypts, inflammation and ulceration.
Mucositis results in a heightened inflammatory response via the up-
regulation and activation of various transcription factors, ultimately
resulting in elevated circulating pro-inflammatory cytokines, in
particular Interleukin-1 beta (IL-1β) and Tumour Necrosis Factor-
alpha (TNF-α).

The most significant phase of mucositis for patients is during the
ulceration phase as this involves loss of mucosal integrity. Painful
ulcerating lesions in the GIT become susceptible to microbial
infiltration and in severe cases can lead to bacteraemia and sepsis [2].
The clinical symptoms of mucositis generally begin five to ten days
after chemotherapy treatment and include significant pain, abdominal
bloating, nausea and vomiting, diarrhoea and constipation [26].
Although mucositis is an acute phenomenon which usually resolves
once chemotherapy treatment has ceased, treatment may be
prematurely ceased as a result of progressively worsening symptoms.
Current guidelines for the prevention and management of mucositis
fail to reveal effective treatment options [27]. Whilst mucositis
pathogenesis is well understood, the indirect central effects of
mucositis remain unknown. The complex neuroimmune axis has been
suggested to be implicated in depression, a comorbidity of cancer
diagnosis, and chemotherapy exposure [14]. Neurological
manifestations from elevations in cytokine levels imply that
neuroimmunological mechanisms underlying the pathogenesis of
these chemotherapy-induced side-effects may be at play.

Cognitive changes following chemotherapy exposure
Although reports of cognitive decline in chemotherapy patients

were functional magnetic resonance imaging and neuropsychological
testing was observed in a group of breast cancer survivors who had
received adjuvant chemotherapy treatment and was compared with a
breast cancer control group who were not treated with chemotherapy
[42]. E-date the 1980’s, systematic research only commenced in the
1990’s. Patients collectively termed the cognitive disturbances
“chemobrain” or “chemofog” which heavily impacted daily functioning
and quality of life, yet initial complaints were dismissed by doctors and
the scientific community [7]. Previously, it was assumed that the brain
was protected from systemically administered chemotherapy drugs by
the Blood-Brain Barrier (BBB) and additionally, cognitive symptoms
could be explained by the stress, anxiety and depression associated
with cancer diagnosis. Extensive research in the recent years clearly
indicate that many systemically administered chemotherapy drugs
readily cross the BBB inducing structural, molecular and cellular
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changes that impact upon cognitive function (see review 1) [1].
Mechanisms underlying the pathogenesis of CICI remain to be
elucidated although suggestions include hippocampal damage and
immune dysregulation (discussed below). In order to better
understand the suggested mechanisms, it is important to review the
clinical evidence and understand the negative impact imposed upon
patients.

Clinical evidence of CICI
The main cognitive domains affected by CICI are executive

functioning, attention and concentration, processing speed, reaction
time, motor speed and dexterity [1]. Whilst current estimates of CICI
prevalence differ greatly (14-85%), the worldwide prediction of cancer
incidence reaching 70 million in 2020 highlights the need for
continued research [28]. Consequently, the estimate of high
survivability rates for many cancers results in increased survivor
numbers and in turn, we will see an increase in the incidence of post-
treatment issues [29]. Those affected by CICI experience stressors in
many facets of their lives, including relationships (familial, friends and
colleagues), employment, self-esteem/worth and finances; leading to a
reduced quality of life. CICI patients commonly expressed frustration
in having difficulty with simple tasks, such as remembering names,
misplacing everyday items and trouble finding common words [30,31].
Emotions regularly described by CICI patients included distress,
anxiety, frustration, irritability, depression and embarrassment [30-33].
Many summed up their feelings by describing as if they “felt stupid” or
were “going crazy” and sometimes related their memory disturbances
to the fear of being at risk for early dementia or Alzheimer’s disease
[30,34]. This evidence collectively supports the negative impact of CICI
on patients and emphasizes the increased amount of efforts and time
required to complete everyday tasks.

Breast cancer cohorts and duration of cognitive effects
Whilst the majority of CICI studies focus on breast cancer

populations, cognitive deficits in a range of cancer types have been
investigated, including myeloma, testicular and ovarian cancer [35-37].
Nonetheless, breast cancer populations offer researchers completion of
extensive retrospective studies due to their typically good prognosis,
allowing for more thorough evaluations of parallel short- and long-
term sequelae [38-40]. The duration of cognitive changes is of
particular interest to patients and for this reason, continues to be an
area of much research. There is considerable variability surrounding
the duration of chemotherapy-induced cognitive deficits or even
existence of the phenomenon. Majority of the studies report
improvement in cognitive symptoms after a period of time, yet some
studies have indicated the presence of symptoms for ten-twenty years
after treatment cessation [41-43]. Functional magnetic resonance
imaging and neuropsychological testing was observed in a group of
breast cancer survivors who had received adjuvant chemotherapy
treatment and was compared with a breast cancer control group who
were not treated with chemotherapy [42]. The chemotherapy group
demonstrated hyporesponsiveness in executive functioning tasks
performed 10 years post treatment, indicating significant long-term
cognitive impairments when compared to the non-chemotherapy
control group.

Neuroimaging studies have identified structural and molecular
changes associated with chemotherapy treatment. Reductions in
specific brain regions, such as frontal cortex, temporal lobes and
cerebellar grey matter regions have been reported in breast cancer

patients [44]. These reductions were evident for twelve months post-
chemotherapy cessation yet improvements were reported in most
regions four years later. Global brain networks become re-organized
under chemotherapy treatment and thus, indicate a reduced ability for
information processing [45]. Additionally, chemotherapy-induced
white matter tract alterations may be interpreted as demyelination or
axonal damage [46].

Animal models of CICI
Animal studies have confirmed that central structural and

molecular changes may be accountable for the cognitive domains
affected by common chemotherapy drugs. Several studies in rodents
report declines in abilities to perform behavioural tasks following
single drug administration of many chemotherapy drugs, including 5-
FU, methotrexate and oxaliplatin [47-49]. Rodent behavioural tests
have been adopted to understand the central pathological changes
following systemic chemotherapy exposure, such as fear conditioning,
novel object recognition and the Morris Water maze. These
behavioural adaptations may be interpreted as hippocampal and
frontal cortex region alterations which importantly, overlap with the
brain structures implicated in CICI [1].

Specific CNS cell populations are sensitive to a range of
chemotherapy drugs. One of the most widely reported central changes
following chemotherapy exposure is reduced hippocampal cellular
proliferation. This has been documented to occur with
cyclophosphamide, methotrexate, thioTEPA and 5-FU [50-52]. These
CICI animal models suggested that the hippocampal changes were
associated with the hippocampal-dependent behavioural changes and
memory deficits. Although cyclophosphamide most frequently reports
cognitive changes and cellular alterations, negative findings on long-
term hippocampal changes have also been reported [53]. Nonetheless,
stem cells of the dentate gyrus are particularly susceptible to
chemotherapy toxicity [54-56]. This is important to note as
neurogenesis within the dentate gyrus is responsible for the
proliferation and division of neural stem cells that form into new
neurons or astrocytes, playing a pivotal role in hippocampal circuit
plasticity and memory consolidation [57,58]. Consistent with patient
observations of leukoencephalopathies and white matter tract lesions,
animal and in vitro studies have shown that both mature
oligodendrocytes and their precursors may be susceptible to the action
of chemotherapy drugs [1]. Whilst there is clear evidence that specific
central cell populations are susceptible to reductions in cellular
proliferation following chemotherapy exposure, some studies have
reported no changes [59,60]. This evidence reflects the complex
aetiology of CICI, indicating various structural, molecular and cellular
changes contributing to cognitive impairment following chemotherapy
exposure. The aforementioned studies fail to take into account
neuroimmune mechanisms that may be at play, whether directly or
indirectly. Perhaps it is time to consider the impact other
chemotherapy-induced peripheral inflammatory events may be having
on CICI, such as immune challenges in the context of malignant
tissues, more specifically gut toxicities, such as mucositis.

The contradiction: host immunity, dysregulation and cancer
The ultimate goal of the immune system is to protect and defend the

host from infection and insults by recognizing, repelling and
eliminating pathogens and foreign molecules. Further, inflammation is
an essential defensive response resulting in physiological processes
critical in host healing. The toll that both malignancies and
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chemotherapy treatments have on the host is particularly enigmatic in
the context of the immune system, whereby complex inflammatory
processes contradict and manipulate responses; a dynamic network
that primarily ensures protection against foreign pathogens whilst
remaining tolerant of self-antigens. This somewhat contradictory
phenomenon results in immune dysregulation which in turn, may
result in central effects via the neuroimmune interface and signalling
pathways.

Inflammatory processes become dysregulated in cancer and anti-
cancer treatments. On one hand, endogenous immune processes and
inflammatory cascades attempt to eliminate malignant cells from the
host. Yet, simultaneously within malignant cells, similar pathways are
initiated and inflammatory signalling molecules contribute to cancer
establishment and progression. Several lines of evidence have
suggested inflammatory processes are the seventh hallmark for cancer
establishment and progression [8,61,62]. To further complicate
matters, chemotherapy treatments are associated with increased
circulating inflammatory markers, yet suppression of immune activity
is commonly reported (discussed below). It is well established that
immune dysregulation occurs in several disorders negatively affecting
the CNS and in some cases, the gut. To illustrate this point, a few
disorders, such as neuropathic pain will now be further discussed.

Immune dysregulation in animal models
Several convergent lines of experimental and clinical evidence have

supported the hypothesis that pro-inflammatory cytokines are pivotal
in the pathophysiology of not only cancer-related and anti-cancer
treatment-induced symptoms, but other disorders, including chronic
fatigue syndrome, neuropathic pain and major depression. Elevated
circulating pro-inflammatory cytokines, such as (IL-1) and (TNF-α)
have been reported in clinical studies examining chronic fatigue
syndrome, major depression and various pain states [63,64]. IL-1
action is regulated by a complex network of molecules and is a potent
stimulus of corticotrophin-releasing hormone, activating the
hypothalamic-pituitary-adrenal axis, an important stress hormone
which has been well documented in major depression [63].
Additionally, TNF-α is widely recognised as an important factor in the
mediation of major depression, chronic fatigue syndrome and
neuropathic pain [63-65]. Rodent models have reported that
intraperitoneal administration of TNF-α results in dose dependent
pain responsivity, indicative of hyperalgesia (heightened sensitivity to
pain) [66]. The hippocampus is associated with pain perception and
cognition [67] and accordingly, a rat model of chronic constriction
injury of the sciatic nerve reported increased hippocampal TNF-α
levels [65]. These studies indeed demonstrate a pivotal role for the
aforementioned pro-inflammatory cytokines in the pathogenesis of a
range of disorders and disease states. It should be noted that the
disorders mentioned in this section also often occur simultaneously in
cancer patients undergoing chemotherapy treatment.

Immune dysregulation in cancer and chemotherapy
There is growing consensus on two recognized interactions between

cancer and the immune system. Firstly, host immunity has the ability
to recognize and reject malignant cells and immuno-surveillance can
prevent tumour development and control recurrence. Consequently,
activation of the innate immune system leads to the production of
highly immuno-stimulatory cytokines, systemic inflammation and T-
cell and B-cell activation, with the goal of eliminating malignant cells.
Secondly, many inflammatory mediators and cells involved in

detecting and eliminating malignancies also play a key role in the
migration, invasion and metastasis of malignant cells, thus promoting
tumour expansion [68,69]. This double edged sword results in a
plethora of intertwined and complex interactions in which the immune
system recognizes and tries to reject tumour formations whilst
inflammatory processes simultaneously enable tumour progression
and development.

Additionally, chemotherapy drugs also induce inflammatory
responses which may be either local, around the site of administration
or systemic in nature resulting in mucositis. Several chemotherapy
drugs including 5-FU (anti-metabolite), etoposide (topoisomerase II
inhibitor) and doxorubicin (anthracycline) elevate pro-inflammatory
cytokine production in vitro [70]. Importantly, this demonstrates that
most cytotoxic anti-cancer drugs, regardless of their mechanism of
action, increase circulating cytokines. Such findings have been
translated into clinical studies linking circulating pro-inflammatory
cytokine elevations with common chemotherapy-induced side-effects,
such as fatigue, depression, pain and cognitive impairment [71,72].
Extensive studies revealed the importance of elevated circulating pro-
inflammatory cytokines in sickness responses which often result in
cognitive changes and interestingly, mimic CICI reports. Finding
therapeutic approaches that target the immune system has the
potential to improve multiple chemotherapy-related side-effects which
all have an immune component to their aetiology.

The intimate bidirectional relationship shared between the CNS and
the GIT presents as a potential mechanism that may contribute to CICI
symptom severities. As such, it is plausible that chemotherapy-induced
peripheral inflammatory events, such as mucositis, may trigger central
cell population changes. Peripheral-to-central changes occurring via
neuroimmunological pathways may result in behavioural (cognitive)
changes, similar to those apparent in cytokine-induced sickness
responses [5,73,74]. Although a cytokine-based neuroimmunological
mechanism of cancer-related symptoms has been suggested [14], CICI
researchers are yet to examine the indirect central effects of
chemotherapy-induced peripheral inflammatory events, such as
mucositis.

“Little brain” to “big brain” inflammation and signalling
pathways
The ability of the ENS to self-regulate (hence “little brain”) and act

similarly to the CNS (“big brain”) makes it the largest and most
complex division of the peripheral nervous system [75]. Previous
literature has suggested that the GIT is a vulnerable passageway
through which pathogens may influence the CNS and lead to
abnormalities, for example, neuroinflammation contributing to autism
[76] and multiple sclerosis [77]. A well-established link exists between
various neurodegenerative diseases and the role neuroinflammation
plays in their pathogenesis [78,79]. However, few studies have
examined the influence of peripheral-to-central immune signalling
and neuroinflammation in the context of chemotherapy- induced
mucositis and CICI.

Inflammation in the “little brain”: ENS inflammation
The ENS contains more than 400-600 million neurons [80] and an

extensive network of Enteric Glial Cells (EGCs). Although EGCs
support enteric neurons, the precise mechanisms by which EGCs
support enteric neurons remains to be fully elucidated. EGCs share
similarities with their CNS counterparts, astrocytes in morphological,
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functional and even molecular capabilities [81]. As well as exerting
protective functions, EGCs are key players of the ENS during intestinal
inflammation and immune responses. Their intimate relationship with
enteric neurons and their responsiveness to local inflammation makes
them a prime target for therapeutic intervention as has been
investigated in the CNS with targeting glial cells.

From our understanding of the intimate bidirectional relationship
shared between the GIT and the CNS, it is not surprising that a diverse
range of neurodegenerative diseases arise from systemic infections and
inflammation, such as multiple sclerosis and Alzheimer’s disease
[76,82]. We have all experienced the change in mood, emotion and
cognition when one is faced with systemic infection, a cold or
influenza. Numerous reports indicate that this immune response is
driven by a dialogue between the peripheral systemic infection and our
brain [73]. The gastrointestinal immune system is considered the
primary immune organ of the body as it induces and maintains
peripheral immune tolerance. This is achieved via complex cellular
networks with specialized immuno-regulatory functions, including
interactions between the microbiota and host. Impaired host immune
defenses and mutations in pattern recognition receptors lead to GIT
dysfunction and enables invasion of pathogens [83]. The downstream
effect of such events results in chronic GIT inflammation and/or
dysbiosis (a loss of control of local immune responses resulting in an
unbalanced enteric microbiota) having substantial implications in the
pathogenesis of rheumatoid arthritis, IBD and asthma [84-86]. From
this evidence it is clear that GIT inflammatory events may modify
central processes controlling behaviour and aligns with our central
hypothesis that chemotherapy-induced mucositis may result in central
changes via neuroimmune mechanisms involving glia, discussed in
more detail below.

Glia: the “other brain”
Glial cells are critical in brain development, function and plasticity

in both health and disease and fall into three cell types; astrocytes,
microglia and oligodendrocytes. Neurons, astrocytes and
oligodendrocytes arise from neural progenitor cells whilst microglial
cells originate from peripheral macrophage cell lines [87]. Glia
perform a host of regulatory functions within the CNS, from
supporting neurons and regulating synaptic neurotransmission, to
maintaining calcium homeostasis and clearing intracellular ions and
neurotransmitters [88]. A bidirectional communication occurs
between neurons and glia (astrocytes and microglia) which is now
widely accepted as the neuroimmune interface; the tripartite and
tetrapartite synapse describes this complex intertwined relationship in
health and disease [89,90].

Glia plays a vital role in various aspects of brain function. The
ambiguities of glial cells in health go far beyond our current
understanding and deserve much more attention. An area of particular
interest is the mechanism by which these central immune cells are
involved in the pathogenesis of CNS disease states. Several researchers
have gained valuable insight to this question and begun to unravel the
mechanisms by which glia contributes to the pathogenesis of
neurological and neurodegenerative diseases, such as Alzheimer’s
disease, neuropathic pain, ischaemia and migraine. The common
thread linking these diseases is glial priming and subsequent
neuroinflammation.

“Big brain” inflammation
Microglia and astrocytes may become reactive or primed either

from direct-central insults or indirect-peripheral inflammatory events
triggering neuroinflammatory responses. Microglia is highly sensitive
to insults so are the first to react, unlike astrocytes which respond more
slowly and in a more controlled manner [88]. In their reactive states,
both glial cell types undergo morphological changes augmenting a
cascade of detrimental functional outcomes leading to tissue damage
and neuronal death [91]. In particular, reactive glia overproduce
prostaglandins, pro-inflammatory cytokines, chemokines, mediators
and reactive oxygen and nitrogen species having detrimental effects on
neuronal function and survival via oxidative stress [92]. Primed glia
reduces output of anti-inflammatory molecules, decrease neurotrophic
support, dysregulate calcium, glutamate and brain derived
neurotrophic factor resulting in excitotoxicity and neuroinflammation
[93]. Interestingly, both cell types may remain in a primed state
whereby they continue to be sensitized after the initial stimulus has
resolved. Although primed glia appears active due to their
morphological form, they do not overproduce inflammatory mediators
until challenged, whereby they react quickly and elicit an exaggerated
immune response [94]. In particular brain regions this may influence
behaviours involving cognition [89,95].

Glia modulates neurotransmission and cause neuronal injury via
various mechanisms including a reduced ability to produce
neurotrophic support, excitotoxic glutamate-receptor mediated
damage and oxidative stress [96]. Glutamate is the primary excitatory
neurotransmitter instrumental in neuronal plasticity and thus, key in
learning and memory consolidation [97]. The glutamate transporters
GLAST and GLT-1 are localized on astrocyte membranes [98].
Reactive astrocytes undergo reduced expression of glutamate
transporters and lose their ability to re-uptake glutamate, yet continue
to release glutamate into the synapse [99,100]. Additionally, reactive
astrocytes inhibit production of glutamine synthetase, an enzyme that
converts extracellular glutamate to glutamine, vital in neuroprotection
[101]. From this, it is not difficult to see that a significant feature of
many neurodegenerative disorders is reactive or primed glia, and
subsequent neuroinflammation. In the context of chemotherapy
exposure, inflammation (central or peripheral) occurring via either
direct or indirect mechanisms may trigger glial dysregulation and
neuronal consequences, impacting negatively on cognition.

The host immune system utilises innate immune signalling to
recognise microorganisms, detected by molecular structures shared by
a large number of pathogens; exogenous Microbe-Associated
Molecular Patterns (MAMPs) and endogenous molecules Danger-
Associated Molecular Patterns (DAMPs). Toll-Like Receptors (TLRs)
represent a class of innate immune receptors belonging to the
IL-1/TLR superfamily and act as pattern recognition receptors capable
of responding to MAMPs, DAMPs and more recently, Xenobiotics-
Associated Molecular Patterns (XAMPs) [102]. XAMPs represent
foreign chemicals that include alcohol, methamphetamine and cocaine
[103]. The mechanism by which XAMPs modify glial expression levels
and morphology via TLRs may then present as a plausible mechanism
contributing to CICI.

Although reactive glia might start as a beneficial process responding
to an insult (disease, trauma, infection or drug exposure), it may,
depending on the nature, duration and intensity of the insult, turn to a
detrimental neuroinflammatory state. Defining neuroinflammation is
by no means a simple task; however, it is generally accepted to include
microglial and astrocyte reactivity and increased expression of pro-
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inflammatory cytokines and chemokines [104]. Chronic
neuroinflammatory states are known to contribute to neuronal loss
and central homeostatic disturbances. It is widely accepted that
systemic inflammation influences brain function and behaviours. The
last two decades have revealed the pivotal roles microglia, astrocytes
and neuroinflammation play in various neurodegenerative diseases. In
addition to neurodegenerative diseases and central injuries,
neuroinflammation has also been implicated in neuropathic pain,
schizophrenia, epilepsy and perhaps most recently, cancer and
cognitive decline following chemotherapy exposure [105-109]. Of
particular interest to this review, is the potential for chemotherapy
drugs to influence glial cell populations in both the brain and the
spinal cord, having implications in cognition and pain pathways.
Various chemotherapy drugs appear to be causing a generalized glial
response which is not limited to specific drug classes [108-110]. These
studies primarily focused on the direct-central effects of chemotherapy
exposure, not accounting for the potential of GIT damage to indirectly
exacerbate central changes via neuroimmune pathways. Peripheral-to-
central immune signalling pathways offer a potential way in which
peripheral inflammatory events, such as mucositis may be implicated
in CICI.

“Little brain” to “big brain” signalling
Histories of abuse, life stressors and other psychological factors have

been shown to play an important role in the onset of various functional
bowel disorders [111,112]. As information is relayed in a bidirectional
manner between the gut and the brain, it makes sense that the CNS
may be modified by gut dysregulation. Information from the “little
brain” to the “big brain” may be relayed via afferent neurons
connecting the gut to the CNS. Pathways responsible for the
transmission of various endocrine, neuronal, paracrine and humoral
signals are vagal, humoral or neural. The vagus nerve provides a
cytokine responsive neural pathway indirectly triggering the brain via
afferent vagal input or leaky circumventricular organs [113].

Peripheral immune messages such as locally produced pro-
inflammatory cytokines may travel indirectly to the CNS via neural
signalling pathways, including but not exclusive to the vagus nerve
[74]. Information detected by primary afferent neurons is transduced
into a neural message which is then relayed to higher order brain
regions. In the brain parenchyma this message is then re-transduced
back into an immune message where locally produced cytokines alter
brain function by acting either directly or indirectly on neurons or glia.
In specific brain regions, this may result in behavioural adaptations,
involving cognition and mood. Alternatively, the slower and more
direct humoral pathway occurring at leaky circumventricular organs
involves molecular intermediates, such as prostaglandins. Local
inflammation activates peripheral tissue macrophages to increase
release of pro-inflammatory cytokines, such as IL-1β and TNF-α.
Consequently, macrophages and endothelial cells release chemokines
and adhesion molecules that attract leukocytes [74]. As well as their
essential roles in peripheral inflammation, circulating IL-1β and TNF-
α are also key initiators of neuroinflammation. From this knowledge,
we present these immune-to-brain signalling pathways as potential
mechanisms by which chemotherapy-induced intestinal inflammation
may directly and indirectly lead to neuroinflammation and glial
dysregulation. Pro-inflammatory cytokines and mediators expressed
during the pathogenesis of chemotherapy-induced mucositis may
access the CNS via leaky circumventricular organs resulting in a
neuroinflammatory response.

What the future holds
In the year 2020 it is estimated that 70 million cancer survivors will

be disease free [7,28]. Nonetheless, a substantial proportion of
survivors will have experienced either acute or delayed cognitive
deficits during or post treatment cessation. Therefore, it is of
paramount importance to consider the direct and indirect mechanisms
underlying CICI to develop new strategies and treatments that will
improve the quality of life of cancer survivors. To date, CICI animal
models have failed to consider the impact of peripheral inflammatory
responses on cognitive deficits. In fact, in most CICI animal studies, it
is almost unquestionable that mucositis tissue damage would have
certainly been present, yet these organs were not analysed. This limited
angle of analysis may be missing incidental, yet crucial mechanisms in
the aetiology of CICI. Irrespective of this, we acknowledge the many
challenges faced by researchers undertaking CICI studies and teasing
apart both the direct and indirect mechanisms presents with its own
myriad of complications. Perhaps now is the time to examine
chemotherapy-induced side-effects which more accurately reflect a
clinical setting; elucidating how multiple chemotherapy side-effects
work in unison.

One might argue that in general, the two major areas of the human
body which become dysregulated following chemotherapy exposure
are the gut and CNS; the “little” and “big” brains. The above sections
clearly illustrate the recent substantial increase in literature implying
that brain function is somewhat dependent upon gut function and vice
versa. Many questions still remain and research should continue to
clarify how the neuroimmune interface and signalling pathways may
be implicated in CICI. The literature reviewed presents our theory that
chemotherapy-induced intestinal inflammation may drive glial
dysregulation via direct and indirect neuroimmune signalling
pathways which may ultimately, potentiate cognitive impairment.
Harnessing our understanding of these mechanisms and outlining
ways in which the gut can modulate brain function and behaviours via
neuroimmune signalling pathways may guide us to novel treatment
approaches that encapsulate more targeted therapies aimed at treating
multiple side-effects of chemotherapy treatment.
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