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Introduction 
A long series of studies found that mice have the capability to 

vocalize across a broad range of frequencies that extend from as low 
as the human-audible range and can extend well into the ultrasound 
range, above the limit of human hearing (20 kHz) [1,2]. Audible squeaks 
are produced by laboratory mice in stressful and painful situations 
[3] such as during handling and restraint [4], grid-shock test [5], or
during aggressive encounters [6,7]. In reproductive contexts, human-
audible squeaks are produced by females when a sexually motivated
male is interacting with a non receptive female [8]. Vocalizations in
the ultrasonic range are emitted by adult mice in some social contexts
(Figure 1) [6,9-19]. Pups separated from the nest emit calls which the
parents use to locate the straying pup and retrieve it to the nest (Figure
1) [10,12,20-22].

Following these behavioral studies, primarily devoted to study the 
functional role of USVs, several pharmacological studies have been 
carried out to evaluate the role of different neurotransmitter systems 
on the regulation of USV signaling in rodents. Nearly 30 years ago, 
various authors showed that pharmacological treatments clearly affect 
USV emission patterns [34-36]. Since then, effects exerted by several 
compounds on USVs has been extensively investigated [26,37-39]. 
Most of the pharmacological studies concern drug modulation of 
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Abstract
Male and female mice emit ultrasonic vocalizations during infancy when pups are separated from mother and 

littermates, as well as at adulthood in different experimental/social contexts. Mouse ultrasonic vocalizations had 
become now a popular assay for behavioral phenotyping throughout the life-span of models of autism since this 
response represents the best option to detect deficits within the social communication domain in the mouse species. 
In the present review, we describe the available methods to elicit and record mouse ultrasonic vocalizations in 
different social contexts and at different ages. Behavioral data collected on autism animal models in these paradigms/
contexts are also discussed. Moreover, we strongly emphasized the need of a standardization of the behavioral 
methods to better compare results from different laboratories.

Thanks to the progresses of computer technology, researchers can now perform detailed analyses of the vocal 
repertoire (classifying ultrasonic vocalizations into different categories) in autism mouse models. Recently, these 
analyses have revealed unusual vocal patterns in selected mouse lines. This innovative approach allows to detect 
also qualitative alterations in the social communication repertoire usually not identified with the standard analysis 
of emission rate. Future studies should be aimed at performing quantitative and qualitative analyses of vocalization 
patterns also in preclinical studies evaluating potential treatments in validated autism mouse models.

Since their first description [22], it appeared likely that pup
Ultrasonic Vocalizations (USVs) play a role in the survival of the 
young, particularly through mother-young relationships. Adult rodents 
are certainly able to hear these sounds, and the signals have at least 
some communication value. The function of the isolation calls was 
supposed to elicit retrieving responses of the mother and to guide her 
to the young. In support of this hypothesis, Zippelius and Schleidt [22] 
published their discovery that under conditions of stress, cold and 
hunger, the young ones of three species of myomorph rodents produced 
ultrasounds at least to the age when their eyes were open. Female mice 
retrieved live pups from outside the nest but dead or narcotized pups 
which could not emit ultrasonic calls were not retrieved. No further 
work on ultrasounds in rodents has been carried out until 1965, when 
Noirot’s studies on maternal behaviour in mice led her to extend the 
observations of Zippelius and Schleidt [23]. In particular, Noirot 
showed that olfactory and auditory stimuli increased retrieving, licking 
and nest building responses in female mice when exposed for 5 min to 
a 1-2-day-old pup hidden in a perforated metal box [24]. A very clear 
demonstration that isolation calls do affect the searching behavior and 
probably also initiate the retrieving response of lactating females was 
given by Sewell [2] in a playback experiment. Lactating females of the 
species Apodemus sylvaticus entered more often to the compartment 
containing the loudspeaker emitting the relevant acoustic stimuli then 
to the compartment with the background noise or artificial stimuli, 

supporting the communicative value of pup vocalizations for the 
mothers of this species. Similar result have been obtained by Ehret and 
Haack [25] in playback experiments on Mus musculus lactating females 
(strain NMRI). They showed that females respond (in a two-alternative 
choice test) not only to natural calls but also to model calls consisting 
of bandpassed noise of variable bandwidth with noise energy in the 
frequency range of the natural calls (about 40-80 kHz) [25]. Starting 
from these pioneering studies, several other studies showed that USVs 
elicit approach and retrieval [26-29], and reduce attacks or rough 
manipulation by the dam [30,31]. Dam behavior modulates the number 
of ultrasonic calls uttered by the pups in social isolation conditions. 
Number of calls emitted by pups with intact hearing strongly decreased 
when these pups were cross fostered to deaf dams [32]. A relationship 
between maternal responsiveness and pup calling rate has been 
confirmed more recently in a study comparing C57BL/6 and BALB/c 
maternal responsiveness to USVs [33].
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neonatal USV emission. Generally, pharmacological agents that act on 
GABA and/or 5-HT receptors and that alleviate anxiety in humans also 
reduce the emission of pup USVs [40-43]. Also glutamatergic drugs 
affect pup vocalizations [44].

Since these pharmacological studies clearly proved that USVs 
are affected by anxiolytic and anxiogenic drugs, researchers used 
ultrasonic vocalizations in mouse pups separated from their mothers 
as a test for emotional behavior early in postnatal life. Winslow and 
colleagues suggested that the amount of USVs in response to separation 
and isolation from the mother and littermates can be considered as a 
measure of primitive separation anxiety and that these calls can be 
predictive of adult emotionality [21]. 

More recently this extensive ethological/psychobiological and 
psychopharmacological knowledge of rodent ultrasonic vocalizations 
has been exploited in the study of behavioral phenotyping of genetically 
modified mouse lines, and in particular in those lines modeling 
neurodevelopmental disorders in which social communication deficits 
are one of the core symptoms, as Autism Spectrum Disorders (ASD). 

Verbal and non verbal communication deficits are a cardinal 
feature of the autism spectrum disorders. In a child language task, 
autistic individuals assign stress to the wrong syllables of a word [45-
47] and have difficulties modulating pitch and volume of their speech 
[47]. Some aspects of autistic speech seem to incorporate all three 
features of the diagnosis: repetitive behaviors, deficits in the ability to 

express emotions and deficits in communication. In fact, some children 
with autism repeat certain sounds, syllables, or words more than 
typically developing children [47] or fail to use appropriate patterns 
of intonation to communicate. Prosody can be monotonic, minimally 
pitched or energy modulated, or it can be amplified in pitch range or 
even singsong-like, masking dynamics in emotional status [48].

Since the field of mouse models of ASD has dramatically expanded 
in the last years, growing number of studies (Figure 2) have attempted 
to analyze, at different level of methodological complexity, USV 
patterns of ultrasonic vocalizations, and most of them report alterations 
in mutant mice and/or pups. In table 1, we report data analyzing USVs 
in ASD models. The following two paragraphs report an overview of 
results in the pup and adult vocalization tests. 

Pup Ultrasonic Vocalizations

Another aspect to consider when comparing data from different 
experiments is length of USV recording time. Usually pups vocalize 
for a brief period after separation from the mother, rapidly habituate, 
thus remaining silent after few minutes of social isolation. Most of 
the data available are from experiments with recording session lasting 
three [52,57,61-63,68,70,71,75], four [55] or five minutes [17,53,56,58-
60,65,69,72-74]. Few papers reported a shorter isolation time than two 
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Figure 2: The rising number of publications about ultrasonic vocalizations in 
Autism animal models over the past 15 years. The graph has been plotted 
by searching the terms “ultrasonic vocalizations” and “autism animal mod-
els” on PubMed (http://www.ncbi.nlm.nih.gov/pubmed).
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Figure 1: Spectrograms of call sequences emitted by mice at different ages 
and social contexts. 
Panel a. Pup vocalizations emitted at PND 8 during the maternal separation 
paradigm. 
Panel b. Courtship vocalizations emitted by a male when socially interacting 
with a receptive female. 
Panel c. Ultrasonic vocalizations emitted by a resident female towards an 
intruder female. 
Time (in seconds) is indicated by the X-axis, frequency in kHz is indicated 
by the Y-axis, and relative intensity or loudness is indicated by color (see 
colored bar at the bottom of the figure).

Pup isolation-induced ultrasonic vocalizations are whistle-like 
sounds with a single component at frequencies between 30 kHz and 90 
kHz [49]. Calling rate always follows a strain-dependent ontogenetic 
profile, usually peaking between the fifth-eighth day after birth and 
then progressively decreasing till zero around the second postnatal 
week [50,51]. Any sort of deviation from this established ontogenetic 
profile can been considered an hallmark of altered neurodevelopment. 
However, not all studies analyzed number of calls at different time 
points throughout the first two postnatal weeks of age. Several authors 
rather analyzed USVs only at one single day (mostly PND 7-8) 
[20,21,52-60] giving for granted that this day corresponds to the peak of 
USV emission in their mouse strain. Unfortunately, strains differing in 
genetic background have different peaks of emission ranging from PND 
3 in the C57BL/6J till PND 6-8 in the BTBR and FVB strains [17]. For 
this reason, researchers should either be aware of the ontogenetic profile 
of USV emission of the genetic background of their mutant lines and 
select the “right” peak day, or assess the entire USV profile throughout 
the first 12 days of postnatal life. This latter option definitively appears 
more informative [17,61-75].
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minutes [21,57,64,66,67], few papers a longer one (six: [20] or even 
fifteen minutes [54]).

Another source of variability in USV emission can be body 
temperature of pups, a physical parameter which is known to deeply 
influence pup vocalization rates [76]. Only few studies provide these 
data [17,21,54,58-63,71,72,75], thus hampering direct USV rate 
comparisons between different experimental settings. 

In most of these studies, mouse pups with genetic alterations 
relevant for autism showed decreased number of vocalizations when 
separated from mother and siblings [20,21,52-55,57-60,62,63,66,68,69]. 
Both decreased and increased USV rates have been correctly interpreted 
as a developmental alteration within the social/communication 

domain. Interestingly, in the case of BTBR pups, in which a detailed 
quantitative analysis has been also carried out, it became clear that 
the higher vocalization rate was associated with a more limited vocal 
repertoire [17].

When assessing development of vocal responsiveness it is always 
recommendable to check for potential confounders as general somatic 
growth rate and initial acquisition of motor coordination competences 
(full neurobehavioral assessment [17,20,59-61,71,73,75], limited 
number of reflexes [53,66] and body weight gain [17,20,21,56,59-
64,68,71,72,75,77]). This is needed because a reduction of USV rate 
when also accompanied by a delay in growth, maturation and motor 
coordination cannot be a selective marker of social communication 
deficit, but rather one of the signs of a general developmental deficit 

Experimental test PUPS ADULTS
Mouse models Pup  isolation Maternal potentiation Male  - female

Social interaction
Female - female 
Social interaction

Male - male 
Social interaction

Female urine  
exposure

References

Avpr1b + / -  KO  = ↓  = [72]
Avpr1b - / -  KO  = ↓ ↓ [72]
BTBR ↑ ↓ ↓ ↓ ↓ [17,87,99]
Cadm1 - / -  KO ↓ [52]
Dlg4 - / -  KO ↓ [89]
Dvl1 - / -   KO  = [67]
En2 + / -  KO  = = [61]
En2 - / -   KO  = = [61]
Exposure to chlorination by product ↓ (males) [54]
Exposure to maternal immune activation ↓ ↓ ↓ [68]
Fmr1 - / -   KO  = ↓; = [56,95,96]
Foxp2 + / -   KO ↓ [20]
Foxp2 - / -   KO ↓ [20]
Foxp2 (R552H)/ -  KI ↓ [53]
Foxp2 (R552H)/ (R552H) KI ↓ [53]
Mecp2 null ↑ [71]
Mecp2-308 -/ y   ↓ [63]
Nlgn2 + / -   KO  = [60]
Nlgn2 - / -   KO ↓ [60]
Nlgn3 - / -   KO ↓ [91]
Nlgn3 (R451C) / (R451C)  KI ↓ (males) [62]
Nlgn4- / -  KO ↓ [90]
Nr1neo - / -   KO ↓ [94]
Orpm - / -   KO ↓ ↓ [69]
Oxt - / -   KO ↓ [21]
Oxtr - / -   KO ↓ [57]
Reln - / -  KO (males) ↓(in handled) [55]
Shank1 + / -  KO  =  = [59]
Shank1 - / -  KO ↓  = [59]
Shank2 + / -   KO  =  =  =  = [73]
Shank2 - / -   KO ↑ (females)  =;↓ ↓  = [73,92]
Shank3 + / -  KO  =  =; ↓  = [75,93]
Shank3 - / -  KO  =  =  = [75]
Shank3 (e4-9) - / -   KO ↓ ↑ [88]
Slc 6A4 (56A)/ (56A)  KI ↓ [58]
Tsc1 + / -  conditional KO (Purkynje cells) ↑ [74]
Tsc1 - / -   conditional KO (Purkynje cells) ↑ [74]
Tsc2 + / -  KO = [77]
X non coding region KI (MALTT) ↑ ↓ [64]
15q11-13 (maternal deletion 1,6Mb) ↑  [65]
15q11-13 (paternal duplication 6,3 Mb) ↑  = [70]
17p11.2 (duplication 2Mb) ↓ [66]

Table 1:  Ultrasonic vocalizations data in autism animal models. ↑  indicates a significant increase and ↓ a significant decrease in number of vocalizations when the different 
mouse models (listed in the first column of the table) are compared to their respective controls; = indicates vocalization rate comparable to their controls.
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impacting the health status of the pup. By contrast, if the USV rate is the 
unique alteration detected, this indicates a more selective impairment 
in vocal competences.

Maternal potentiation

Adult Vocalizations
Under selected experimental conditions, emission of USVs (ranging 

from 40 to 80 kHz, mean duration 80 ms) is a consistent and robust 
phenomenon also during adult social interactions and is considered 
an index of social interest and motivation [16,84,85]. In fact, both in 
the male-female and female–female social interaction tests, ultrasonic 
vocalizations have been positively correlated with social investigation, 
such as anogenital sniffing [8,84,86,87]. 

The analysis of adult mouse vocalizations has been extended to ASD 
mouse models. With exception of male Shank 3 mutants [88], in all the 
remaining mouse lines tested, vocalization rates were significantly lower 
in mutants when compared to wildtype littermates [64,68,72,73,87-92]. 
Interestingly, in most of the lines analyzed, only homozygous mutants 
vocalize less than wildtype controls, whereas heterozygous show 
vocalization rates comparable to wildtype ones [72,73,93]. 

Male-female

Since children with autism show a sex ratio of 4:1 (male to female), 

behavioral phenotyping of animal models has primarily focused on 
male mice. The male-female interaction is therefore the most popular 
test for detecting the communication deficit in mouse models of autism 
at adulthood [61,68,73,75,87,89-96]. This is because in this social 
context, males vocalize shortly after the encounter with the female in 
association with the anogenital sniffing [97,98].

In this test, it is possible to evaluate the first approach of the male 
to a sexually receptive female, the ongoing social investigation and the 
associated USV emission [97,98]. Despite the wide use of the male-
female paradigm in laboratories dealing with behavioral phenotyping 
of mouse model of autism, there is not a unique procedure and several 
sources of variability must be taken into account.

Session length has not been standardized and can vary from three 
[68,73,91] to five [61,75,87,89,92-95], or ten minutes [90]. Variable 
lengths of the social interaction session can prevent meaningful direct 
comparisons of data from different laboratories if data are not presented 
as mean value per minute throughout the session but only as average 
total means (low values of last part of the session). 

Another source of variability among different settings is certainly 
represented by previous experience with females of the male subjects 
tested. Indeed, repeated prior exposure to an unfamiliar female can 
maximize probabilities of male vocalizations [68,73]. Also the strain 
(or genotype) of the female partner in the male-female test can affect 
male behavioral responsiveness: the commonest choice is a wildtype 
female [61,73,75,89,92-94] or a female of the same genetic background 
of the tested mice [87,90,91,96], more rarely a totally unfamiliar mouse 
strain has been used [88,95]. 

A crucial aspect of this test is the assessment of the female sexual 
receptivity [61,68,73,75,87,89-94,96]. Indeed, when it is not specifically 
evaluated, data are definitively weaker (male variability may increase 
because of exposure to females in different phases of the estrus cycle 
and the number of non-vocalizing males can dramatically increase).

Exposure to female urine

Another experimental paradigm utilized in behavioral phenotyping 
of mouse models of autism is the exposure to female urine, in which 
male reactivity to the presence of olfactory cues from a sexually receptive 
female [59,75,99] is detected in terms of male vocalizations and urine 
scent marking across the experimental arena. So far few researchers 
have used this test [59,75,99] although it is easy to perform and does 
not include the management of female subjects. One limitation is that 
no additional measurement of social behavior can be concomitantly 
associated with the vocal response.

Female-female

Few studies have analyzed mouse female USVs. Female mice emit 
a large number of USVs, at absolute rates comparable to those of the 
male–female interaction. Ultrasonic vocalizations are emitted during 
the first minutes of social interaction only by the resident female, not 
by the intruder one [6,84,97] in concomitance with high levels of social 
investigation of the intruder. Recently, this paradigm has been applied 
also in animal models of autism [72,73,87,88].

Male-male

Males emit ultrasonic vocalizations exclusively during non 
aggressive encounters. Indeed, during resident-intruder tests, that 
are characterized by high levels of aggressive behavior, only audible 
vocalizations have been detected primarily in association with defensive 
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In rat pups, an experimental paradigm has been developed to 
increase USVs. It consists of two consecutive separations: a five minute 
separation, followed by five minutes of contact with the mother, 
followed immediately by a second five minute separation [78]. This 
procedure leading the increase in vocalizations, called “maternal 
potentiation”, has been extensively characterized during the second 
postnatal week in the rat species [79]. A detailed analysis conducted in 
10-day-old neonatal rats showed that maternal reunion after maternal 
separation not only increases the subsequent calling rate but also 
induces qualitative changes in ultrasonic emission, namely increased 
average amplitude and average bout size (i.e. number of USV/bout) 
[80]. Later data showed that maternal potentiation of USV is a robust 
phenomenon not species-specific for rats, since it also occurs in guinea 
pigs [81] and some mouse strains [16,77]. 

Other findings indicate that maternal potentiation of USVs is not as 
robust in mice, and is extremely strain-dependent [72,82]. Data collected 
in C57BL/6J 8-day-old pups indicate that maternal potentiation of 
USVs can be detected using an experimental protocol modified from 
the rat one, with reunion occurring in the home cage with both mother 
and littermates [16]. Data from a mouse line with a null mutation in 
the mu-opioid receptor confirmed maternal potentiation in 12-day-old 
wildtype controls (C57BL/6J background strain), not in mutant pups 
[69]. Similarly, maternal potentiation was detected in wildtype animals 
from a line of Avpr 1b receptor knockout mice with a mixed C57BL/6J 
and 129/SvJ genetic background: in 9-day-old wildtype pups, maternal 
potentiation was found both in terms of number and duration of calls, 
the latter appearing as more sensitive parameter than number of calls, 
but no evidence of increase in vocalization rate after maternal reunion 
was found in heterozygous and homozygous mutant pups [72].

The maternal potentiation paradigm, together with the exposure to 
unfamiliar adult male odor (which is known to inhibit USV emission 
in pups, an adaptive response, since unfamiliar males are potentially 
infanticide [83]), offers the possibility of modulate vocalization rates 
as a function of external stimuli. These paradigms can therefore be 
particularly suitable to behavioral phenotyping of ASD models [69,72].
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postures, and have been therefore considered as stress-associated 
vocalizations [6,85].

Ultrasonic vocalizations during male-male interactions are thus 
detectable only when subjects belong to mouse lines characterized 
by reduced levels of aggressive behaviors featuring low levels of social 
interactions [64,68,73,87,88]. In most of the mouse lines, significant 
deficits were evident in male mouse models of ASD, with the exception 
of Shank 2 knockout mice: in this data set, however, vocalization rates 
were so low (also in wildtype controls) that, as admitted by the authors, 
it was rather unlikely to detect significant reduction in mutants [73].

Analysis of the Vocal Repertoire

Manual detection and categorization can be performed only by 
experienced personnel able to discriminate calls from background 
noise. This qualitative analysis is currently extremely time-consuming 
and different laboratories are now focusing on development of a 
automatic system to detect and categorize calls. 

Conclusions 
The analysis of USVs in neonatal and adult ASD mouse models 

provide different information because they underlay two well separated 
motivational domains (mother-infant attachment vs sexual preferences/
courtship behavior). USVs resulting from these two different age-
periods not always overlap (e.g. see BTBR USV profile of pups opposite 
to the adult one [17,87]). 

On one side, the neonatal USV assessment is the only one allowing 
to identify social communication deficits in early phases of development 
in accordance with the onset of ASD pathology in humans [103]. 
It could be therefore preferred when designing experiments aimed 
at either characterization of early behavioral markers in ASD mouse 
models or of preclinical evaluations of innovative treatments in early 
stages of the pathology. 

On the other, adult USV assessment in the male-female setting is 
the best choice if only adult assessment of social communication is 
feasible (e.g. in laboratories with expertise in adult mouse behavioral 
phenotyping and not in neonate one). Indeed, the alternative behavioral 
test to evaluate social communication in mice is the social transmission 
of food preferences, but this test has been originally developed in the 
rat species as a social “learning” test (for a review see [104]) and even 
if the establishment of preference for a novel food can be assessed with 
minimal delay from interaction with rat demonstrator, it still remains 

a social learning test. Recently, neurobiological basis for this test 
have been elegantly clarified in terms of selected response of carbon 
disulphide receptors [105], a biological mechanism associated with 
breathing function and not with social communication.

Future Directions 
Whereas USV rates have been extensively characterized, 

classification of call categories, sequences of call categories, and prosody 
have to be expanded and further explored. 

Playback of recorded vocalizations during social encounters, and 
scoring of socially appropriate responses to the calls, are the optimal 
experimental paradigms to deeply evaluate the role of ultrasonic 
vocalizations in rodent communication [11,106]. Further analyses 
using context-specific playback experiments will be useful to discover 
whether: i) mice actually “communicate” biologically significant 
information to each other using ultrasonic vocalizations; ii) different 
categories or different sequences code for different meanings. An 
accurate analysis of ultrasonic emissions could thus provide a reliable 
assay to evaluate normal and altered communication profiles in greater 
detail.

Other future directions worth to be pursued are the possible 
application of USV responsiveness and USV qualitative analyses 
as indices of the effect of different therapeutically interventions in 
preclinical studies using mouse models. A number of preclinical 
studies, even when identifying significant ameliorative effects in ASD 
mouse models in terms of social behavior, did not analyze vocalizations 
after treatment [108-120]. So far only a single study has analyzed and 
detected an increase in vocalization rate, namely a treatment with 
minocycline, a tetracycline antibiotic with reported effects also at CNS 
level in a mouse model of X-Fragile [96]. Hopefully, these data will pave 
the way for inclusion of USV assessment other as a routinary test in 
behavioral phenotyping of ASD models also in preclinical drug testing. 
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