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Abstract
Obesity and many other metabolic disorders, including type 2 diabetes and atherosclerosis, have conventionally 

been viewed as lipid storage disorders caused by over nutrition. Research has demonstrated that the obesity 
associated chronic low-grade tissue inflammation and oxidative stress is crucial factors in the initiation, propagation, 
and development of these metabolic disorders. Disruption in the normal functioning of the immune system and its 
interaction with host tissue cells makes it difficult to treat these diseases. Macrophages play critical roles in the 
development of insulin resistance and tissue inflammation, particularly through a unique shift in polarized activation 
status from an anti-inflammatory M2 function in lean adipose tissues to proinflammatory M1 activation in adipose 
tissues of obese individuals. Compelling evidence demonstrated the significance of microRNAs as important 
regulators in the immune system network. Our recent research has demonstrated that microRNA-223 is a crucial 
regulator of obesity associated insulin resistance through regulation of macrophage polarization in adipose tissue. 
This review highlights the importance of various microRNAs and their roles played in the polarization of macrophages 
which could be targeted for development of new therapeutic strategies to treat obesity associated diseases.
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Introduction
In the last several decades, lack of balanced diet both in terms 

of quality and quantity has led to a rapid progression of obesity 
throughout the world; resulting in a major pandemic situation 
attracting the attention of many nations. The severity of obesity has 
been tightly associated with many chronic diseases. Obese patients are 
prone to conditions like inflammation and insulin resistance which 
is a causal factor in the pathogenesis of life threatening diseases like 
Type II Diabetes Mellitus, cardiovascular diseases and many more 
[1-3]. Recently studies demonstrated that obesity is a disease status 
characterized with chronic, low-degree tissue inflammations, which can 
result from elevated infiltration of macrophages into obese tissues, and 
more importantly, activation status shift from an anti-inflammatory to 
a proinflammatory status [1,4-9]. Impairment in the immune system 
makes it more difficult to treat these disease conditions.

Macrophages are key cellular components in the innate immune 
system. They play an essential role in responding to invading pathogens 
by triggering elaborate immuno-inflammatory reactions that ultimately 
results in the elimination of the pathogen and reinstatement of normal 
conditions. In response to microenvironmental cues like pathogenic and 
tissue-derived molecules, macrophages undergo profound phenotypic 
changes and provide appropriate responses by adapting to their 
microenvironment [4,10,11]. Understanding these ‘adaptive’ changes’ 
will provide pivotal information to open the gate for development of 
new clinical therapies for in treating chronic diseases within the proper 
context. Recent studies have shown that microRNAs have a profound 
influence on immune cell functions, including macrophage activation 
[12,13]. Results of our previous studies provide new evidence to 
support an essential role for microRNA in regulating Adipose Tissue 
Macrophage (ATM) polarization [14]. In this review, we will discuss the 
importance of macrophage polarization in obesity and related disorders 
and the newly discovered regulatory network governed by microRNAs.

Macrophage Polarization and its Diverse Functions
Macrophages play several pivotal roles in innate and adaptive 

immune response, tissue repair and remodeling and many more. Of 
the many key traits of macrophages, a major one is their functional 
diversity [15,16]. This key feature could be attributed to their capability 
of responding to diverse stimuli and in turn exhibit diverse phenotypes 
and functional roles. Macrophages undergo two unique activation 
programs, classical (M1) and alternate (M2) activation, and a full 
spectrum of intermediate phenotypes between those two extremes in 
status [10,15,16]. In response to stimuli provided by bacterial infections 
like lipopolysaccharide (LPS) and interferon-

γ (IFN-γ), or palmitate fatty acid in the context of obesity, 
macrophages adopt a classical activation strategy and a proinflammatory 
phenotype and become highly phagocytotic, as well as exerting the 
bactericidal activity, and secreting proinflammatory cytokines and 
chemokines to further protect against invading pathogens. On the 
other hand, signals from interleukins (IL) like IL-4 and IL-13 promote 
alternative activation of macrophages which have role in parasite 
elimination, tissue remodeling and repair, and inhibition of tumor 
progression [6,15,17,18]. The phenomenon of activation of M1and M2 
macrophage polarization has been investigated intensively in recent 
decades as it could lead into pathways for treatment of many important 
disease conditions.

Genomic and transcriptional studies and other phenotypic 
analyses of M1 and M2 macrophages provided immense knowledge on 
several distinct characteristics extending from traits inherent in their 
chemokinome to metabolome [19]. For example, M1 macrophages 
express the Th1-attracting chemokines such as CXCL9 and CXCL10, 

Journal of Nutrition & Food Sciences
Jo

ur
na

l o
f N

utrition & Food Sciences

ISSN: 2155-9600



Citation: Kamanemi S, Ying W, Bazer FW, Zhou B (2013) MicroRNA Regulated Macrophage Activation in Obesity. J Nutr Food Sci 3: 220. 
doi:10.4172/2155-9600.1000217

Page 2 of 5

Volume 3 • Issue 4 • 1000217
J Nutr Food Sci
ISSN: 2155-9600 JNFS, an open access journal

whereas M2 macrophages express the chemokines CCL17, CCL22 
and CCL24 [10,19-24]. In the same fashion, M1 and M2 macrophages 
display different functional phenotypes in response to glucose, 
amino acid, lipid and iron metabolism [10,15,16]. Even though the 
macrophage polarization was originally studied and defined in vitro 
using conventional methods, numerous studies have shown such 
polarization states in vivo, under physiological and pathological 
conditions. Of note, macrophages stimulated in response to parasite 
infections, allergy and in many tumor types resemble to a large extent 
an M2-or M2-like phenotype [25,26]. But it is to be considered that, in 
vivo conditions are often complex to interpret as other cues involved 
both M1 and M2 macrophages which may show a mixture of multiple 
functional phenotypes [4,18,27]. Further, many studies that cues which 
induce polarization in vivo are due to interactions among various 
immune and non-immune cell types like lymphocytes, dendritic cells, 
fibroblasts, and mesenchymal stem cells [7,10,18,28] and several other 
factors including non-coding RNA [14,29,30]. These factors make the 
study on macrophage polarization in relation to these diverse cell types 
important.

As mentioned, macrophages show functional diversity ranging 
from inflammation, phagocytosis, immunoregulation, tissue 
remodeling and even metabolism. The contribution of macrophages 
to inflammation is one of its most well-documented functions. In 
contrast to its proinflammatory functions, macrophages also contribute 
to the dampening of inflammation through their immunoregulatory 
properties [16,31,32]. Phagocytosis is a defining feature of macrophages. 
Macrophages not only play roles in killing pathogens but also in 
elimination of dead cells and remnants of cells which is important for 
resolution of inflammation. In fact, it is known that phagocytosis of 
apoptotic cells polarize these cells into an anti-inflammatory mode that 
supports their immunoregulatory functions [33].

Adipose Tissue Macrophages are Major Contributor to 
Obesity Associated Inflammation

The central feature of obesity which aggravates the progression 
of insulin resistance is chronic low-grade inflammation due to the 
infiltration of adipose tissue by macrophages [1,4-9]. The dysfunction 
of adipose tissue with respect to maintaining energy homeostasis is 
associated with obesity, inflammation and metabolic complications 
[34]. In addition, in the case of obese persons, weight loss is linked to 
improved insulin sensitivity and their risk of cardiovascular diseases 
is decreased. The inflammatory condition in obese patients is different 
from inflammation caused by classical activated macrophages which 
are stimulated by pathogens. In response to nutrient excess and is 
relatively chronic in nature, adipose tissue in obese individuals has 
an enhanced production of proinflammatory cytokines, infiltration 
by immune related cells, especially ATMs and the formation of crown 
like structures where apoptotic or soon to be apoptotic adipocytes and 
their remnants accumulate and cluster around phagocytic macrophages 
[5,35,36]. In lean mice, the ATMs are mainly the alternatively activated 
M2 macrophages and when these mice were subjected to high fat 
diet there is seen a phenotypic switch in macrophage polarization 
towards a proinflammatory type in mouse adipose tissue [28]. 
Polarized macrophages play an important role in lipid metabolism and 
homeostasis. Studies showed ATMs from tissues of lean subjects and 
ATMs during weight loss to resemble M2 macrophage and found to 
express high levels of the anti-inflammatory cytokine IL-10 [20,37,38]. 
It is believed that these ATMs maintain adipose tissue homeostasis by 
protecting from inflammation in response to high fat concentrations 
[39].

As explained, obesity is associated with increased accumulation 
of macrophages as well as with enhanced switching in polarization of 
ATMs from an anti-inflammatory (M2) to a proinflammatory (M1) 
state [6]. This change in polarization could be related to pathogen 
interference and could be specified by the targeted grouping of M1 
macrophages around adipocytes which are apoptotic and having 
necrotic like structures [40]. Interestingly, some studies suggested that 
in people who are experiencing weight loss, there is a reduction in the 
infiltration of inflammatory macrophages into the adipose tissue and 
an improvement in the inflammatory response and oxidant profile of 
adipocytes as well as the circulating monocytes [30].

MicroRNAs are Important for Adipose Tissue Function
Compelling evidence suggest critical roles of microRNAs in 

regulating adipose tissue function in the context of obesity [41]. The 
discovery of microRNAs, a class of 21-23-nucleotide non-coding 
RNAs revealed a new layer of gene regulation in almost every aspect 
of biological processes, including those of the immune systems [12,13]. 
MicroRNAs are short non-coding RNAs that are approximately 
22-nucleotide in length and bind to target mRNAs and regulate gene 
expression. The microRNA pairs to its target mRNAs typically result in 
their degradation and/or repression of translation [42].

MicroRNAs are expressed in a tissue- and cell-type specific 
manner and play important roles in many molecular and biological 
processes, including proliferation, apoptosis, development, and 
differentiation [12,42-44]. During adipogenesis, microRNAs are 
modulating the formation and function of adipose tissue from various 
aspects. MicroRNA-33a and microRNA-33b target genes are related 
to metabolism [45,46] and microRNA-103 and microRNA-107 
regulate insulin sensitivity and glucose homeostasis by modulating 
the abundance of caveolin-1 in adipocytes [47,48]. Furthermore, 
microRNAs have been associated with inflammation, oxidative stress, 
impaired adipogenesis and insulin signaling, and apoptosis and 
angiogenesis in relation to obesity. All of these processes contribute 
to the development of type 2 diabetes, atherosclerosis, and associated 
cardiovascular disorders [30,41,49-51]. However, their association with 
these processes does not necessarily imply a causal role. Each microRNA 
can have different roles under various conditions. For instance, 
microRNA-17-92 cluster, microRNA-21, microRNA-103, miR-143, 
microRNA-371, and miR-378/378* have shown to increase adipogenesis 
[47,48,52-57]. This is evidenced by increased concentrations of 
triglycerides in the circulation and enhanced expression of adipogenic 
markers [33,52,54,56,57]. The microRNA-17-92 cluster induces 
and accelerates adipocyte differentiation by suppressing expression 
of the pivotal cell cycle regulator Rb2/p130 [52]. In addition, let-7, 
microRNA-27, microRNA-130, microRNA-138, microRNA- 369-5p, 
and microRNA-448 inhibit adipogenesis which results in a decrease 
in triglycerides and down-regulation of adipogenic factors [53,58-60]. 
Similarly, microRNA-21 stalls adipogenesis by inhibiting the TGF-β 
signaling pathway and microRNA-143 acts in the similar fashion 
through down-regulating ERK-5 function [54]. The let-7 microRNA 
inhibits adipogenesis by targeting high-mobility group AT-hook 2 
(HMGA-2) [53], whereas microRNA-27 and microRNA-130 function 
through suppressing peroxisome proliferator activated receptor γ 
directly [61,62].

Significance of MicroRNAs in Regulating Adipose 
Tissue Macrophage Activation

MicroRNAs are now accepted as important posttranscriptional 
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regulators of gene expression in immune cells like monocytes and 
macrophages [12,13]. Variety of inflammatory signals stimulate 
microRNA expression induction like LPS, TNFα or IL-1β and 
these tune down TLR4/IL-1R signaling pathways in macrophages/
monocytes [12,13]. A decrease in microRNA-17, microRNA-92a 
and microRNA-155 is associated with an increase in monocyte/
macrophage proliferation and enhanced TLR-4 activation [63-65]. 
Similarly, microRNA-424 expression in endothelial cells is increased by 
hypoxia and switches on a pathway to regulate monocyte/macrophage 
differentiation [66,67]. For example, different studies have shown that 
microRNA-146, microRNA-125b, microRNA-155 and microRNA-9 
are induced by LPS and subsequently inhibiting TLR4/IL-1R signaling 
pathway by posttranscriptional regulation of the pathway components’ 
levels [68-71]. In a similar fashion, some studies suggested microRNAs 
can directly regulate production of type 2 cytokine productions during 
macrophage activation, for example, microRNA-98 and microRNA-21 
can control the expression of IL-10 in macrophages and monocytes that 
in turn inhibit induction of expression of inflammatory genes [60,72]. 
Recent study found that let-7c regulates bactericidal and phagocytic 
activities of macrophages, two functional phenotypes implicated in 
macrophage polarization [29].

Based on these evidences, it may be hypothesized that, in the 
context of obesity, the switching of inflammatory macrophages to 
an anti-inflammatory phenotype could be promoted by microRNAs. 
A study by Zhuang et.al identified that microRNA-223 acts as an 
important regulator of ATMs polarization and further demonstrated 
that it plays a significant role in modulating obesity associated 
insulin resistance [14]. MicroRNA-223 is differentially expressed 
during macrophage polarization, and microRNA-223–deficient 
macrophages were hypersensitive to LPS stimulation and exhibited 
delayed responses to IL-4 compared with controls. Furthermore, there 
is increase in M1 and decreases in M2 polarization biomarkers in 
microRNA-223 deficient macrophages indicated a suppressive effects 
on activation of pro-inflammatory macrophages and stimulatory 
effect on anti-inflammatory activation. MicroRNA-223–deficient 
mice displayed enhanced adipose tissue inflammatory responses 
and decreased adipose tissue insulin signaling accompanied by 
inappropriate adipokine expression, which are indicators for 
adipose tissue dysfunction. These results support the hypothesis that 
microRNA-223–regulated macrophage polarization, likely acting 
through suppressing a proinflammatory gene Pknox1, is important for 
adipose tissue function. These studies provided profound knowledge 
in the complex interaction in the macrophage-mediated adipose tissue 
inflammatory response and metabolic regulation as well as indicating 
the possibility of targeting microRNAs for treatment of metabolic 
disorders and disease resulting from insulin resistance.

Conclusion
Thus this review collectively signifies the importance of microRNAs 

in diverse roles of macrophage polarization with specific focus on the 
dysfunction of adipose tissue and its disorders. Impairment in the 
normal functioning of adipocytes leads to an inflammatory phenotype, 
with enhanced expression of proinflammatory adipocytokines and 
down regulation of expression of anti-inflammatory adipocytokines. 
The roles played by polarized macrophages are immense and the 
significant contribution by microRNAs could not be ignored as well. 
Future research a profound understanding of the complex network of 
interactions among different factors involved in state of polarization of 
macrophages in health and disease.
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