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Introduction
Bismuth is a heavy metal and was regarded until recently to be the 

heaviest stable element. It was discovered around ten years ago that the 
only natural isotope of bismuth, 209Bi, is an alpha emitter with a half-
life of 1.9 x 1019 years [1]. Due to the low stability in aqueous solutions 
of bismuth derivatives with the oxidation number +V, bismuth with 
the oxidation number +III is regarded as the only relevant bismuth 
species in biological systems [2]. Bismuth is seen as the least toxic heavy 
metal for humans and is widely used in medical applications for its 
good antibacterial properties [3]. Bismuth-containing pharmaceuticals 
are most commonly used in the eradication of Helicobacter pylori, the 
causative agent for diseases like gastritis, peptic ulcer and even gastric 
cancer [4]. Recent evidence of bismuth methylation by human gut 
microbiota, resulting in more mobile and presumably more harmful 
derivatives, has led to new efforts to evaluate the usage of bismuth 
under this newfound aspect [5]. This minireview presents our current 
knowledge of the rare element bismuth, in particular its use in medicine, 
and highlights the potential health risk associated with its application.

Bismuth Application in Medicine
Bismuth has a long history in medicine on account of its antibac-

terial properties [4]. Salves for wound infections and pharmaceuticals 
for oral intake are available which contain bismuth. The main use of 
bismuth drug medication today is to eradicate Helicobacter pylori, a 
Gram-negative bacterium that causes peptic ulcers and other diseases 
of the gastrointestinal tract. The current concepts in the management 
of Helicobacter pylori infections recommend a triple therapy using a 
proton-pump inhibitor (PPI) or ranitidine bismuth citrate (RBC) 
(both 400 mg twice a day) with the antibiotics clarithromycin (500 mg 
twice a day) and amoxicillin (1000 mg twice a day) or metronidazole 
(500 mg twice a day) as first-line treatment, and a quadruple therapy 
consisting of PPI, bismuth subsalicylate (BSS) or subcitrate (120 mg 
four times a day) in combination with the antibiotics metronidazole 
(500 mg three times a day) and tetracycline (500 mg four times a day) 
for at least one week as second-line therapy [6]. Both PPI and raniti-
dine reduce the production of stomach acid and thus aid the healing of 
peptic ulcers. A recent clinical trial conducted in South Korea indicates 
that the first-line triple therapy without a bismuth compound has an 
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Summary
Inorganic bismuth derivatives have good antibacterial properties and are considered to be only slightly toxic 

to humans because of their low uptake into human cells. Compounds containing bismuth are therefore widely 
used in medical applications. Bismuth-containing pharmaceuticals, partially in synergy with antibiotics, are already 
used or are being considered in the treatment of infections caused by certain bacteria, especially to eradicate 
Helicobacter pylori, Pseudomonas aeruginosa, Burkholderia multivorans and B. cenocepacia. However, careless 
use of bismuth containing pharmaceuticals can result in encephalopathy, renal failure and other adverse effects. 
Microbial methylation of bismuth by the human gut microbiota has recently been reported. As the lipophilicity and thus 
the membrane permeability of bismuth are increased by these methylation processes, the toxic effects on human 
cells and on members of the beneficial “physiological” gut microbiota must be considered in medical application of 
bismuth-containing drugs.

unacceptably low eradication rate, as bacterial resistance to antibiotics 
and particularly to clarithromycin [7-9] is increasing globally. Bismuth 
is beneficial because no development of resistance to it has been ob-
served among pathogens to date [10]. A comprehensive review of new 
treatment strategies to eradicate antibiotic-resistant H. pylori was made 
by Malfertheiner and Selgrad in 2010 [11].

It is also feasible that bismuth thiols can be used in the treatment 
of the opportunistic pathogen Pseudomonas aeruginosa, which 
causes respiratory problems among cystic fibrosis sufferers and 
immunocompromised patients, since such compounds show good 
antibacterial effects against this pathogen [12]. The thiolation of 
bismuth, for example by dimercaptopropanol (BAL), increases its 
membrane permeability. This improves its antibacterial effect against 
e.g. H. pylori, Staphylococcus aureus and Clostridium difficile at
concentrations of below 17 μM Bi3+ [13]. An even lower, non-inhibitory
(not growth impairing) concentration of 0.5 μM bismuth thiols (as
bismuth-ethandithiol) reduces adherence of P. aeruginosa to epithelia
cells by up to 28% by impairing the formation of bacterial extracellular
polysaccharides (EPS) [12]. Low concentrations (3-5 μM) of bismuth-
2,3-dimercaptopropanol have also been shown to inhibit capsular
polysaccharide (CPS) formation of Klebsiella pneumoniae [14]. Good
antibacterial activity against various Staphylococcus species, including
multi-resistant S. aureus, by another bismuth thiol (bismuth-3,4-
dimercaptotoluene), which impairs biofilm formation at 1.25 μM, has
also been observed [15]. A recent study of thirteen different bismuth
thiols confirmed antibacterial activity against the antibiotic-resistant P.
aeruginosa and S. aureus found in chronic wounds [16]. However, the
concentration of bismuth-ethandithiol required to eradicate mature P.
aeruginosa biofilms was shown to be toxic to adenocarcinomic human
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alveolar epithelial cells [17]. Application of the low concentration of 
bismuth-ethandithiol incorporated in liposome-loaded tobramycin, 
an aminoglycoside, shows good results in attenuating P. aeruginosa 
virulence factors and lower cytotoxicity for human lung cells. 
Another possible medical application of bismuth may be in bismuth-
containing cement material for pulp capping. Recent studies report 
good antibacterial activity, low cytotoxicity, useful setting time and pH 
value, as well as good compressive strength [18]. 

Although bismuth drugs are not available in all countries to date, 
they are nevertheless promising tools for treating bacterial infections 
when antibiotics alone are no longer effective.

Supposed Molecular Aspects
Bi3+ ions generally have a high affinity to thiolate sulfur and to a lesser 

extent to nitrogen and oxygen ligands [19]. Interactions occur with 
cysteine-rich proteins, peptides including GSH, and metalloproteins 
[4]. In the latter, bismuth replaces catalytic or structural metals such 
as iron, nickel and zinc [19]. The antibacterial properties of bismuth 
against pathogens are thus based on a concentration-dependent 
inactivation of proteins that are either crucial to the pathogen in general 
or to its virulence. For instance, eradication of H. pylori by bismuth 
applied as colloidal bismuth subcitrate (CBS) may result from Bi3+ ions 
binding to a cysteine at the entrance to the active site of the nickel-
containing enzyme urease, thus blocking the active site [20]. Urease 
activity is crucial for H. pylori in maintaining a pH value of around 6.2, 
as it forms ammonia and CO2 from urea in the otherwise highly acidic 
environment of the stomach. The activity of the F1-ATPase, required 
for energy conservation, and the activity of the histidine-rich protein 
Hpn, which presumably controls cell nickel homeostasis in H. pylori, 
may be impaired by Bi3+ ions. It is also assumed that bismuth adheres to 
bacterial ferric ion-binding proteins (similar to human transferrin and 
lactotransferrin) and metallothionin, both of which are cysteine-rich 
and involved in iron and zinc homeostasis [4]. The binding of bismuth 
to these proteins or polypeptides may lead to deprivation of essential 
metal ions in the pathogen cell and thereby impair its growth. 

Low concentrations of bismuth-ethanedithiol, i.e. concentrations 
that do not impair the growth of P. aeruginosa, were shown to 
reduce the virulence of this opportunistic pathogen [12]. Bismuth-
ethaneditiol (BiEDT) alters the bacterial surface of P. aeruginosa by 
inhibiting formation of EPS and lipopolysaccharides (LPS) even at a 
low concentration (0.5 μM), thereby reducing biofilm formation and 
the release of endo- and exotoxins. 

For their antibacterial properties to take effect, bismuth ions must 
be absorbed into the cell, but elemental bismuth and its ions almost 
without exception have low solubility. The most commonly used 
bismuth drugs contain bismuth subsalicylate (BSS), CBS and RBC. Of 
these compounds, only colloidal bismuth subcitrate (CBS) and RBC 
are highly soluble in water (1 g ml-1 pure water) [20]. Tests have shown 
bismuth salts to be most soluble at between pH 4 and pH 7 in gastric 
juice [10]. However, bismuth from these compounds precipitates 
in the stomach and small intestine due to the very low pH [21]. The 
absorption of bismuth from different tested compounds such as CBS, 
bismuth subnitrate (BSN) and bismuth subsalicylate (BSS) in the small 
intestine of rats is below 1% [22], indicating low bioavailability of 
bismuth from these pharmaceuticals in mammalian bodies. Relatively 
large amounts of bismuth, up to 480 mg per day, are therefore given 
in treating H. pylori infections. Most of the bismuth precipitates in the 
stomach and the small intestine as BiOCl and bismuth citrate and coats 
the ulcer site, building a physical barrier against colonization by the 
pathogen H. pylori.

Attempts have been made to improve the membrane permeability 
of bismuth by coordinating Bi3+ with ligands that promote its lipophilic 
character [13], for example, thiolate ligands, or incorporating bismuth 
drugs into liposomes to increase its bioavailability for pathogens 
and thereby decrease the amount of bismuth required to achieve an 
inhibitory effect [13,17, 23].

Adverse Effects of Bismuth Drugs
A comparison of bismuth-containing quadruple therapy for 

treatment of H. pylori in South Korea over one and two weeks showed 
an increase in the adverse effects of longer treatment with bismuth [8]. 
The longer quadruple therapy containing bismuth in particular caused 
more cases of headache and asthenia. However, it is not clear whether 
the longer intake of CBS or of one of the other drugs, i.e. pantoprazole, 
metronidazole and tetracycline, was responsible for the adverse effects 
observed. Nevertheless, considering the adverse effects of bismuth on 
human health still seems to be justified. 

In France, careless use of bismuth-containing drugs (mainly CBS) 
led to numerous cases of encephalopathy during the 1960s and 1970s 
[24]. Bismuth is readily absorbed into the blood after ingestion of CBS 
[25]. Its transport in blood serum is thought to be mediated by human 
serum transferrin [4]. Some studies suggest that bismuth can enter the 
central nervous system by a retrograde axonal transport route, thus 
circumventing the blood-brain barrier, but also through blood vessels 
[26,27]. Autometallographical analysis of the human brain in people 
suffering from (suspected) bismuth intoxication after a long intake of 
BSN revealed an accumulation of bismuth mainly in neurons and glia 
cells in the cerebellum, thalamus and neocortex. This is presumably the 
cause of the myoclonic encephalopathy symptoms observed following 
(suspected) bismuth intoxication [28]. 

In addition to the neurotoxic effects, reversible renal failure 
following high-dose intake of CBS has also been reported [29,30]. 
The nephrotoxicity of high doses of bismuth is presumably caused 
by necrosis of proximal tubular epithelial cells [31]. Bismuth can 
destabilize the membrane of these cells and thereby causes cell death. 
Another study demonstrates eryptosis on exposure of erythrocytes 
to >500 μg l-1 BiCl3, thus explaining the occurrence of anemia after 
treatment with bismuth-containing drugs [32].

Recent studies also advise caution in the extended use of bismuth. 
Bacterial reverse mutation tests and chromosomal aberration tests 
in cultured mammalian cells have indicated genotoxic effects [33]. A 
preliminary and as yet unpublished experiment by Bialek suggests that 
the inorganic bismuth derivative CBS can cause DNA single-strand 
breaks at concentrations of 250 μM and above in a concentration-
dependent manner. The same effect was shown earlier for methylated 
arsenic and antimony derivatives, presumably caused by formation of 
reactive oxygen species [34,35]. 

Admittedly, all the reported toxic effects of bismuth were found 
after an overdose of bismuth compounds in vivo or usage of very high 
concentrations in vitro. Nevertheless, too little attention has been 
paid so far to microbial transformation of bismuth into methylated 
derivatives and its toxicological relevance. 

Formation of Toxic Methylated Bismuth
As outlined earlier in this review, bismuth drugs have positive 

antibacterial properties and are beneficial because they do not appear 
to be met with bacterial resistance and their toxicity to human cells 
is considered to be low with careful use. However, some prokaryotes 
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are capable of transforming inorganic bismuth into highly mobile and 
probably very toxic methylated derivatives. 

Production of volatile trimethylbismuth (TMBi) has been reported 
from different, mainly anaerobic environments [36]. The first report 
of microbial formation of TMBi was made by Michalke et al. [37]. In 
this study, the formation of numerous volatile metal(loid) compounds 
by representative members involved in the anaerobic digestion of 
sewage sludge was analyzed. Pure cultures of Methanobacterium 
formicicum are capable of producing TMBi from bismuth-containing 
pharmaceuticals (Bismofalk: bismuth subgallate and bismuth nitrate; 
Noemin: bismuth aluminate) [38]. Although methylation of elements 
such as arsenic by a variety of prokaryotes, fungi and even mammalian 
tissue has been documented [39,40], the capability to produce 
volatile TMBi does not seem to be as widespread. Methanoarchaea, 
which can be integral members of the human gut microbiota, are the 
most versatile organisms with regard to the quality and quantity of 
methylated derivatives of different metal(loid)s [41]. Equal capability 
has hitherto only been found for a near relative of the strictly anaerobic 
Gram-positive bacterium Clostridium glycolicum, strain ASI 1, isolated 
from an alluvial soil with only low levels of contamination by heavy 
metals and metalloids [42].

The capability of mammalian gut microbiota to produce TMBi was 
observed in human feces and different gut segments removed from 
mice fed with De-Nol, a CBS containing drug [43]. A follow-up study 
of 20 male human volunteers analyzed conversion into TMBi and 
subsequent distribution in the human body after intake of 215 mg of 
bismuth (as CBS) [25]. The highest concentrations of TMBi in human 
breath were observed 8-24 hours after CBS intake, with concentrations 
of up to 458 ng m-3. TMBi was also found in blood samples. However, 
bismuth was mainly excreted with the feces. Trials with gut segments 
of conventionally raised mice and germ-free mice, both fed with 
chow containing CBS as the precursor for bismuth methylation, 
points towards involvement of the gut microbiota in metal(loid) 
methylation, as no TMBi was detected in the blood of germ-free mice 
[44]. The formation of TMBi by the gut microbiota appears to promote 
the dispersal of bismuth in mammalian bodies, with a significant 
accumulation of bismuth being detected in organ tissue. 

The formation of toxic TMBi in the human colon may also affect 
the physiological gut microbiota, as indicated by ex situ experiments 
performed by Meyer et al. in 2008 and later by Bialek et al. [41,45]. 
Both studies demonstrated growth impairment of pure cultures of 
Bacteroides thetaiotaomicron, a representative of the physiological gut 
microbiota, by TMBi. A MIC50 of 17-30 nM of TMBi was determined. 
The study by Bialek et al. [45] also showed the inhibitory effects of 
soluble, partly methylated mono- and dimethylbismuth with a MIC50 
also in the low nM range. In contrast, the MIC50 of CBS is four orders 
of magnitude higher, demonstrating the greater antibacterial effect of 
methylated bismuth derivatives relative to inorganic derivatives used 
in medical applications.

The complex nature of the human gut microbiota and its 
interactions with the human host makes it difficult to attribute clinical 
symptoms observed after intake of bismuth to impairment of the gut 
microbiota by formation of TMBi. As a first step towards predicting 
the adverse effects of TMBi formation in the gut, investigation has 
already begun of the molecular consequences of in vitro incubation 
of B. thetaiotaomicron with TMBi, i.e. concentration-dependent 
modification(s) of soluble proteins, membrane-proteins, membrane-
lipids and DNA. Nevertheless, many attributes of B. thetaiotaomicron 
are already known. These known attributes make some of the possible 

adverse effects on growth impairment of B. thetaiotaomicon feasible: 
as shown by Backhed et al. [46], B.thetaiotaomicon thrives on the 
degradation of complex sugar molecules and releases more simple 
carbohydrates, which can then be utilized by the human host cells. 
This bacterium also stimulates angiogenesis [47]. As a consequence, 
impairment of B. thetaiotaomicron in the human gut might lead to 
a lower uptake of vitamins and a lower energy yield from food. B. 
thetaiotaomicron also represses transcription of proinflammatory 
genes and attenuates the proinflammatory response to the beneficial 
gut microbiota [48]. However, B. thetaiotaomicron induces expression 
of the antibacterial protein angiogenin Ang4, which is predominantly 
directed against pathogenic bacteria, in the Paneth cells of the small 
intestine [49]. B. thetaiotaomicron is therefore directly involved in the 
regulation of mammalian immune response, which could be disrupted 
by impairment of this gut inhabitant. While B. thetaiotaomicron is 
one of the most prominent inhabitants of the human gut, it is worth 
remembering that it is only one member of the very diverse human gut 
microbiota [46]. Other inhabitants may also be affected by TMBi. Some 
studies have indicated that intact gut microbiota are involved in the 
repair of epithelial injury caused by dextran sulfate sodium and thereby 
contribute to maintenance of the mucosal barrier function [48].

A promising tool for determining the specific individual 
composition of the gut microflora in order to monitor alterations 
upon exposure to TMBi. is the Simulator of the Human Intestinal 
Microbial Ecosystem (SHIME). This five-reactor compartment system 
can be inoculated with human feces samples and simulates the human 
intestinal tract under the physicochemical, enzymatic and microbial 
conditions of the stomach, small intestine and different regions of the 
colon [50]. This setup allows sampling of microbial communities from 
different simulated compartments of the human gut and therefore 
proves useful in studying the behavior and changes in gut microbiota on 
exposure to TMBi and inorganic CBS. Nevertheless, as this tool cannot 
simulate the interaction between the physiological gut microbiota and 
the human host, in vivo studies, e.g. with mice, are still necessary. 

The methylation pathway of bismuth by Methanoarchaea seems 
to have been elucidated. Direct links have been shown between the 
methylation of bismuth and other metal(loid)s (As, Se, Sb and Te) 
by Methanosarcina mazei and a central stage of methanogenesis, the 
formation of the methane precursor methyl mercaptoethansulfonate 
(CH3-S-CoM) [51]. The comparison of the methylation and 
hydrogenation patterns of different metal(oid)s by pure cultures 
of M. mazei, by a non induced cell-free crude extract of M. mazei, 
by recombinant methyltransferase MtaA, which catalyzes the 
methylcobalamin (CH3-Cob(III))-dependent formation of CH3-
S-CoM, and by CH3-Cob(III) with Cob(I)alamin as the reducing 
agent indicates the non enzymatic methylation and hydrogenation 
of numerous metal(loid)s by CH3-Cob(III) in the presence of a 
strong reducing agent. Bismuth methylation in the human body 
does not necessarily require the presence of Methanoarchaea if 
sufficient amounts of CH3-Cob(III) and a strong reducing agent are 
available. Other physiological groups of anaerobic microbes with a 
high CH3-Cob(III) content, e.g. certain sulfate-reducing bacteria and 
homoacetogenic bacteria, may also methylate bismuth. In vitro analysis 
of different cells, such as human erythrocytes and lymphocytes, 
demonstrated a better uptake of monomethyl bismuth (MMBi(III)) 
than of inorganic CBS and bismuth glutathione (Bi-GSH) [52]. 
Erythrocytes absorb MMBi(III) more efficiently than highly cyto- and 
genotoxic monomethyl arsenic (MMAs(III)), which is around 10- 
times more toxic to human hepatocytes than MMBi(III) at equal molar 
concentrations [53,54]. However, elevated cytotoxicity of methylated 
bismuth derivatives relative to Bi-GSH and CBS appears to be caused 
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by its increased bioavailability due to higher membrane permeability. 
Soluble, non-volatile MMBi(III) may arise in mammalian bodies either 
as an intermediate of TMBi formation by the gut microbiota or through 
TMBi decomposition. 

Toxicological studies of TMBi were performed by Sollmann and 
Seifter in the late 1940s and early 1950s [55]. The authors of this study 
described neuronal poisoning by TMBi in mammals such as dogs, cats 
and rats on exposure to non determined, but presumably very high, 
concentrations of TMBi. They also found that 3-10.5 mg of bismuth 
(as TMBi) per kg body weight administered intravenously caused 
poisoning in cats and dogs. The poisoning resulted in symptoms such 
as nausea, salivation, diarrhea and sometimes emesis.

Conclusion
Bismuth has various faces: it has beneficial effects for humans in 

that it eradicates certain pathogens, such as H. pylori and P. aeruginosa, 
but also adverse side effects as indicated by cases of encephalopathy, 
renal failure, and suspected cyto- and genotoxicity. The negative 
effects of TMBi on a member of the physiological gut microbiota, B. 
thetaiotaomicron, have also been demonstrated in vitro. This finding 
should motivate further research on the possible consequences for 
human health of the formation of TMBi by certain members of the gut 
microbiota. Both the beneficial and the adverse effects of bismuth are 
based on the same property of the metal, i.e. its strong affinity to thiols 
of proteins. However, it is important that bismuth is taken up by cells, 
a condition dependent either on the concentration or the solubility and 
lipophilicity of the bismuth derivative. In this context, it is essential 
that the concentration of bismuth applied in medication does not cause 
an increased accumulation of the metal in the cytoplasm of human 
cells. This may prove difficult in practice, as the bismuth compounds in 
use, i.e. CBS, RBS and BBS, only have low solubility and lipophilicity in 
the stomach and the small intestine on account of the low pH and are 
therefore given in relatively high concentrations. However, anaerobic 
microorganisms with an intensive methylcobalamin metabolism like 
Methanoarchaea are capable of converting inorganic bismuth into 
highly mobile, membrane-permeable and therefore toxic methylated 
bismuth derivatives in the human gut. These findings should be 
considered in the medical application of bismuth, since the formation 
of methylated bismuth derivatives in the human gut may damage 
mammalian cells as well as the physiological gut microbiota.
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