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Abstract

Macrophages are present in almost all tissues of the body and are endowed with alternative differentiation
programs resulting in a variety of terminal differentiated cells. They have role in the innate responses as well as in
development and maintenance of adaptive immunity against invading pathogens. These cells have phagocytic
activity and can sense the microenvironmental stimuli including microbial components that result in differentiation of
distinct marker expression patterns and functions that clearly define macrophage subsets. Here we review the
functional plasticity of macrophages in response to infections and their integration into adaptive immunity.
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Introduction
One of the first descriptions of the immune system function was

evidenced by the characterization of macrophages as cells with
phagocytic activity by Metchnikoff [1]. These cells are present in
different tissues from the organism as resident macrophages,
encompassing the mononuclear phagocytic system. As these cells have
a wide tissue distribution, they play a role not only in the immune
responses but also during development, homeostasis and repair of the
different tissues [2,3].

Recent studies are beginning to uncover the transcriptional
regulation of the tissue-specific macrophages [4-6]. The cellular
heterogeneity of these cells has also raised questions regarding their
origin. A long-held dogma in the field has been assumed that all
tissue-resident macrophages could be derived from local
differentiation of circulating monocytes [7]. In this line of thinking,
the tissue resident macrophages were thought to be exclusively derived
from circulating monocytes found in the blood. These precursor cells
are differentiated from bone marrow progenitors and have such
plasticity to differentiate in a wide range of macrophage subsets with
distinct phenotype and function profiles.

However, recent studies have provided conclusive evidences for the
existence of a monocyte-independent differentiation pathway of
resident macrophages, leading to a shift a in the paradigm of this
model [8,9]. Although the term macrophage refers to multiple
differentiation states in the ontogeny of these cells, when stimulated in
polarizing conditions the macrophages can present dichotomous
profiles between two states of the classical inflammatory responses
[8,9]. The polarized categories are referred to as M1 and M2, which are
both, defined in the context of cytokines and innate receptors present
during the activation of macrophages, such as Toll-like receptors

(TLRs), and the cytokines interferon-γ (IFN-γ), interleukin-4 (IL-4)
and IL-13. In extreme polarizing conditions, the M1 phenotype is
induced by Th1-derived interferon-gamma (IFN-γ), tumor necrosis
factor-alpha (TNF-α) or toll-like receptor ligands (TLR), showing a
cytokine expression profile for inflammatory mediators (IL-12, TNF-α
and IL-23) [10,11]. M1 macrophages produce high amounts of
microbicide products such as nitric oxide (NO) and/or reactive oxygen
intermediators (ROS) and mediate cell-mediated immunity in
intracellular infection responses [10]. Beside its role on innate
responses, the M1 cytokines are critical to promote increased
phagocytic activity of macrophages, augmented MHC class II
expression and co-stimulatory receptors that collectively have a role
on the activation of the antigen processing and presentation to T cells
[10,11].

The differentiation of M2 macrophages, however, is dependent of
Th2-derived IL-4 responses found in the context of extracellular
parasitic infection, allergies or healing-type circumstance without
infections. The M2 phenotype can also be amplified in a feedback loop
mechanism by IL-4, IL-10 and/or IL-13. These anti-inflammatory
macrophage subsets are well characterized by the up-regulation of
Dectin-1, DC-SIGN, mannose receptor, scavenger receptor A,
scavenger receptor B-1, CD163, CCR2, CXCR1, CXCR2 and LIGHT
[11]. Alternatively activated macrophages are permissive to parasites
due to its inhibitory effect on the IL-12 expression, which is
determinant for the induction of pro-inflammatory IFN-γ dependent
responses [11].

The range between these two categories of macrophage is in fact
represented by a wide variation in the transition state of the cellular
differentiation program as a result of a complex sort of numerous
other cytokines and innate receptor stimulation present in the
inflammatory sites of infection whose influence are determinant for
the final activation state of these cells. In fact, tissue-resident
macrophages show high transcriptional diversity with slightest overlap
that reinforce their different categories of cells acting as sentinels and
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promptly responding to disturbances in the physiological homeostasis
of the tissues as well as to threats from invading microorganisms. This
review will focus on macrophage responses to pathogens taking into
account the diversity of their different lineages and its functional
adaptation to different battle scenario requested in every type of
immune response in infectious diseases.

Signaling Pathways Governing the Macrophage
Polarization

Recent studies have characterized several signaling pathways
implicated in the regulation of macrophage polarization. The JAK-
STAT signaling pathway consist an important via mediating responses
to the cytokine-induced macrophage polarization. The signaling
pathway mediated by IFN-γ during M1 polarization activates the
receptor-associated STAT1 necessary to induce the transcription of
pro-inflammatory cytokines [12-14]. The Interferon-regulatory factor
5 (IRF5) is one of the proteins induced by IFN-γ that endorse the
development of Th1 responses by promoting the transcription of
IL-12-encoded genes responsible for induction of Th1 responses while
inhibiting those that promote development of Th2 cells [15,16].

The polarization towards the M1 phenotype is also accompanied by
the expression of Th1-attracting chemokines such as CXCL9 and
CXCL10 [17,18]. It has been shown that the granulocyte-macrophage
colony-stimulating factor (GM-CSF) controls the polarization of
macrophages by leading to downstream activation of IRF5 during M1
development [16-19] . Moreover, the activation of IFN-γ-induced
genes increases production of reactive oxygen species that culminates
in the intracellular pathogen elimination by M1 macrophages [20]. In
contrast, the polarization of M2 phenotype depends on the IL-4 and
IL-13-induced STAT6 pathway and is repressed by the effects of SHIP
(SH2-containingInositol 5′-Phosphatase), a component of growth
factor receptor signaling that is shown to inhibit the IL-4 production
from basophils [21].

Unlike to the M1 pathway, the peroxisome proliferator-activated
receptors (PPARs) are activated to promote the polarization of
differentiating macrophages toward the anti-inflammatory M2
phenotype [22,23]. PPARs are nuclear receptors that induce signaling
and transcription of different pathways [24]. Overall, they participate
in the regulation of lipid metabolism and glucose homeostasis, and are
also activated by specific ligands [24,25]. The family of PPARs is
mostly composed of three known isoforms: PPARα, PPARβ/δ, and
PPARγ. These receptors share a structural homology that consists of
four functional units (A,B,C, and D) [24-26].

The unit A/B of PPARs are located in N-terminal region of the
receptor and controls the activation domain by AF-1 ligand. The units
C and D represent a DNA binding domain that includes two zinc
fingers motives and a docking domain [24-26]. The C-terminal region
contains a specific binding domain and a transactivation domain for
AF-2 [25]. This region is very important for nuclear localization of
PPARs and other interactions with activator factors in the signaling
pathway of these receptors [24-26]. The binding of specific-PPAR
receptor agonists leads to association between PPARs and retinoic acid
receptor (RXR). This receptor-associated heterodimers bind to specific
PPRE regions of DNA to activate different target genes [27]. In
addition, these receptor heterodimers can interact with other co-
activator proteins such as CBP/p300, SRC1, PBP, and PGC-1α to
induce a specific gene expression [26,27].

PPARγ play an important role in modulating macrophage M2
polarization induced by IL-4 or IL-13 [28]. Studies using PPARγ-
deficient macrophages have shown the role of this nuclear receptor in
promoting M2 activation to protect mice from insulin resistance [22].
A similar role was also found for PPARδ in determination of
macrophage polarization [29]. Using the myeloid specific
transcription factor (KLF-4) knockout mice [30], demonstrated the
role of KLF-4 during M2 polarization in a protection model from
obesity-induced insulin resistance. Similarly, IRF4 is also involved in
regulating the expression of genes associated with M2 polarization
[30].

Another signaling pathway involved in M2 differentiation relies on
the activation of the phosphoinositol-3-kinase (PI3K) signaling
pathway. PI3K activates multiple cascades through phosphorylation of
the hydroxyl group of the inositol ring of phosphatidylinositol
(PtdIns) to generate the second messenger phosphatidylinositol
(3,4,5)-trisphosphate (PIP3) [11,31]. This pathway controls the
activation of mTOR pathway, which is determinant for differentiation
of M2 macrophages expressing anti-inflammatory cytokines.
Importantly, the suppressor of cytokine signaling 1 (SOCS1), a
member of the STAT-induced STAT inhibitor (SSI), is upregulated by
IL-4 and mediates inhibition of IFN-gamma-induced STAT1 and is
essential in sustaining the enhanced PI3K signaling pathway activity
that promotes the M2 polarization responses [21].

Role of Macrophage Polarization in Infectious Diseases
The macrophages have an important role in both innate and

adaptive immune responses as these cells acquire different ways to
sense the presence of pathogens in every tissue of the organism [32].
The Toll-like receptors (TLRs) and other pattern recognition receptors
(PRRs) are determinant to discriminate the presence of Pathogen-
associated molecular patterns (PAMPs), which are molecules
associated with groups of pathogens [33]. These components can be
referred to as molecular motifs conserved within a class of microbes
and recognized by the innate TLR and PRR receptors present in the
macrophage and other cells of the immune system as well. Once
engaged by their ligands, the innate receptors promote the acquisition
of macrophage`s microbicidal activity against the pathogens [34-36].

Given the critical role of macrophages in the host defense, several
pathogens evolved strategies to subvert the macrophage differentiation
program by altering the M1 and M2 phenotype commitment in their
favor. Bacteria that infect the host intracellular compartment such as
Salmonella typhimurium and Mycobacterium turbeculosis are adapted
to avoid the classically activated M1 cells by subverting the pro-
inflammatory differentiation program of macrophages in order to
enhance their own survival [37,38]. The outcome of this interference
in the host phagocytic system has been well studied during murine
pulmonary infection with Staphylococcus aureus. These pathogenic
bacteria activate the PI3K pathway to promote SOCS1 signaling thus
avoiding the differentiation of an anti-inflammatory M1 phenotype
[39].

The M1 macrophage differentiation program is overall correlated
with protection against intracellular pathogens. This is the case of
typhoid fever which is caused by infection with the bacteria Salmonella
typhi. This microbe induces M1 polarization during protective-
mediated response against the infection. The production of reactive
nitrogen species such as nitric oxide (NO) in M1 cells is also known to
play a critical role in the intracellular killing mediated-responses
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against Salmonella infection [40]. Further studies have also
demonstrated a critical role of IFNγ depended-M1 polarization
responses on the host protective immune responses against
mycobacteria and chlamydial infections [41-44].

Other pathogens such as viruses can employ different strategies
exerted by bacteria species to increase the disease severity by
promoting the inflammatory activity of M1 macrophages. Chronic
viruses such as Hepatitis C virus stablish persistent infections with
sustained inflammatory responses along the disease. The mechanism
underlined in this event partially depends on the expression of the
viral protein NS3 along with recombinant GP96 that increases IL-12
and TNF-α secretion profile of differentiating M1 macrophage [45]. In
addition, this polarization effect can be seen in avian H5N1 influenza
virus infection in which augmented levels of the pro-inflammatory
cytokines IL-1β, IL-6, TNFα and IFNγ are implicated in M1
polarization and exacerbation of the infection [46-48].

Notably, viruses such as HIV-1 and Human cytomegalovirus
(HCMV) take advantage from the M2 macrophage subset. These cells
consist of an important reservoir of replication for both viruses as they
have weak microbial activity thus enhancing the viral burden.
Moreover, the HCMV infection is able to polarize the macrophage
differentiation towards the M2 phenotype through activation of
mTOR pathway [49]. The use of M2 cells as a reservoir is an evasion
strategy also shared by the intracellular protozoan parasites. It has
been shown that the uptake of apoptotic cells by T. cruzi infected
macrophages promotes an anti-inflammatory state of these host
phagocyte cells that are permissive to parasite replication [50-54].

The modulation of the mononuclear phagocytic system by T. cruzi
parasites depends on the induction of prostaglandins, transforming
growth factor-beta (TGF-β), arginase and polyamine biosynthesis to
reduce the inflammation and microbicidal functions of macrophages
[51,53,54]. It is possible that these mechanisms exert a regulatory role
in the primary site of infection by jeopardizing the phagocytic
responses of tissue resident macrophages thus increasing the parasite
spread through host tissues. This adaptation is also seen in infection
with the trypanosomatids protozoan Leishmania in which
efferocytosis of apoptotic neutrophils modulate the macrophage
activation and microbicidal activity therefore favoring the parasite
growth inside the phagocytic cells [55-59]. Macrophage responses to
microbial and immunological stimuli lead to discrete, stereotyped
phenotypes [57]. Classically activated, or M1, macrophages are
microbicidal, while alternatively activated (M2) macrophages are
permissive to parasites [57-59]. These polarized states of activation
represent a conceptual model for understanding the extremes of the
cellular differentiation program capabilities of macrophages. It is
therefore possible to conceive a range of potential intermediate
phenotypes although their phenotypic characterizations are not well
demonstrated. Importantly, the stereotypic M1/M2 macrophage
profiles provide insights into the role of these cells in the physiologic
and pathologic responses of the immune system.

Conclusions
The immunity is equalized between the strength of inflammatory

responses and the regulatory counterparts that limit the side effects of
the host defense system. The M1 and M2 activities are the essence of
this balance, as these cells are able to participate in all the instances of
immune responses. The macrophages are endowed with the capacity
of sensing microbial components and host-derived factors during the

first steps of pathogen–host cell invasion interactions that play a
determinant role in the phagocyte differentiation pathways. The
different macrophage commitments might be important to the role of
these cells in reshaping the subsequent responses to microbial
encounters during acquisition of adaptive immunity and its
homeostasis. Understanding the paradigm of alternative activation
pathways of macrophage differentiation will help us to clarify the role
of these cells in the disease pathogenesis making them ideal for
therapeutic targets.
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