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Introduction
The tribe Oryzeae contains some of the most economically 

important species in the world. The tribe is divided into two 
well supported subtribes named Oryzinae and Zizaniinae [1-4]. 
Economically important species are found in both subtribes such as 
cultivated rice in Asian and African (Oryza sativa and O. glaberrima) 
from Oryzinae and the wild rice (Zizania latifolia and Z. aquatica) in 
Asia and North America from Zizaniinae [5,6]. Besides rice (Oryza 
sativa), many other close relatives in this tribe could provide valuable 
genetic resources for rice breeding and improvement. For example, Z. 
latifolia had been used for generating introgression lines for potential 
breeding applications [7,8]. Furthermore, with the development of high 
throughput sequencing technologies, more species in the Oryza genus 
have been completed their whole genomes [9-13]. These progresses 
have made the tribe Oryzeae as an ideal system to study genomic 
evolution [14-16]. 

Now, in Oryzinae, numerous plastid genomes have been 
completely sequenced [17,18], however, the finished plastomes from 
subtribe of Zizaniinae are limited. Zizania is a small genus only 
comprised of four species including Z. palustris, Z. aquatica, and Z. 
texana native to North America, and one species Z. latifolia widely 
distributed in Eastern Asia [19]. As the only species native to Asia, Z. 
latifolia, named Manchurian wild rice, is used as a food plant with both 
the stem and grain being consumed in several Asian countries. As a 
relative of rice, Zizania could be an important genetic resource in rice 
breeding and genetic transformation [7]. Plastid transformation can 
accelerate genetic modifications, and therefore, the finished plastomes 
are particularly important genetic resource in developing improved 
rice varieties. Plastomes have been shown to be a very effective targets 
in genomic transformation with fewer concerns regarding gene flow 
into wild or non-transformed individuals [20].

Plastomes, similar to animal mitochondrial genomes, maintain a 
conserved circular double-stranded DNA structure, with sizes ranging 

from 115 to 165 kb in land plants [21,22], and stable gene content and 
order [23]. These features of plastomes and the decreasing cost of high-
throughput sequencing technologies have led to an increase in the 
number of completed plastomes. At present, more than 900 species’ 
completed plastomes are currently available in the NCBI database 
(http://www.ncbi.nlm.nih.gov/genomes/). Besides being an effective 
tool for genetic transformation [24,25], complete plastomes are also 
important resources to explore the genetic and evolutionary variation 
between plant groups. For example, as a primary source for plant 
molecular systematic and taxonomic studies, plastomes have provided 
strong phylogenetic signals at multiple levels of inquiry [17,26-28]. For 
instance, the markers from plastomes have been used to explore the 
biogeographical relationships among plant populations [27,29] and for 
DNA barcoding [24,25].

In this study, we combined the traditional polymerase chain 
reaction (PCR) and Sanger sequencing methods to fully sequence 
and assemble the whole plastome of Z. latifolia. We conducted 
comprehensive comparisons with Z. aquatica [30] and other rice 
species to infer what evolutionary changes have occurred within 
the Oryzeae tribe. The finished plastome of Z. latifolia will provide 
important genetic information for plastid transformation involved 
with crop improvement.

Abstract
Plastids, originated from cyanobacteria through endosymbiosis, contain their own DNA genome (plastome), and are uniparentally 

inherited in most of plant species. In this study, we reported the complete plastome sequence of Manchurian wild rice (Zizania 
latifolia) obtained by traditional Sanger sequencing and compared it with the previously published plastome of North America wild rice 
(Z. aquatica) from the same genus. The plastome of Z. latifolia has a total sequence length of 136,461 bp exhibiting a typical circular 
structure including a pair of 20,878 bp inverted repeats (IRa, b) separated by a large single-copy region (LSC) of 82,115 bp and a 
small single-copy region (SSC) of 12,590 bp, and it is only 97 bp longer than North America wild rice. The gene content, order, and 
orientation are similar to all other grass species. Four junctions in two plastome structures are exactly the same between the Zizania 
species. From complete genome comparisons, 744 (568, 46 and 130 for LSC, IR and SSC) substitutions are found between the two 
Zizania plastomes including 267 from coding regions and 477 from non-coding regions. Insertions/deletions (Indels) are mainly found 
in non-coding regions (136) except the only one repeat indel from coding regions in rpoC2 gene. The most informative biomarkers 
(rps16-trnQ, ndhF and matK) are also the most divergent between the two Zizania species. The completed plastome and comparative 
analyses from these two Zizania species would be as important resource for further systematic or population genetic studies in the 
Zizaniinae subtribe, marker assisted breeding, and plastomic transformation.  
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Methods and Materials
Complete plastid genome sequence of Zizania latifolia

Fresh leaves of Zizania latifolia were collected from plants grown 
in the greenhouse of the Institute of Botany of the Chinese Academy 
of Sciences in Beijing. Total cellular DNA was extracted using the 
cetyltrimethyl ammonium bromide (CTAB) method [31] and purified 
with phenol extraction to remove proteins. With PCR amplification 
and Sanger sequencing methods, we completely sequenced the plastid 
genome (plastome) of Z. latifolia. For sequencing Z. latifolia, a full set 
of primers was designed based on two previously sequenced bamboo 
plastomes [17,32]. PCR amplification and purification of the products 
were performed, as described in Tang et al. [3]. The purified products 
were directly sequenced on an ABI 3730 automated sequencer (Applied 
Biosystems, Foster City, CA, USA). The sequences were assembled with 
the ContigExpress program from the Vector NTI Suite 6.0 (Informax 
Inc., North Bethesda, MD).

Plastid genome annotation and drawing

The fully assembled plastid genome of Z. latifolia was annotated 
using the DOGMA (Dual Organellar GenoMe Annotator, [33]). The 
first draft annotation from the DOGMA output was subsequently 

manually inspected and adjusted for accurate assessment of the start 
and stop codons and the exon–intron boundaries of genes. Both tRNA 
and rRNA genes were identified by BLASTN searches against the 
database of chloroplast genomes from NCBI. The final annotations 
were plotted as a circular genome by the bioinformatics tools circos 
0.67 [34] (Figure 1). For comparison, we download the published 
plastid genomes from five species in Oryzeae and one bamboo species 
[17,35].

Dynamic variation of junction regions in plastid genome

Based on the configuration of the plastid genome with the two 
inverted repeat regions (IRA and IRB) and the two single copy regions 
(LSC and SSC) [36,37], four junctions named as JLA, JLB, JSA, and JSB are 
located between the two single copy (LSC and SSC) regions and the 
two IRs (IRA and IRB) [38]. The dynamic variation at the four junction 
regions (JLA, JLB, JSA, and JSB) can contribute to the size variation of 
plastid genomes [39,40]. The detailed IR border positions and the 
distance with adjacent genes among seven grass species plastomes 
(Oryza sativa  ssp. japonica [AY522330], O. australiensis [KJ830774], 
Leersia tisserantii [JN415112], Z. latifolia [in this study], Z. aquatica 
[KJ870999], Rhynchoryza subulata [JN415114], Phyllostachys 
propinqua [JN415113]) were therefor e compared in this work.

Figure 1: Chloroplast genome information and variation maps of Z. latifolia (KT161956). From outside to inside, tracks depict: 1) coding genes on forward strand; 2) 
coding genes on reverse strand; 3) the number and distribution of substitutions (simply named as SNP) (grey bar color); 4) the number and distribution of non-repeat 
insertion/deletions (Indels) (green bar color); 5) the number and distribution of poly structures (grey bar color); 6) the number and distribution of repeat Indels (green 
bar color). The coding genes are colored based on functional group with different color codes at the bottom. Maps were generated with software Circos v0.67.
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Polymorphism analysis from coding and non-coding regions

To comprehensively compare the complete plastomes of two 
Zizania species, we employed the mVISTA program under the 
Shuffle-LAGAN mode [41] to detect whole genome variation with 
the plastome of O. sativa ssp. japonica (AY522330) as the reference. 
To identify the polymorphic regions that may be highly informative 
for phylogenetic or population genetic analyses from the two Zizania 
plastid genomes, we divided the whole plastid genome as coding and 
non-coding regions. Excluding the non-variation of the RNA genes, all 
protein coding genes were separately analyzed as coding regions, and 
all intron and intergenic regions were examined as non-coding regions 
(only the sequence longer than 200 bp were used in this analysis). These 
regions were extracted by using custom PERL scripts from the whole 
plastid genome and aligned using ClustalW under MEGA6 [42] and 
adjusted manually using the similarity criterion [43] for non-coding 
regions or preserving the reading frames for coding regions. The 
aligned sequences were used to calculate the sequence identity values 
(SI) by using BioEdit software [44] and the number of the polymorphic 
sites were reported from DnaSP v5.10 [45]. Only one part of the IRs 
regions was used in this process given the identical nature of the other 
repeat. 

Phylogenetic analysis

To determine the phylogenic relationships among the six Oryzeae 
species and outgroup bamboo species, as whole plastomes alignment 
was used to build phylogenetic tree. Based on the collinearity of the 
whole plastid is extremely conserved among grass family [17,46], the 
whole plastomes of seven species were aligned in MAFFT v7.221 [47] 
under the FFT-NS-2 setting, followed by manual adjustment based on 
the similarity criterion [43]. Three different phylogenetic-inference 
methods were used to infer relationships: maximum parsimony 
analysis was implemented in PAUP* 4.0b10 [48], Bayesian inference 
(BI) in MrBayes 3.1.2 [49] and Neighbor-Joining (NJ) in MEGA6 [42] 
by applying the settings from Wu et al., [37].

Results and Discussion

Sequencing, assembly and annotation

Compared with the low-cost and high-throughput next generation 
sequencing (NGS) technologies, PCR and Sanger sequencing produced 
highly creditable results with fewer errors [37]. Meanwhile, some other 
features made plastid are easy to amplify including that the plastome 
is small but with abundant component in cellular DNA, and rates of 
nucleotide substitution are relatively slow [50]. By integrating the 
overlapped Sanger sequenced fragments (longer 100 bp) from PCR 
products, we successfully assembled the whole plastid genome for Z. 
latifolia with 136,461 bp in length by using the method from Wu et 
al., [32] (Figure 1). After the automatic annotation from DOGMA 
[33], comparative analyses, and manual verification, the annotated 
plastid genome of Z. latifolia was uploaded to GenBank with accession 
KT161956 (Figure 1). It is composed of two single-copy regions 
separated by a pair of inverted repeats (IR) of 20,878 bp each, which 
account for 30.60% of the whole plastid genome. The large single 
copy (LSC) and the small single copy (SSC) regions span 82,115 bp 
and 12,590 bp, respectively. The proportion of LSC and SSC length 
in the total plastid genome is 60.17% and 9.23% respectively, and 
those features were all extremely similar with the other six published 
plastomes (Table 1). The same gene content, gene number and gene 
order among the seven species reflects the highly conserved plastomes 
of Poaceae [46,51]. The size differences among plastomes are mainly a 
result of the variation within intergenic sequences.

Polymorphisms between the two Zizania plastomes

Discovery of polymorphisms between plastomes are the basis of 
marker selection in plant systematic or barcoding research [24,52], 
in addition, discovery of sites with limited variation could be the 
candidates of plastid transformation [20]. We conducted the following 
genome wide and local specific analysis to fully investigate the 
polymorphisms variation between two Zizania plastomes.

First, based on the conserved features of the land plant plastomes 
[22], the polymorphisms were discovered from the whole genome 
alignment of two Zizania plastomes and categorized as either 

Subfamily Species
Total size  LSC region IR region SSC region Gene 

Content 
GenBank 

AccessionLength (bp) GC (%) Length (bp) GC (%) Length (bp) GC (%) Length (bp) GC (%)
Ehrhartoideae Oryza sativa ssp. japonica 134,551 39.00 80,604 37.11 20,802 44.35 12,343 33.37 the same AY522330

Oryza australiensis 134,549 38.98 80,614 37.07 20,796 44.36 12,343 33.25 the same GU592209
Leersia tisserantii 136,550 38.88 81,865 37.01 21,329 44.05 12,027 33.23 the same JN415112

Zizania latifolia 136,461 39.00 82,115 37.13 20,878 44.42 12,590 33.18 the same  KT161956a

Zizania aquatica 136,364 39.02 82,013 37.14 20,879 44.41 12,593 33.31 the same KJ870999
Rhynchoryza subulata 136,303 39.00 82,029 37.14 20,840 44.36 12,594 33.40 the same JN415114

Bambusoideae Phyllostachys propinqua 139,704 38.88 83,227 36.96 21,800 44.23 12,877 33.14 the same JN415113
a Sequenced in this study.

Table 1: Comparison of major features of seven Poaceae plastome.

Type Region Coding Regions Non-Coding Regions Sum

SNP

LSC 189 379 568
IR 8 38 46

SSC 70 60 130
Total 267 477 744

Region Indel Poly Repeat Indel Poly Repeat

Indel

LSC 0 0 1 28 63 32 124
IR 0 0 0 0 6 0 6

SSC 0 0 0 2 3 2 7
Total 0 0 1 30 72 34 137

Table 2: The number of polymorphisms in different regions by comparison from two Zizania plastome.
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substitutions (for simply named as SNPs) or insertions/deletions 
(Indels, Table 2). From the results (Table S1 and S2), we found that 
the large single copy (LSC) regions possessed the most variable sites 
(568 SNPs and 124 Indels), and the two inverted repeats (IR) contained 
the least variable sites (46 SNPs and 6 Indels). However, when we 
consider the number of variable sites per kilo base pairs (kbp), the 
small single copy (SSC) region was the highest with 10.3 substitutions/
kbp, and 6.9 and 2.2 for the LSC and IR. This result was the same as 

the evolutionary rate variation among the three regions [53]. When 
comparing polymorphisms between coding and non-coding regions, 
the non-coding regions contained the most variable sites in the LSC 
and IR regions, but in SSC, the number of SNPs was higher in coding 
regions. This result shows that in LSC and SSC regions, the rate of 
variation between coding and non-coding is different. 

Second, for comparison the whole genome variation within the 
two Zizania plastomes, we also employed the mVISTA program 

Figure 2: Identity plot that compares the chloroplast genomes of the two Zizania data sets used in this study with O. sativa ssp. Japonica (AY522330) as the reference 
sequence. The vertical scale indicates the percentage of identity to the reference, ranging from 50% to 100%. The horizontal axis indicates the coordinated base 
position within the chloroplast genome. Genome regions are color coded as protein-coding, RNA (rRNA and tRNA), intron, and conserved noncoding regions.
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[41]. We used O. sativa ssp. japonica (AY522330) as the reference for 
these comparisons (Figure 2). In regards to structural differences, the 
organization of the plastome was conserved between the two Zizania 
species with no differing translocations or inversions found. The two IR 
regions were more conserved than the LSC and SSC regions with 99.8% 
similarity found between them, and the coding regions were more 
conserved than non-coding regions (by the view from different colors). 
The most variation from coding regions was found in the rpoC2 gene 
(Figure 3). After the alignment of the amino acid (AA) sequence of 
rpoC2, the variable regions were focused around 650 to 820 AA. The 
length of this gene was different in all seven species surveyed and was 
mainly caused by size variation of repeat sequence within rpoC2. For 
the two Zizania species, there was one only 7 AA deletion around 
position 680 found in Z. aquatica. Among the non-coding regions 
(the pink portions in Figure 2), ndhC-trnV, rps16-trnQ and ycf3-trnS 
demonstrated the most divergent patterns between the two Zizania 
species.  

Third, to examine the sequence identity (SI value) of the two Zizania 
plastomes, the whole plastome was divided into individual coding 
(gene regions) and non-coding (intergenic and intronic regions). 
Among 76 annotated protein coding genes (Table S3), which were the 
same in gene content as other grass species[17], the SI values for the 
two Zizania species were all larger than 98% with the average value 
for SI being 99.5% with 23 genes showing no variation. These results 
showed that all coding genes were extremely conserved between two 
Zizania species. However, the genes matK, ndhF and rpoC2 possessed 
the lowest SI values, and these regions have been used as universal 
markers in barcoding and phylogenetic studies [54], which also show 
phylogenetic signal at lower taxonomic levels. For the SI values from 
126 non-coding regions (only one copy of IR regions was used) (Table 
S4), we found that the average SI values across all non-coding regions 

longer than 200 bp was 97.9% and was only a little lower than coding 
regions. Only three regions (ndhC-trnV, rps16-trnQ and ycf3-trnS) 
had SI values lower than 90%. Rps16-trnQ had the greatest number of 
polymorphic sites and as such was also an important marker for plant 
systematic studies [54].

Conserved variation of two Zizania plastome junction 
boundaries

Based on the quadripartite structure of plastomes from most land 
plants [22] (Figure 4A), four junctions (JLA, JLB, JSA, and JSB) were named 
between the two IRs (IRa and IRb) and the two single copy (LSC and 
SSC) regions (Figure 4C) [38]. It has already been shown that the 
dynamic variation of IR regions can contribute to the size variation 
between plastomes [22] and as such provide useful phylogenetic 
signals [38]. By combining the phylogenetic relationships among the 
seven grass species plastomes species (Figure 4B) and applying the 
distance between border position and the adjacent genes, we were able 
to compare the gene distance in a phylogenetic context (Figure 4C). 
By comparison with the variation from the Oryza genus [37], the two 
species of Zizania retained the same distance around the four junctions 
(Figure 3B). This indicates that the distance between gene and junction 
border is more conserved in Zizania than Oryza. We also examined the 
difference at gene distance to junction between the two subtribes. The 
distance of JSA and JSB reflects the variation of the two Oryzeae subtribes 
from this plastome feature. In subtribe Zizaniinae, the two genes 
distance from JSB is 319 bp (rps15) and 89-93 bp (ndhF). However, in 
subtribe Oryzinae, those distances were 301 bp and 41-42 bp (except 
for L. tisserantii). This feature could be used as a marker to separate the 
two subtribes. In total, the junction in JLA and JLB are more conserved 
than JSA and JSB.

Figure 3: Partial alignment of amino acid from rpoC2 gene indicating the length variation caused by the repeat sequences in seven grass species. 
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