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Introduction
The hormone Leptin, also called obese hormone, is the central 

mediator in a negative feedback loop regulation of energy homeostasis. 
Mammalian adipocytes produce and secrete more leptin in bloodstream 
as fat storage increases [1] signalling the brain via leptin receptors [2-
5] and modulating the feeding-related (an) orexgenic hypothalamic
neuropeptide system to suppress appetite and increase energy 
expenditure [3-4]. Leptin gene and its related receptors are expressed 
in a wide range of tissues indicating various potential physiological 
functions. Leptin has been reported to play a key role in reproduction 
[6], immunity [5], bone mass [7], blood pressure [4], hematopoiesis 
[4], and lipid metabolism [3,4].

Hyperphagy, morbid obesity and diabetes were observed in 
rodents that were deficient in leptin (ob/ob mouse), or that lack 
certain isoform of leptin receptor (db/db mouse and fa/fa rat) [2,4,8,9]. 
Interestingly a dysfunctional autophagic activity has been observed in 
these obese models, suggesting a potential interaction between leptin 
and autophagy.

Autophagy is a highly conserved cellular mechanism that is 
responsible for the degradation and recycling of damaged organelles. 
It is also considered as an alternative to apoptosis in programmed cell 
death. In recent years though autophagy has appeared to play critical 
roles in several cellular functions and physiological processes including 
reproduction, development [10] immunity [11], inflammation [11] 
neurodegenerative diseases [12], cardiovascular diseases [5] , metabolic 
syndrome [13,14], and energy homeostasis [15].

There are three major types of autophagy; micro-, macro-
autophagy, and chaperone-mediated autophagy [16-18]. Micro- and 
macro-authophagy can selectively engulf large structures such as 
mitochondria and endoplasmic reticulum (referred to as mitophagy 
or reticulophagy, respectively [17,18] or by non-selective mechanisms 
(e.g. bulk cytoplasm), whereas chaperone-mediated autophagy 
degrades only soluble proteins [18]. Micro-autophagy refers to the 
sequestration of cytosolic components directly by lysosomes through 
invaginations in their limiting membrane. However, macro-autophagy 
that we will address in the present review refers to the sequestration 
of material within an autophagosome, a unique double membrane 
cytosolic vesicle. Autophagosomes fuse with late endosomes and 
lysosomes, promoting the delivery of organelles, aggregated proteins 

and cytoplasm to the luminal acidic degradative milieu that enables 
their breakdown into constituent molecular building blocks that can be 
recycled by the cell [19]. In recent years, interaction between leptin and 
autophagy has been a focus of research interest. After a brief description 
of leptin and autophagy systems, we will review here studies on the 
biological interaction between leptin and autophagy in the regulation 
of energy homeostasis.

Leptin System
The ob (leptin) gene has been previously cloned and characterized 

in rodent and human by Friedman and co-workers [20]. It consists of 
three exons with the two coding regions separated by two introns. It 
was assigned to mouse chromosome 6 [21] and human chromosome 
7q31.3 [21]. The ob product, leptin (derived from the Greek word 
“leptos” meaning lean) contains 167 amino acids (AA) and a 21 AA 
signal peptide cleaved during translocation into the microsome. 
The 16-kDa mature leptin circulates in serum both as a free and as a 
protein-bound entity. Mammalian white adipose tissue is the main site 
of ob gene expression and leptin secretion. Expression and secretion 
occur exclusively within the differentiated adipocytes [1,22]. Leptin, 
however, is also produced in several cell types in other organs. In 
fact, it is produced by gastric cells in the walls of the stomach [23], 
in follicular papilla cells of hair follicles [1], in osteoblasts [7], in the 
placenta [6], in skeletal muscle [1], in the brain [1], and in the pituitary 
[22]. Additionally, leptin has been localized in the ovary (granulosa and 
theca cells, corpora lutea, and interstitial gland) [6] and in the mammary 
gland [22]. Intriguingly, leptin has been shown to particularly be 
expressed in the liver of several non-mammalian oviparous species 
such as chicken [24,25], dunlin [26], thin-billed prions [24], fishes [26], 
amphibians [26] and reptiles [23]. 

Leptin exerts its function through its receptor Ob-R which is first 
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Abstract
Autophagy or cellular self-digestion, a lysosomal degradation pathway that is conserved from yeast to human, 

plays a key role in recycling cellular constituents, including damaged organelles. It also plays a pivotal role in the 
adaptation of cells to a plethora of distinct stressors including starvation. Leptin is an adipocytokine that is mostly 
produced by white adipose cells in mammals and functions as a hormonal sensing mechanism to inhibit feed intake 
and increase energy expenditure. In this review, we will describe the autophagy and leptin systems and summarized 
recent advances regarding their interactions in the regulation of energy homeostasis.
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identified in mouse choroids plexus by expression cloning techniques 
and then in human using infant total brain library [8]. It is a single 
transmembrane-spanning receptor and a member of the cytokine 
receptor superfamily that includes the gp130 signal-transducing 
component of the receptors for interleukin 6 (IL-6), granulocyte colony 
stimulating factor (G-CSF), and leukemia-inhibitory factor (LIF) [13]. 
The Ob-R extracellular domain consists of 816 AA and is followed 
by a 23-AA transmembrane domain and intracellular domain which 
varies in length from 30 to 303 AA, depending on alternative splicing. 
The alternate splicing of the Ob-R gene generates multiple variants of 
leptin receptor mRNA that encode at least six Ob-R (Ob-Ra,b,c,d,e and 
f) isoforms [4,5]. Ob-R is primarily expressed in the hypothalamus. It 
is particularly prominent in areas important in regulation of energy 
balance such as arcuate (ARC) and paraventricular (PVN) nucleus 
[4,5]. Expression of Ob-R was also detected at lower levels in a large 
number of peripheral tissues including skeletal muscle, heart, adrenals, 
kidney, adipose tissue, liver, pancreatic β cells and immune cells 
[22]. The short isoforms are expressed at higher levels in a variety of 
tissues and were elegantly reviewed by Friedman and Halaas [27]. 
The ubiquitous expression of leptin and its related receptors indicates 
that leptin may have several physiological roles. It is well established 
that leptin has potent food intake and body weight reducing effects in 
mammals [1,5] and this effect is mediated via the activation of POMC/
CART and inhibition of NPY/AgRP neurons [5]. The molecular 
basis for stimulation of POMC gene expression likely involves Janus 
kinase and signal transducer and activator of transcription (JAK-
STAT) activation [5,8] while the phosphoinositol 3-kinase (PI3K) 
pathway may play a specific role in the repression of NPY and AgRP 
gene expression by leptin [5,8]. Leptin has been reported to interact 
also with other hypothalamic peptides including orexin, melanocortin 
receptors (MCR), corticotropin releasing factor (CRF), glucagon-
like peptide (GLP-1), ghrelin, cholecystokinin (CCK), and bombesin 
to regulate feeding behavior [1,27]. Leptin also increases energy 
expenditure [2,25,27], induces lipolysis, reduces lipogenesis [27], 
regulates reproduction [6], immunity [22], and bone mass [7].

Autophagy System
Autophay has been described as a highly conserved self-eating 

process during which cells degrade and recycle their own components 
(cytosol and organelles) within the lysosomes [28]. The word autophagy 
was coined from Greek Word “auto” which means self, and “phagein”, 
meaning to eat. Autophagy, which is a unique morphological feature 
or process in a dyeing cell was often erroneously presumed to be a 
preceding pathway to cell death, but on the contrast, it has now been 
evidently and clearly clarified that, one of its major function is to fight 
the cell death and consequently keep it alive even when undergoing 
stressful and life-threatening conditions [29]. Autophagy is induced 
upon nutrient depletion or starvation, thereby leading to the response 
of more than 30 autophagy-related genes (Atg) [30]. However, how 
Atg proteins are regulated is still under investigation, but it’s clear 
that all signals reporting on availability of carbon and nitrogen 
sources converge on the mTOR signaling pathway, and that, Atg 
proteins are downstream effectors of mTOR pathway [30,31]. There 
are three steps involved in formation of autphagosome, and the first is 
initiation, during which phagophore (outer mitochondrial membrane, 
plasma membrane, endoplasmic reticulum membrane, etc) undergo 
nucleation [19]. The second step undergoes elongation, cycling, 
expansion and closure, forming autophagosome [19]. The third and 
final step is referred to as maturation, which involves the advancement 
of autophagosome into amphiosome (fusion of autophagosome and 

endosome), which is acidic and hydrolytic vacuole. It is this hydrolytic 
vacoule that is ripe for degradation and recycling of nutrients [19].

Under fed (normal nutrient-energy) state, the nutrient sensor 
mechanistic target of rapamycin (mTOR) is activated and in turn 
phosphorylates ULK1 and thereby sequestering the ULK1-Atg13-
FIP200 complex in an inactive state at the mTOR complex [32]. In 
contrast when nutrients are limited (e.g. during stress or starvation), 
the energy sensor AMPK is activated. AMPK activation inhibits mTOR 
activity leading to a reduced ULK1 phosphorylation and consequently 
releases the ULK1-Atg13-FIP200 complex from mTOR to the site of 
autophagosome formation and induction of autophagy. In the second 
step of autophagy, Beclin1 forms a lipid kinase complex with Vps15, 
Vps34 and Atg14 that phosphorylates phosphatidylinositol (PI) to 
form inositol-3-phosphate (PI3P) and is essential for induction of 
autophagy [33]. Accumulation of PI3P in specific sub-domains of 
the ER increases membrane curvature at the site of autophagosome 
formation. The elongation step involves two ubiquitin like reactions 
of the pre-autophagosomal structures. First, the ubiquitin-like protein 
Atg12 is conjugated to Atg5 by the action of Atg7 and Atg10 after 
which Atg16 multimerizes to form the Atg12-Atg5-Atg16 complex. 
Next, Atg4 cleaves soluble microtubule-associated protein light chain 
3-I (LC3-I) to form the membrane-bound LC3-II [34]. Both of these 
two ubiquitin-like systems are required for elongation and closure of 
the phagophore. During maturation and fusion, autophagosomes will 
first fuse with endosomes then with lysosomes. Any mutation or loss of 
proteins important for formation of multivesicular bodies (MVBs) can 
lead to inhibition of maturation of autophagosomes [28]. Some genes 
involved in this step include UVRAG, a Beclin 1 interacting protein 
that recruits the fusion machinery on the autophagosomes. Another 
Beclin 1 interacting protein, Rubicon, also functions in the maturation 
of autophagosomes where it is thought to be a part of a distinct Beclin 
1 complex containing Vps34, Vps15, and UVRAG that suppresses 
autophagosome maturation [35]. Working together, these steps 
complete the formation of the autolysosome and its lysis, that releases 
proteins and amino acids that can be used as an energy source during 
times of low energy availability or increased energy demand (stress) for 
the organism (Figure 1).

Interaction between Leptin and Autophagy in the 
Regulation of Energy Homeostasis

Since both leptin and autophagy are dysfunctional in obese 
models and both are implicated in the regulation of lipid metabolism, 
increasing studies investigating the leptin-autophagy interaction have 
received considerable attention over the last few years. Activation of 
hypothalamic mTOR has been shown to regulate feeding behavior and 
energy homeostasis [2,25] and mTOR pathway has been shown to be 
a downstream effector of leptin and upstream regulator of autophagy 
[36]. Leptin, mTOR and autophagy are all regulated by starvation 
and nutritional state [36]. In addition, appetite, energy expenditure 
and metabolism are tightly regulated by the central nervous system 
(CNS) particularly the POMC and AgRP neurons in the hypothalamic 
arcuate nucleus. These neurons act as major negative (anorexigenic) 
and positive (orexigenic) regulators of feed intake. In 2012, three 
recent studies have implicated CNS autophagy in the regulation of 
energy homeostasis. Conditional specific depletion of Atg7 in POMC 
neurons resulted in higher body weight, hyperphagia, impaired glucose 
tolerance, increased adiposity and leptin resistance [37]. Moreover, 
deficient Atg7 in hypothalamic POMC neurons impaired leptin-
induced signal transducer and activation of transcription 3 activation. 
In line with these data, Malhotra and coworkers [38], recently showed 
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Figure 1: Steps of autophagosome formation: Autophagosome formation can be initiated via mTOR inhibition or AMPK activation during starvation or nutrient 
limitation. This results in the activation of ULK1 which in turn phosphorylates Atg13, Atg101 and FIP200. When autophagy is activated, Beclin 1 is liberated from 
Bcl-2 and is associated with Vps34, Vps15 and Atg14. ULK1 phosphorylates also AMBRA, a component of the PI3K CIII complex enabling it to relocate from the 
cytoskeleton to the isolation membrane. The activation of Vps34 generates PI3P which catalyzes the first of two types of ubiquitination-like reactions that regulates 
membrane elongation. Firstly, Atg5 and Atg12 are conjugated to each other in the presence of Atg7 and Atg10. Attachment of the Atg5-Atg12-Atg16L1 complex on 
the isolation membrane induces the second complex to covalently conjugate PE to LC3 which facilitates in turn the closure of the isolation membrane. The complex 
Atg9-Atg2-atg18 cycles between endosomes, the Golgi and the phagophore possibly carrying lipid components for membrane expansion. LC3-II is formed by LC3 
conjugation to its lipid target PE and Atg4 removes LC3-II from the outer surface of newly formed autophagosome, and LC3 on the inner surface is degraded when 
the autophagosome fuses with lysosomes. Atg, autophagy-related genes; LC3, microtubuleassociated protein light chain; PE, phosphatidylethanolamine; PI3K, 
phosphatidylinositol 3 kinase; PIP3, phosphatidylinositol 3-phosphate; ULK1, UNC51-like kinase 1. The figure was produced by the Pathway Studio software from 
Ariadne/Elsevier and is used by permission of the Rat Genome Database [47].

Figure 2: Potential model of leptin-autophagy interaction in the regulation of energy homeostasis. Leptin is secreted from adipocytes, binds to the extracellular domain 
of its Ob-Rb receptor dimmer and activates the JAK2 tyrosine kinase and STAT3. In ARC neurons that coexpress Ob-Rb and POMC/CART, leptin increases POMC 
production via STAT3, which 17 generates an anorectic signal via α-MSH and MCR3/4. In ARC neurons that co-express Ob-Rb and NPY/AgRP, leptin inhibits AgRP 
production partly through STAT3 pathway, which disinhibits melanocortin signaling. Additionally, leptin can act through IRS-PI3K pathway. Leptin can alter autophagy 
directly via JAK-STAT, AMPK-mTOR or via other downstream signaling cascades that are not known yet. Whether autophagy alters the leptin expression in peripheral 
tissues directly or indirectly is unknown and warrant further investigations. AgRP, agouti-related peptide; AMPK, AMP-activated protein kinase; ARC, arcuate nucleus; 
JAK2, janus kinase 2; mTOR, mechanistic target of rapamycin; Ob gene, obese gene; OB-R, leptin receptor; POMC, pro-opiomelanocortin.
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that upon high-fat diet consumption mice lacking Atg12 in POMC-
positive neurons exhibit accelerated weight gain, adiposity and 
glucose intolerance which is associated with increased food intake and 
decreased leptin sensitivity. Interestingly, mice lacking Atg5 in POMC 
neurons do not exhibit these phenotypes observed in Atg7 and Atg12 
deficient mice [38].

 These results indicated that autophagy-related genes might exert 
different physiological function depending on tissue or cell type. Kaushik 
et al. [39] proposed that autophagosome-mediated form of secretion 
in POMC neurons controls energy homeostasis by regulating α-MSH 
production. The same group demonstrated a role for autophagy in 
hypothalamic agouti-related peptide (AgRP) neurons in the regulation 
of food intake and energy balance [40]. They showed that starvation-
induced hypothalamic autophagy mobilizes neuronintrinsic lipids 
to generate endogenous free fatty acids which in turn regulate AgRP 
levels. Depletion of Atg7 in hypothalamic AgRP neurons promotes 
neuronal lipid accumulation, reduced AgRP levels, feed intake and 
adiposity [40]. Plasma leptin levels have been reported to be altered 
in Zmpste24-null mice, which show accelerated aging and exhibit 
an extensive basal activation of autophagy [41]. Mice with specific 
deletion of Atg7 in adipocytes exhibited markedly decreased plasma 
concentration of leptin [42]. In vitro treatment with recombinant 
leptin inhibited autophagy in human CD4(+)CD25(-) conventional (T 
conv) T cells and this effect was mediated via mTOR activation [43]. 
However, leptin knockdown attenuated hypoxic-preconditioning- 
induced autophagy in bone marrow derived mesenchymal stem cells 
[44] indicating that the effect of leptin on autophagy might be tissue- 
and cell-specific. Enteral leptin administration has also been shown to 
inhibit intestinal autophagy in piglets [28]. In heart, however, leptin 
promoted autophagosome formation as evidenced by increased LC3-II, 
beclin 1 and Atg5 expression [45]. Malik and co-workers reported that 
peripheral administration of recombinant leptin induced autophagy 
in peripheral tissues including skeletal muscle, liver and heart [2]. 
Moreover, leptin stimulated autophagy in cultured human and mouse 
cell lines and this effect was likely mediated through the activation of 
AMPK and inhibition of mTOR [46,47].

Together these elegant studies suggest that the interaction between 
the two masters leptin and autophagy underscore a novel link that 
plays a crucial role in the regulation of energy balance and many other 
cellular processes (Figure 2).
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