
ISSN: 2167-0501 BCPC, an open access journal Psycho- and NeuropharmacologyBiochem & Pharmacol

Open Access

Qing Shu et al., Biochem & Pharmacol 2013, S1 
DOI: 10.4172/2167-0501.S1-004

Keywords: Brain derived neurotrophic factor; Risperidone;
Adolescence drug treatment; Phencyclidine

Introduction
Brain-derived neurotrophic factor (BDNF) is a member of the 

neurotrophin family that is widely distributed in the brain with the 
highest levels found in the hippocampus and other cortical areas 
[1]. It is involved in many functional processes critical for the brain 
development and experience-dependent neuroplasticity, such as 
neuronal survival, neural migration, differentiation, synapse formation, 
and modulation of neurotransmitter synthesis [2-4]. It also plays an 
important role in stress response, learning and memory, and actions 
of psychoactive drugs [5-7]. Accumulating clinical evidence indicates 
that abnormal BDNF expressions may contribute to pathophysiology 
of schizophrenia, as the levels of BDNF have been found decreased 
in peripheral (blood) and central (brain) systems of patients with 
schizophrenia [8-11]. Antipsychotic drugs can also alter the brain 
levels of BDNF, and prevent the stress-induced decrease in the levels of 
BDNF, indicating that it may also regulate the action of antipsychotic 
drugs [12-17]. 

In recent years, we have used the Conditioned Avoidance 
Response (CAR) and phencyclidine (PCP)-induced hyperlocomotion 
to examine the long-term treatment effects of antipsychotic drugs 
[18-23]. Both tests are known for their high predictive validity for 
antipsychotic efficacy, as antipsychotic drugs show a robust suppression 
of avoidance response and PCP-induced hyperlocomotion upon acute 
drug administration [24,25]. Testing an antipsychotic drug in two 
independent tests of antipsychotic activity is necessary to ensure that 
any observed antipsychotic effect is not an artifact of any particular 
model but reflects the generality of the treatment effect. We have 
been particularly interested in how repeated antipsychotic treatment 

alters this suppression over time. Such alterations can be manifested 
as either tolerance, which is characterized by decreased responsiveness 
to a certain drug effect, or sensitization, which is characterized by 
increased responsiveness to a drug effect [26]. The typical paradigm 
that we developed to study antipsychotic sensitization and tolerance 
consists of an induction phase, in which rats are repeatedly treated 
with an antipsychotic drug or vehicle for several days and tested for 
their avoidance responses and PCP-induced hyperlocomotion, and 
an expression phase, in which all rats are given a challenge dose of 
the drug and their avoidance and motor activity under PCP is tested 
again [18,19,21,22,27]. Using such a paradigm, we show that repeated 
treatment of haloperidol or olanzapine progressively increases its 
suppression of avoidance responding across the test sessions in the 
induction phase, and makes animals more sensitive to these drugs 
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Abstract

Risperidone is one of the most widely used atypical antipsychotic drugs and is approved for the treatment of 
mental disorders (eg. schizophrenia, autism) in children and adolescents. The present study investigated the 
repeated treatment effect of risperidone and associated neurotropic mechanism in the phencyclidine (PCP)-induced 
hyperlocomotion model in adolescent rats. We examined whether repeated risperidone treatment would cause a 
sensitized inhibition of PCP-induced hyperlocomotion in adolescent rats, and whether such a sensitization effect was 
mediated by risperidone-induced alterations in Brain-Derived Neurotrophic Factor (BDNF), an important biomarker 
which plays a role in neuropathology of schizophrenia and action of antipsychotic medications. Male adolescent 
Sprague-Dawley rats (postnatal days [P] 44-48) were first treated with risperidone (0.50 or 1.0 mg/kg, sc) or vehicle 
and tested in the PCP (3.2 mg/kg, sc)-induced hyperlocomotion model for 5 consecutive days. Three days later, all 
rats were then challenged with risperidone (0.50 mg/kg) and PCP on ~P 51 to assess the potential sensitization effect. 
They were then sacrificed 1 day later and BDNF levels in the Prefrontal Cortex (PFC), striatum and hippocampus were 
examined using Western blotting. Behaviorally, repeated risperidone treatment progressively increased its inhibition of 
PCP-induced hyperlocomotion across the 5 test days. In the subsequent challenge test, rats previously treated with 
risperidone 1.0 mg/kg showed a stronger inhibition of the PCP-induced hyperlocomotion than those previously treated 
with vehicle, indicating a robust risperidone sensitization. However, no such group differences in the BDNF and its 
precursor proteins in any of the three brain regions were found. Therefore, although repeated adolescent risperidone 
administration induced a sensitization effect in the PCP-induced hyperlocomotion model in a dose-dependent fashion, 
whether BDNF is critically involved in this effect is still unsettled. Future work that directly manipulates BDNF systems 
is needed to further investigate this issue.
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in the expression phase, evidenced by the findings that animals who 
have been treated with haloperidol or olanzapine in the induction 
phase show a significantly lower avoidance or lower PCP-induced 
hyperlocomotion than those treated with vehicle. In contrast, repeated 
treatment of clozapine tends to lose its avoidance suppression ability 
over time, thus causing a tolerance effect [18,27]. Risperidone (a widely 
used atypical antipsychotic drug) also causes a sensitization effect in the 
CAR test [23,28,29], but whether it would cause a similar effect in the 
PCP-hyperlocomotion test has not been examined. This is an important 
issue as it addresses the generality of repeated risperidone treatment-
induced sensitization phenomenon. 

Material and Methods
Animals

Male Sprague-Dawley adolescent rats (P 33-37, 101-125 g on the 
delivery date, average age=~P 35) from Charles River Inc. (Portage, MI) 
were used. They were housed two per cage, in 48.3 cm×26.7 cm×20.3 
cm transparent polycarbonate cages under 12-h light/dark conditions 
(light on between 6:30 am and 6:30 pm). Room temperature was 
maintained at 22 ± 1°C with a relative humidity of 45-60%. Food and 
water was available ad libitum. Animals were allowed at least 5 days of 
habituation to the animal facility before being used in experiments. All 
procedures were approved by the Institutional Animal Care and Use 
Committee at the University of Nebraska-Lincoln. 

Drugs and choice of dose

The injection solution of phencyclidine hydrochloride (PCP, gift 
from National Institute on Drug Abuse Chemical Synthesis and Drug 
Supply Program) was obtained by mixing the drug with 0.9% saline. 
The dose of PCP (3.2 mg/kg, sc) was chosen based on our previous 
work [18,22,24,32]. This dose of PCP is shown to induce a robust 
hyperlocomotion effect without causing severe stereotypy [33,34]. 
Risperidone (RIS) (gift from the NIMH drug supply program) was 
dissolved in distilled sterile water with 1.0% glacial acetic acid. Two doses 
(0.5 and 1.0 mg/kg) were tested as they have previously been shown 
to acutely inhibit PCP-induced hyperlocomotion [24]. Furthermore, 
both drugs at these doses give rise to a clinically comparable range 
(60%-80%) of striatal dopamine D2 occupancy in rats, which is similar 
to values observed in schizophrenic patients [35]. All drugs were 
administrated subcutaneously (sc) at 1.0 ml/kg.

Motor Activity Monitoring Apparatus
The motor activity testing apparatus is described in detail elsewhere 

[22,24,36]. Sixteen activity boxes were housed in a quiet room. The 
boxes were 48.3 cm×26.7 cm×20.3 cm transparent polycarbonate cages, 
which were similar to the home cages but were each equipped with a 
row of 6 photocell beams (7.8 cm between two adjacent photo beams) 
placed 3.2 cm above the floor of the cage. A computer detected the 
disruption of the photocell beams and recorded the number of beam 
breaks. All experiments were run during the light cycle. 

Experimental procedure

Thirty-two adolescent rats (~P 42-43) were first handled, injected 
with 1.0% glacial acetic acid sterile water, and placed in the locomotor 
activity apparatus for 2 days (30 min/day), so they habituated to 
the experimenter’s handling and testing apparatus. They were then 
randomly assigned to 1 of 4 groups (n=8 /group): VEH+VEH (1.0% 
glacial acetic acid sterile water+saline), VEH+PCP (1.0% glacial acetic 
acid sterile water+PCP 3.2 mg/kg, sc), RIS 0.5+PCP (RIS 0.5 mg/
kg+PCP 3.2 mg/kg), and RIS 1.0+PCP (RIS 1.0 mg/kg+PCP 3.2 mg/kg) 
and were repeatedly injected with the drugs and tested for locomotors 
activity daily for 5 consecutive days. On each test day, they were first 
injected with vehicle, RIS 0.5 or 1.0 mg/kg, and then immediately placed 
in the boxes for 30 min. At the end of the 30-min period, they were 
taken out and injected with PCP (3.2 mg/kg, sc) or saline and placed 
back in the boxes for another 60 min. Motor activity was recorded in 5 
min intervals throughout the entire 90-min testing session. 

Two days after the last RIS test (~P 50), all rats were returned to 
the locomotor activity boxes for one re-habituation session (30 min), 
followed by the RIS challenge test 1 day later (~P 51). On the challenge 
day, all rats were first injected with RIS 0.5 mg/kg and then immediately 
placed in the motor activity boxes for 30 minutes. At the end of the 
30-min period, rats were taken out and injected with PCP (3.2 mg/kg, 
sc) and placed back in the boxes for another 60 min. Motor activity 
was recorded for the entire 90-min testing session. One day after the 
challenge test (~P 52), rats were sacrificed by live decapitation and their 
brains were removed for further analysis [37].

Preparation of protein extracts

Rat brains were quickly removed and the prefrontal cortex (PFC), 
striatum and hippocampus were dissected out over ice according to the 
brain atlas of Watson and Paxions (5th edition) [38], and were frozen on 
dry ice and stored at -80°C for further analysis. Tissues from these areas 
were homogenized in ice-cold RIPA buffer, containing 25 mM Tris/HCl 
(pH 7.6), 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% 
SDS (Thermo Scientific, Rockford, IL) with Protease Inhibitor Cocktail 
(Thermo Scientific, Rockford, IL). After centrifugation at 16,000 g for 
15 min, the supernatant was collected and protein concentration was 
determined using the BCA Protein Assay Kit (Pierce, Rockford, IL).

Western blot analysis

Equal amount of proteins (40 µg/lane) was run on a sodium 
dodecyl sulfate (SDS)-12% polyacrilamide gel (Bio-Rad, Hercules, 
CA). Proteins were separated by electrophoresis at 80-120  V for 
90 min (BDNF and β-actin), then electrophoretically transferred onto 
Polyvinylidene Fluoride (PVDF) membranes (Millipore, Billerica, 
MA) for 60  min at 300 mA in Tris/glycine buffer in a tank transfer 
system (Bio-Rad, Hercules, CA). The PVDF membranes were blocked 
with 5% nonfat dry milk in Tris-buffered saline (TBS) for 2 h at room 
temperature, and then incubated with primary antibody overnight at 

Despite the strong demonstration of risperidone sensitization in 
the avoidance conditioning task, the neurobiological mechanisms 
underpinning such an effect remain elusive. Because risperidone 
sensitization likely reflects a consequence of drug-induced brain 
changes, and BDNF is one important molecule involved in 
antipsychotic drug-induced neuroplasticity, we thus speculated that 
risperidone sensitization may depend on the drug-induced alteration of 
BDNF in the schizophrenia-related neural circuitry (e.g. the prefrontal 
cortex, hippocampus and striatum). In the present study, we tested this 
hypothesis by examining the risperidone-induced BDNF protein in 
adolescent rats (~P 52). We chose adolescent rats because our recent 
work shows that olanzapine or clozapine exposure can induce long-
term alterations in responsiveness to antipsychotic treatment during 
adolescence in the CAR model [30]. It was of interest to explore 
whether risperidone could do the same. The choice of adolescent rats 
was also clinically significant as there has been a significant increase 
in the number of children and adolescents who are being treated with 
antipsychotic drugs in recent decades [31], and we do not know much 
about the long-term consequences of such early drug exposure.
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Statistical Analysis
Four rats (1 each from the VEH+VEH and RIS 1.0+PCP groups, 

and 2 from the VEH+PCP) were identified as outliers based on the 
motor activity in the repeated drug test phase by the IBM®SPSS v19 
program, and their data were excluded from subsequent data analysis. 
Motor activity data from the 5 drug test days were analyzed using 
repeated measures ANOVA (the between-subjects factor:drug group; 
the within-subjects factor:test day), followed by post hoc LSD tests to 
examine group difference. Differences between Day 1 and Day 5 during 
the adolescent drug test phase in individual groups were analyzed using 
a two-way (day×block) repeated measures ANOVA. Group differences 
on the challenge test were examined using a one-way ANOVA 
followed by post hoc Tukey tests. The BDNF protein was quantified by 
normalizing to β-actin which was re-probed on the same membrane 
and then calculated as percentage of the corresponding control group 
(deemed to be 100%). Group and regional differences on the BDNF 
protein were analyzed using repeated measures ANOVA [4 (group)×3 
(region)], followed by post hoc Tukey tests. 

Results
Motor activity data

Five repeated drug test days: Figure 1A shows the mean motor 
activity of the four groups of rats during the 30-min test period before 
PCP or vehicle injection throughout the 5 days of drug testing. Two-
way repeated measures ANOVA revealed a main effect of group, F(3, 
24)=10.295, p<0.001, and a main effect of test day, F(4, 96)=36.828, 
p<0.001, and a significant group×day interaction, F(12, 96)=2.811, 
p=0.002. Post hoc Tukey tests revealed that the two RIS groups had 
significantly lower motor activity than the VEH+VEH group, all 
ps<0.003, suggesting that RIS had a suppression of spontaneous motor 
activity. Interestingly, the VEH+PCP group also had significantly lower 
motor activity in this 30-min period before PCP injection than the 
VEH+VEH group, p=0.020, indicating that rats in the PCP withdrawal 
state exhibited a decreased motor activity which may resemble negative 
symptoms of schizophrenia. 

Figure 1B shows the mean motor activity of the four groups of rats 
during the 60-min test period after PCP or vehicle injection throughout 
the 5 days of drug testing. Two-way repeated measures ANOVA 
revealed a main effect of group, F(3, 24)=123.664, p<0.001, and a main 
effect of test day, F(4, 96)=5.508, p<0.001, and a significant group×day 
interaction, F(12, 96)=5.738, p<0.001. Post hoc Tukey tests revealed that 
the VEH+PCP group had significantly higher motor activity than the 
VEH+VEH group, p<0.001, indicating a strong psychomotor activation 

effect of this dose of PCP. The two RIS groups had significantly lower 
motor activity than the VEH+PCP group, all ps<0.001, confirming the 
inhibitory effect of RIS treatment on PCP-induced hyperlocomotion. 
The inhibition by RIS 1.0 mg/kg was rather strong, as the RIS 1.0+PCP 
group had a comparable level of motor activity to that of the VEH+VEH 
group, p=0.499.

Re-habituation session 

On the re-habituation day, all rats were placed in the motor activity 
boxes for 30 min with no drug treatment (Figure 1C). Rats previously 
treated with RIS showed much higher motor activity than the other 
groups. One-way ANOVA showed the group effect was marginally 
significant, F(3, 24)=2.973, p=0.052. Two group comparisons found 
that the two RIS groups differed significantly from the VEH+PCP 
group, ps<0.031, suggesting a compensatory rebound effect against the 
motor inhibitory effect of RIS during the drug withdrawal. 

Challenge test (sensitization assessment)

On the RIS challenge test, all rats were injected with RIS 0.5 mg/kg 
first, 30 min later, followed by PCP 3.2 mg/kg. In the first 30 min before 
the PCP injection, the two RIS groups had lower motor activity than 
the VEH+VEH group. One-way ANOVA showed the group effect was 
marginally significant, F(3, 24)=2.922, p=0.055. 

In the 60 min after the PCP injection, the group difference 
was significant, F(3, 24)=4.922, p=0.008. Post hoc Tukey tests 
indicated that the RIS 1.0+PCP group had significantly lower motor 
activity than the VEH+PCP group, p=0.012, and significantly lower 
motor activity than the RIS 0.5+PCP group, p=0.022, suggesting 
that prior treatment of risperidone dose-dependently enhanced 
animals’ sensitivity to this drug in inhibiting PCP-induced 
hyperlocomotion, a clear sign of risperidone sensitization (Figure 1).  
BDNF Data

Discussion
This study examined the long-term behavioral effects of repeated 

risperidone treatment in adolescent rats in the PCP-induced 
hyperlocomotion model, a well-known test for antipsychotic activity. 
Using a two-phase paradigm (i.e. an induction phase and an expression 
phase), we demonstrated that repeated administration of risperidone 
dose-dependently increased its inhibition of the PCP-induced 
hyperlocomotion across the 5 drug test sessions. In the challenge 
test, under the influence of risperidone 0.5 mg/kg, the previously 
risperidone-treated group (RIS 1.0+PCP) still exhibited a significantly 
higher inhibition of the PCP-induced hyperlocomotion than the drug 
naïve group (VEH+PCP). Both findings demonstrated that for the first 
time, a sensitization effect could be induced by repeated risperidone 
treatment in adolescent rats in the PCP-induced hyperlocomotion 
model. However, BDNF protein levels in the PFC, striatum and 

4C. Immunostaining was carried out using the following antibodies. 
For BDNF, the membranes were incubated with a 1:100 dilution of 
anti-BDNF polyclonal antibody (Santa Cruz Biotechnology, Santa 
Cruz, CA), which recognizes both the mature form of the BDNF (14 
kDa) and its precursor (pro-BDNF, 32 kDa). For β-actin (used as an 
internal standard), the membranes were incubated with anti-β-actin 
polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA) 
with a 1:800 dilution. After washed 3 times in TBS with 0.1% Tween 
20 (TBST) at a 10-min interval, the membranes were incubated with 
Odyssey anti-rabbit and anti-goat secondary antibodies (Li-COR 
Biosciences, Lincoln, NE), respectively, with 1:5000 dilutions in TBST 
at room temperature. After 1 h, the membranes were washed 3 times at 
a 10-min interval. Then the bands were visualized and quantified using 
Odyssey Fc Imager (Li-COR Biosciences, Lincoln, NE) according to the 
manufacturer’s instruction.

As shown in figure 2, there did not appear to be any group and 
regional differences on the BDNF protein levels. Two-way repeated 
measures ANOVA with the group as the between-subjects factor and 
brain site (eg. PFC, hippocampus and striatum) as the within-subjects 
factors did not find a main effect of group, F(3, 24)=0.141, p=0.934, a 
main effect of brain site, F(2, 48)=0.463, p=0.632, or their interaction, 
F(6, 48)=0.338, p=0.913. Similarly, no significant group and regional 
differences on the Pro-BDNF proteins were observed. Two-way 
repeated measures ANOVA failed to find a main effect of group, F(3, 
24)=0.141, p=0.934, a main effect of brain site, F(2, 48)=0.373, p=0.691, 
or their interaction, F(6, 48)=0.106, p=0.995 (Figures 2 and 3). 
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hippocampus did not show any significant group differences, a finding 
not paralleled to the behavioral results. Therefore, it appears that prior 
repeated risperidone treatment did not cause a significant change in the 
BDNF protein level that could support risperidone sensitization. 

Previous work has shown that acute administration of many 
antipsychotic drugs inhibits the hyperlocomotor activity induced by 
acute administrations of PCP in adult animals [34,36,39]. Our recent 
work has focused on how repeated antipsychotic treatment affects the 
PCP-induced hyperlocomotion over time [18,22,24,32]. We and others 
show that in adult rats, repeated haloperidol, olanzapine or clozapine 
treatment, but not anxiolytic (eg. chlordiazepoxide) nor antidepressant 
treatment (eg. fluoxetine and citalopram) progressively potentiates 
their inhibition of PCP-induced hyperlocomotion across sessions and 
prolongs this action within sessions [24,32,40]. When the long-term 
effects are assessed in a subsequent challenge test, adult rats previously 
treated with olanzapine show an enhanced response to olanzapine (i.e. 
sensitization), while those previously treated with clozapine show a 
decreased response (i.e. tolerance) [18]. The present study extended 
this line of research into risperidone and showed that risperidone 
shares a similar behavioral profile with olanzapine but not with 
clozapine, possibly due to their similar receptor binding profiles against 
dopamine D2 receptors and 5-HT2 receptors [41]. Furthermore, this 

study extended our previous work into adolescent animals and showed 
that even adolescent rats exhibited risperidone-induced alterations in 
antipsychotic response. This new finding is in principle consistent with 
our recent study showing that olanzapine sensitization could be induced 
in adolescent rats in a conditioned avoidance response model [20], 
indicating the generality of antipsychotic sensitization independent of 
any particular behavioral model. 

On the re-habituation day, we noticed that rats previously treated 
with risperidone were more active than those treated only with vehicle, 
indicating some kind of compensatory rebound when the inhibitory 
effect of risperidone was taken off. Risperidone has a strong antagonist 
action against dopamine D2 receptor and repeated administration 
could cause an increase of D2 receptor density in the prefrontal cortex, 
striatum (eg. caudate-putamen, nucleus accumbens), and hippocampus 
[42]. In adolescent rats, it has been reported that repeated treatment 
of risperidone (0.3, 1.0 and 3.0 mg/kg) for 3 weeks dose-dependently 
increased D2 receptor density in the medial prefrontal cortex and 
hippocampus [37]. The high dose of risperidone (3.0 mg/kg) also 
increased D2 receptors in the striatum [37]. This rebound in motor 
activity under drug-free may reflect antipsychotic withdrawal-induced 
behavioral hypersensitivity – a state of dopamine supersensitivity that 
is characterized by increased behavioral responses to the psychomotor 

A
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B

Figure 1: Repeated treatment effect of risperidone on the PCP-induced hyperlocomotion. Locomotor activity throughout the 5 risperidone (0.5 and 1.0 mg/kg) test days 
was expressed as Mean+SEM and measured for 30 min before the vehicle or PCP (3.2mg/kg) injection (A) and 60 min after the vehicle or PCP injection (B). Locomotor 
activity measured for 30 min on the re-habituation day is presented in (C). Locomotor activity on the challenge test day during the first 30-min test period after the 
risperidone (0.5mg/kg, sc) injection and 60-min after the PCP injection is presented in (D) and (E), respectively. 
*p < 0.05 relative to the VEH+VEH group; 
#p<0.05 relative to the VEH+PCP group; 
p<0.05 relative to the RIS1.0+PCP group.
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stimulating effects of dopamine agonists such as amphetamine or 
apomorphine thought to result from hypersensitivity of dopamine D2 
(especially D2

high) receptors [43-47]. A similar effect has been observed 
in human patients and is termed “neuroleptic-induced supersensitivity 
psychosis” [48,49]. Future work needs to determine the reliability of 
such an effect and its clinical implications. 

BDNF is a member of neurotrophin family. Due to its important 
role in the regulation of the brain development and functions, and 
schizophrenia is thought to be a neurodevelopmental disorder, it 
attracts a fair amount of interest as etiological factor of schizophrenia 
and a potential therapeutic target [8,50,51]. A recent meta-analysis 
study examining blood BDNF levels in schizophrenia compared to 
age-matched healthy controls suggests that reduced blood BDNF levels 
in schizophrenia is a rather consistent finding [9]. Decreased BDNF 
levels in cortical areas and hippocampus in patients with schizophrenia 
has also been reported [52], consistent with findings from various 
animal models [8,12,50]. Human studies on the medication effects 
often report no significant effects of medications on the peripheral 
and central BNDF proteins, including risperidone [9,51,53]. However, 
animal work suggests that antipsychotics such as haloperidol, clozapine 
and high dose of risperidone (eg. 4.11 mg/kg) tend to decrease BDNF 
expression in the rat hippocampus [12,13,54] (but see [14]). Some even 
report that risperidone and haloperidol reduce BDNF in the frontal 
cortex [13]. Low dose of risperidone with acute and chronic treatment 
was without effect on the hippocampal BDNF [54]. Based on these 
findings, it is suggested that antipsychotic medications are unable to 
reverse the decreased BDNF levels in patients with schizophrenia [9] 
and the therapeutic properties of antipsychotic drugs are not mediated 

by stimulation of BDNF [12]. In the present study, we also did not 
observe any significant changes of BDNF protein in the prefrontal 
cortex, hippocampus and striatum that could be attributed to 5 days of 
repeated risperidone treatment, indicating that this neurotrophin is not 
likely to be an important molecule involved in risperidone sensitization. 

The lack of risperidone effect on the brain BDNF could be due 
to several factors, of which several methodological issues are worth 
being discussed. The first one is that our subjects were adolescent rats 
who have different BDNF intrinsic levels and sensitivity to external 
stimulations than adult animals [55,56]. Therefore, risperidone 
may affect their brains differently than adult brains, an important 
issue worth pursuing. The second factor is that all our animals were 
challenged with risperidone (0.5 mg/kg) and PCP (3.2 mg/kg) before 
being sacrificed. The measured BDNF levels may have been altered by 
the acute exposure to risperidone and PCP, thus potentially masking 
any BDNF changes induced by prior risperidone treatment. Indeed, 
Lipska et al. [12] shows that acute clozapine and haloperidol decreased 
hippocampal BDNF levels in normal adult rats, but had either no 
effect or further lowered BDNF mRNA levels in the brains of rats with 
neonatal lesions of the ventral hippocampus, a validated animal model 
of schizophrenia. Our finding that repeated risperidone treatment did 
not alter BDNF protein levels in the prefrontal cortex, hippocampus 
and striatum in the rats repeatedly treated with PCP is consistent with 
this finding, and with the finding that repeated PCP treatment does not 
alter BDNF in adolescent brains [57]. Future work examining brain 
BDNF levels, as well as the density of BDNF receptors (TrkB, pTrkB, 
p75, truncated TkB) in these regions under the drug free condition is 
necessary to identify the true impact of prior antipsychotic treatment 

A
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B

Figure 2: BDNF protein levels and representative blots in the prefrontal cortex (PFC) (A), striatum (B) and hippocampus (C) in the four groups of rats previously treated 
with sterile water, risperidone 0.5 or 1.0 mg/kg, and PCP 3.2 mg/kg for 5 days and challenged with RIS 0.5 mg/kg+PCP 3.2 mg/kg 3 days later. All rats were sacrificed 
1 day after the challenge test and BDNF levels were measured by Western Blotting. Group data (Mean+SEM, n=6-8) are expressed as percentage of mean values in 
the VEH+VEH group.
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on this molecule and its receptors. Furthermore, to make sure that 
BDNF participates in the antipsychotic sensitization mechanisms, one 
can block the BDNF receptors with an antagonist (eg. K252a) or test 
antipsychotic drugs in BDNF knockout mice. 

Taken together, the present study showed that adolescent repeated 
risperidone administration induced a sensitization effect in the PCP-
induced hyperlocomotion model in a dose-dependent fashion. This 
sensitization effect is similar to the one observed in the conditioned 
avoidance response model in adult animals [28,58], suggesting that 
it might be an intrinsic effect associated with repeated risperidone 
treatment. The neurobiological mechanisms responsible for risperidone 
sensitization are still not clear. Further studies are needed to determine 
whether BDNF is critically involved in the risperidone sensitization. 
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