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Background
The majority of methods for measuring airway mechanics or

pulmonary function in small laboratory animals are labor intensive,
require specialized equipment and training, and have a low
throughput. Hence, there is a need for a more rapid, simpler, user-
friendly approach for assessing airway responses in rodent models of
human lung diseases. One such method is pulmonary gas trapping or
the excised lung gas volume (ELGV) measurement [1,2], a well-
recognized technique for assessing airway mechanics in small
laboratory animals [3]. Thus, a brief overview of the history of
pulmonary gas trapping or hyperinflation will be discussed examining
history of both qualitative and quantitative approaches and use in
rodent models of human lung diseases.
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Abbreviations
ELGV: Excised Lung Gas Volume; Cdyn: Dynamic Compliance; RL:
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History of Pulmonary Gas Trapping or Hyperinflation

Qualitative assessment
Over one hundred years ago, Auer and Lewis [4] were the first to

observe that lungs from antigen-sensitized, antigen-challenged guinea
pigs failed to collapse upon opening of the thoracic cavity in contrast
to lungs of normal guinea pigs after death (Figure 1). Further they
noted the nearly fully distended lungs floated on water. Twenty-seven
years later, Kallos and Pagel [5] found marked distension of lungs from
guinea pigs that died during either inhaled antigen or histamine
challenge. Examples of normal versus hyperinflated guinea-pig lungs
are shown in Figure 2. The first attempt to quantitate lung distension
following ovalbumin inhalation in antigen-sensitized guinea pigs was
described by Eastham et al. who developed a graded subjective scale
from 0 to 6 for assessing pulmonary hyperinflation of excised guinea-
pig lungs [6]. Thus, the normal lungs would receive a 0 since the lungs
collapsed after opening the thoracic cavity, while the hyperinflated
lungs would receive at least a grade 4 because of the obvious visible
distension. Drawbacks of the subjective grading scale for testing novel
therapeutic modalities in treating lung disease include training of
laboratory personnel for assessing pulmonary distension and potential
bias unless scorers are blinded to treatment groups.

Figure 1: History of pulmonary hyperinflation or pulmonary gas
trapping as an index of in vivo airway responses in small laboratory
animals.

Figure 2: Normal and hyperinflated excised guinea-pig lungs.

Although Scherle [7] did not specifically examine lungs of non-
sensitized or sensitized rodents following bronchoprovocation, the
method he developed was the first demonstration of organ volumetry
(i.e., rat liver) by fluid displacement using an analytical balance. This
method is still used today to measure excised rodent lung volumes in
small laboratory animal models of human lung disease [8-11].
However, this technique measures excised lung volume, not excised
lung gas volume (ELGV) [1,2], which will be discussed below. In
addition, lungs prepared for this measurement based on the method
described by Scherle are first vacuum degassed and then instilled via
the trachea with tissue preservatives to 20-25 cm fixation solution
pressure [7,12]. Thus, determining buoyancy or volume displacement
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of lungs is a two-step process involving weighing the lungs in air and
then weighing the tissue-fixed lungs in liquid [7]. However, if lung
volume was measured prior to tissue fixation, any fluid that might
accumulate in the lungs as a consequence of bronchoconstriction or
inflammatory processes such as increased airway secretions,
peribronchial or interstitial edema, and/or cellular infiltration would
likely contribute to the excised lung volume.

Excised lung (relaxation) volume measurement
Another quantitative approach for measuring excised lung volume

following antigen bronchoprovocation in sensitized guinea pigs
involved submersing lungs in a graduated cylinder filled with fluid to
determine lung volume displacement [13,14]. Following the
immediate-type hypersensitivity response in guinea pigs, Drazen and
Austen [13] found widespread airway narrowing that accounted for the
decrease in dynamic compliance (Cdyn) and pulmonary conductance
(pulmonary conductance is the reciprocal of pulmonary resistance)
and increase in excised lung (relaxation) volume they observed.
Similarly, Broder et al. [14] showed the decrease in total respiratory
compliance and increase in lung volume following antigen challenge
dose-dependently related to the sensitizing antibody guinea pigs
received.

Excised lung gas volume (ELGV) measurement
The two previous methods by Drazen and Austen [13] and Broder et

al. [14] measured total lung volume, but could not distinguish between
lung volume and lung trapped gas volume. While at West Virginia
University, my colleagues and I developed a method using an analytical
balance to measure the trapped gas volume following vacuum
degassing of excised rat lungs [12]. Although not specifically related to
the topic of this paper, vacuum degassing of excised rodent lungs
provides for uniform volume history of lungs when performing
multiple pressure-volume maneuvers [15]. Subsequently, at Eli Lilly
and Company, we employed the same approach to measure the
trapped gas volume in guinea pigs exposed to a variety of inhaled
bronchoconstrictive agents that we called the excised lung gas volume
(ELGV) measurement [1,2].

In brief, ELGV or postmortem pulmonary gas trapping is measured
by Archimedes’ principle and is based on the stable amount of air
trapped within the excised lungs at a transpulmonary pressure of 0.0
cm H2O. The lungs are attached by the tracheal cannula to a brass
weight, then the lungs and brass weight are placed in a plastic cup,
immersed in a beaker of saline on a stationary platform, and
suspended from a hook at the top of the stirrup (Figure 3). By first
taring the brass weight in saline, the lungs plus brass weight gives a
negative weight display in grams that closely approximates the ml of
air trapped in the lungs for both normal and hyperinflated lungs
(Figure 4). Because lung tissue density is similar to that for saline, the
volume of air trapped in the lungs can then be determined. Even when
the thorax of a naïve guinea pig is opened, its lungs collapsed to the
resting lung volume indicating a small residual volume of air remained
in the lungs.

Although we made the density kit for measuring ELGV at West
Virginia University and Eli Lilly and Company, many analytical
balance manufacturers now provide a density kit as a relatively
inexpensive accessory (ranging in cost from $300.00 to $1500.00).
Only slight modifications to the density kit may be necessary to
perform the ELGV measurement. However, if an investigator choses to

make their own density kit, there are two crucial features of the stirrup:
its weight and fulcrum have to be similar to those of the analytical
balance weighing pan.

Figure 3: Diagram of the system constructed for excised lung gas
volume (ELGV) measurements. The stirrup was connected to an
analytical balance via its fulcrum or weighing attachment (modified
from Silbaugh et al. [2]).

Figure 4: Examples of excised lung gas volume (ELGV) values of
normal (panel A) and hyperinflated (panel B) lungs.

As shown in Figure 5, we found increases in ELGV or pulmonary
gas trapping in the guinea pig to correlate highly with
bronchoconstrictor agonist-mediated decreases in Cdyn and increases
in total pulmonary resistance (RL), thus reflecting the physiological
condition of the lungs at the moment the animal is euthanized [16-18].
Also, Eidelman et al. [19] observed a strong relationship between in
vivo pulmonary mechanical and lung morphometric (mean linear
intercept) measurements in methacholine-bronchoconstricted rats.
They noted the increased in airspace size was indicative of the presence
of pulmonary hyperinflation. In addition, using chest wall
displacement for estimating a change in lung volume via a flex sensor,
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Volgyesi et al. [20] reported an association between dynamic
hyperinflation and decreases in Cdyn during methacholine challenge
in naïve mice. Further, we found a correlation between in vivo
enhanced pause (Penh) determined by whole-body barometric
plethysmography [21] and ELGV in naïve mice challenged with
methacholine [22]. Finally, we showed that the rank order of
methacholine-induced increases in pulmonary gas trapping of naïve
male A/J, BALB/c and C3H/HeJ mice [23,24] was similar to that
observed for the same mouse strains using airway pressure-time index
to measure airway responsiveness to acetylcholine [25]. Thus,
collectively these investigations validate the use of pulmonary gas
trapping in small laboratory animals for modeling pulmonary
functional aspects of human lung diseases.

Figure 5: In guinea pigs, relationship of excised lung gas volume
(ELGV) with Cdyn and RL values obtained immediately prior to
death. Pulmonary gas trapping was inversely related to Cdyn (Figure
3A), while directly related to RL (Figure 3B). Each point represents
one animal. Open circles-vehicle, closed circles- A23187 (modified
from Stengel et al. [16]).

We found dose-related ELGV increases after methacholine
bronchoprovocation in naive small laboratory animals [23]. When
examining control ELGV values, they did not differ significantly
among species, ranging from 1.50 ± 0.20 ml/kg for guinea pigs to 2 .75

± 0.20 ml/kg for Brown-Norway rats. Thus, the resting gas volume in
excised lungs when normalized by body weight was similar across
species. Allometric analysis [26] between resting lung volume and the
over 24-fold range of body weights of animals used in this study
showed a linear relationship between those two variables. When
expressing ELGV as a percent of control for each animal species, we
found maximal response (Figure 6) and potency (Table 1) to inhaled
methacholine in guinea pigs to be at least 2-fold and 11-1,395 times
greater, respectively, than that observed for the other species.

Based on the methacholine-induced pulmonary gas trapping
response in naïve mice, Hatfield et al. [27] were the first to
demonstrate a significant increase in ELGV values of antigen-
sensitized, antigen-exposed C57BL/6 mice compared to that of antigen
vehicle-treated, antigen-exposed animals following a methacholine
aerosol challenge. However, only one methacholine aerosol solution
concentration was reported so there was no aerosol concentration- or
dose-response information, indication of maximal pulmonary gas
trapping, or reproducibility of the airway obstructive response in their
mice. Similarly, Yiamouyiannis et al. [28] found increases in ELGV
values to be significantly greater in ovalbumin-sensitized, ovalbumin-
exposed C57BL/6 mice than that of control animals at both
methacholine aerosol solution concentrations used in their study. Like
Hatfield et al. [27], Yiamouyiannis et al. [28] did not provide
information on either maximal or reproducibility of methacholine-
induced airway obstruction in their animals.

Figure 6: Comparison of methacholine-induced pulmonary gas
trapping in guinea pigs (A), hamsters (B), mice (C), and rats (D).
Increases in excised lung gas volume (ELGV) values produced by
methacholine are as % control. Values are means SE of 4-6 animals/
group (modified from Stengel et al. [23]).

From the results of those two studies, we examined reproducibility
of methacholine-induced airway obstruction in ovalbumin-sensitized,
ovalbumin-exposed BALB/c mice (Positive Control) versus
ovalbumin-sensitized, sodium chloride-exposed animals (Negative
Control) [22]. After establishing that dose-related increases in
pulmonary gas trapping caused by inhaled methacholine in Negative
Control mice was similar to what we observed previously in naïve
BALB/c mice [23], we found maximum ELGV values of methacholine-
challenged Positive Control mice to be 1.3-2.4 times greater than those
of Negative Control mice. Additionally, we found the sensitivity to
methacholine in Positive Controls [ED200 (95% confidence interval) =
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0.013 (0.0067-0.019) mg/kg] was 7.8 times greater than that observed
Negative Controls [ED200 (95% confidence interval) = 0.101
(0.033-0.340) mg/kg]. Next, we examined the relationship between
pulmonary gas trapping and Penh in both naïve and sensitized mice
[22]. In urethane-anesthetized naïve mice, we found changes in ELGV
values correlated with changes in enhanced pause obtained
immediately prior to death. In ovalbumin-sensitized mice, we
observed remarkable stability in methacholine-induced pulmonary gas
trapping when examining mean ELGV values of Positive and Negative
Control mice from nine studies conducted over six months (Figure 7).
In contrast, we found tremendous variability in mean enhanced pause
values of methacholine-challenged Positive and Negative Control mice
over a six-month period.

Species Strain n ED200 ELGV, µg/kg

(95% confidence
interval)

Relative
Potency

Guinea pig Hartley 25 1.6 (1.0-2.3) 1

Hamster Golden Syrian 25 2232.0 (769.0-3033.0) 1,395

Mouse A/J 25 26.0 (16.6-41.2) 16

BALB/c 48 359.0 (185.0-641.0) 224

ICR 30 71.9 (29.8-155.0) 45

Rat Brown-Norway 20 24.1 (17.0-32.0) 15

Fischer 344 20 24.2 (12.1-38.6) 15

Lewis 20 28.8 (22.6-35.6) 18

Sprague-
Dawley

20 17.2 (9.0-26.4) 11

Table 1: Table showing relative ED200 ELGV of methacholine
producing pulmonary gas trapping increases in the guinea pig,
hamster, mouse, and rat (from Stengel et al. [23]). Estimated inhaled
dose of methacholine was calculated based on nebulizer solution
concentration, usable nebulizer output, inhalation time, chambre
airflow, minute volume, and animal body weight.

When using a method such as the ELGV measurement for assessing
airway mechanical responses in animal models of human lung disease,
I believe it is important to use established drug treatments as positive
comparators. For instance, glucocorticosteroids are used in the
treatment of asthma [29]. In two separate studies, we found both oral
dexamethasone and inhaled budesonide reduced methacholine-
induced pulmonary gas trapping and eosinophil and neutrophil
recruitment in ovalbumin-sensitized, ovalbumin-exposed BALB/c
mice [22,30]. Thus, the results with the glucocorticosteroids provide
further validation of the ELGV measurement in a mouse model of
allergic asthma.

Figure 7: Indirect comparison in pulmonary gas trapping (upper
panel) and enhanced pause (lower panel) of Positive and Negative
Control mice produced by methacholine. For each method, intra-
and inter-study variability was assessed in nine experiments
performed over approximately 6 months. Each point corresponds to
an individual animal, and the horizontal bar represents the mean
for each group. One hundred mice (Positive Controls, n=50 mice,
and Negative Controls, n=50 mice) were used to examine
methacholine-induced pulmonary gas trapping, while 142 mice
(Positive Controls, n=72 mice, and Negative Controls, n=70 mice)
were used to examine enhanced pause following methacholine. The
percentages listed in each figure represent the relative increase in
excised lung gas volume and enhanced pause values of Positive
Control mice compared to Negative Control mice. Asterisks
indicate significant difference (P<0.05) between the mean excised
lung gas volume or mean enhanced pause values for Positive and
Negative Control mice (from Stengel et al. [22]).

Use in rodent models of emphysema
Although the studies thus far described have shown the usefulness

of pulmonary gas trapping in guinea pig and mouse models of allergic
asthma, recently Jansson et al. [31] used the ELGV measurement to
follow the progression of lung volume changes in genetic (pallid or
tight-skin mice) or pancreatic elastase-induced (Wistar rats) animal
models of emphysema. They noted as early as one and three months
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after birth, ELGV values of tight-skin and pallid mice, respectively,
were significantly higher than normal C57BL/6J mice. Morphometric
analysis of lungs from pallid and tight-skin mice at four months after
birth revealed significant loss of extra-alveolar tissue area and increases
in intra-alveolar space compared to normal C57BL/6J mice. Likewise,
Wistar rats receiving pancreatic elastase intra-tracheally showed
statistically significant increases in ELGV, decreases in extra-alveolar
tissue area and increases in intra-alveolar space seven days after
instillation compared to rats receiving saline. Thus, measuring
increases in ELGV may be useful for evaluating the development of
emphysema-like lesions in animal models and the effectiveness of
novel therapeutic agents for treating this human lung disease.

Use of ELGV measurement in a non-lung disease study
With the recent development of transient receptor potential

vanilloid 1 (TRPV1) agonists such as civamide [32] or SDZ 249-665
[33] for treating pain, a major concern of capsaicin analogues is
increased airway smooth muscle contraction since the prototypical
TRPV1 agonist capsaicin has been shown to cause
bronchoconstriction in humans [34]. In a pilot study [35], we found
that SDZ 249-665 caused dose-related ELGV increases following
intravenous, but not oral administration in guinea pigs. Also, when
given orally once daily for 7 days to guinea pigs, SDZ 249-665
significantly suppressed capsaicin-mediated increases in pulmonary
gas trapping, but not airway obstruction caused by the muscarinic
receptor agonist bethanechol. Although preliminary in nature, these
results suggest the ELGV measurement may be useful for examining
potentially adverse pulmonary adverse drug-related events [36] and for
exploring the role of oral TRPV1 agonists in the down-regulation of
TRPV1 channels in neurogenic inflammatory disorders [37].

Summary
The ELGV measurement is a rapid and reproducible method for

quantitating airway responses in small laboratory animals. In addition,
it is easy to perform requiring only minimal training such as removing
lungs from the thoracic cavity and reading the grams displaced on an
analytical balance display. Further, the apparatus for measuring ELGV
is much less expensive (hundreds of dollars) than the equipment for
noninvasive or invasive pulmonary function measurements (tens of
thousands of dollars) in small laboratory animals. Finally, investigators
from academic [28,38,39], government [40], and pharmaceutical
[27,41,42] laboratories have used the ELGV measurement to advance
their research. Thus, I believe the ELGV measurement is a cost-
effective alternative approach for assessing in vivo airway mechanics in
small laboratory animals and for examining novel therapies for
treating human lung disease.
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