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Introduction
Mature (adult return) chum salmon (Oncorhynchus keta) migrate 

from offshore into coastal waters and natal rivers to breed [1,2]. 
Spawning season spans approximately 7 months, from August to 
February [3]. In Japanese waters, returning adults are caught mainly by 
set-nets in coastal waters off natal rivers, and by gill- and purse-seine 
nets within rivers. Therefore, the number of returning adults is defined 
as the sum of numbers caught coastally (coastal catch) and numbers 
caught in rivers (river catch). As the fishing season proceeds the 
cumulative proportion of returning adults gradually increases (Figure 
1). We can view in-season catch data as a kind of relative density index 
obtained by in-season survey.

At present, the pre-season forecast model of Japanese chum salmon, 
which is the sibling model, it has been often used to forecast age-
specific return number. This pre-season forecast model requires many 
biological parameters and assumptions, which are age composition 
and constant rate of maturation through study period. Whereas, in-
season forecast model using only in-season catch information could 
require no parameters and assumptions (Figure 1). In addition, a 
nonparametric approach such as smoothing spline is expressed with 
the added advantage of not having any a prior assumption of linearity 
[4]. Several studies have developed nonparametric models for in-
season forecasts [5,6]. In-season forecast model using catch data and 
smoothing spline could ensure simplification of forecasting.

The in-season model in this study does not consider variability 
in salmon return timing, which is affected by both genetic and 
environmental factors [7,8]. The return timing affecting in-season 
catch, return, and the cumulative proportion of the adult return (Figure 
1) could cause forecast error of the in-season model. We focused on the 
relationship between forecast error rate and the cumulative proportion 
of the adult return.

The purpose of this study was to develop in-season forecast models 
for chum salmon return by using smoothing spline. We compare 
forecast accuracy of the in-season forecast model with that of pre-
season forecast model.

Materials and Methods
Study area and population

In this study, we subject data to the chum salmon population in the 

Sea of Japan off the Honshu region, Japan to forecast models (Figure 2). 
This regional population includes river stocks of chum salmon in the 
region (Figure 2). The region includes coastal areas in Aomori, Akita, 
Yamagata, Niigata, Toyama, and Ishikawa Prefecture.

Data source

The coastal catch in number, C, and river catch in number, D, 
in the regional population of the Sea of Japan off Honshu were used 
for 1993-2013 [9]. The catch data were collected by Aomori, Akita, 
Yamagata, Niigata, Toyama, and Ishikawa Prefecture. The catch data 
were summarized each season j (1st season is 10 days). The season 
j-specific return, Rt,j, and the total return in year t were defined as:
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Abstract
We developed an in-season forecast model of return of chum salmon for the population off the Honshu region in 

the Sea of Japan using the smoothing spline based on catch data obtained in fishing season. The optimal in-season 
model was constructed using adult return in season 8 (middle October) as an explanatory variable. Residual sum 
of squares of the optimal in-season model was lower than that of the pre-season forecast (sibling) model, indicating 
the former was more accurate than the latter. The relationship between forecast error rate in the optimal model and 
the cumulative proportion of return until season 8 (middle October) was positive. Yearly variation in the forecast error 
rate may be affected by variability in the timing of return. We provide a new and accurate forecast model of chum 
salmon return.
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Figure 1: Season-specific cumulative proportions of return of chum salmon in the Honshu 
region, the Sea of Japan off, Japan, from 1993 to 2013. Season j is divided from 1 August-31 
March in intervals of 10 days (j=1-24).
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Figure 1: Season-specific cumulative proportions of return of chum salmon in 
the Honshu region, the Sea of Japan off, Japan, from 1993 to 2013. Season j is 
divided from 1 August-31 March in intervals of 10 days (j=1-24).
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where j is the season that is divided from 1 August-31 March 
in intervals of 10 days (j=1-24). For example, j=1, 2 and 3 represent 
periods from 1 to 10 August, 11 to 20 August, and 21 to 31 August, 
respectively.

Smoothing spline model

To evaluate relationships between log-transformed total return Rt 
and catch data in-season, models were constructed for the following 
four cases:
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where s is the smoothing spline function and ε is assumed to be 
normal distribution. Function s is estimated by minimizing penalized 
residual sum of squares and equivalent 4 degrees of freedom in GAM 
by using S+ version 8.1 [10]. In Equations (3-6), explanatory variables 
are coastal catch, Ct,j, cumulative coastal catch-to-date, ΣCt,j, return 
Rt,j, and cumulative return-to-date, ΣRt,j, separately. In addition, to 
test explanatory variables in various fishing seasons, we used variables 
from fishing starting season 1 to 8 when the cumulative proportion of 
adult return met 0.5 (Figure 1). However, in seasons 1-5, return and 
catch were frequently 0. Therefore, to avoid values of 0 as explanatory 
variables, we used variables in seasons 6,7 and 8. Thus, season j was 
given as 6,7 and 8 in the case of Equations (3) and (5). In the case of 
Equations (4) and (6) τ is given as 6,7 and 8. Therefore, we generated 
3 models for each case. The total number of models was 12 (Table 1).

In-season forecast procedure by cross-validation

Fitting of the above models is a part of forecast procedure. Log-
transformed R was forecast by the following cross-validation:

Step 1: A smoothing spline was estimated by GAMs using data 
from 1993 to t, indicating fitting of the models (Equations: 3-6).

Step 2: An explanatory variable in t+1 is substituted into the 
estimated models and then ln(Rt+1) is forecast.

This procedure was repeated from t=2000 to 2012. Therefore, year-
specific forecasts, ln(Rt+1), were provided for each year from 2001 to 
2013.

To evaluate the accuracy of model forecasts, the residual sum of 
squares (RSS) was measured for each in accordance with:

2012
2

t 1 t 1
t 2000

ˆRSS (ln R ln R )+ +
=

= −∑                                  (7)

In addition, forecast error rate was calculated for each year. Note 
that the cumulative proportion of the adult return for any given season 
varied between years (Figure 1). Thus, the forecast error rate may be 
affected by return timing. We investigated relationships between 
forecast error rate and the cumulative proportion of returning adults.

Pre-season forecast

The sibling model, a traditional pre-season forecast model, was 
used to forecast the number of adult returns for specific age classes, 
as follows:

Step 1: Linear regression of log-transformed R at age a-1 in t-1 
against log-transformed R at age a in t is estimated by using data from 
1993 to t as:

t 1,a t ,a t ,a 1 t ,aln R g ln R h+ −= × +                 (8)

where gt,a is the regression slope and ht,a is the intercept from 1993 
to t at ages a from 3 to 7. Calculations for 5 ages classes over 13 years 
produced 65 regressions. Note for ages 2 and 8 a regression (Equation 
8) cannot be estimated. At ages 2 and 8, forecast values are given as the 
average of observed ln(Rt,2) and ln(Rt,8) from t to t-4, separately.

Step 2: When gt,a is significant (p<0.05), an explanatory variable, 
i.e., return at age a-1 in t, is substituted into the estimated regression 
(Equation 8) and then ln(Rt+1,a) is forecast. If gt,a is not significant 
(p<0.05), ln(Rt+1,a) is given as the average of observed ln(Rt,a) from t 
to t-4. Finally, age-specific forecasts ln(Rt+1,a) were combined by year. 
Age-combined forecast, ln(Rt+1), were calculated for each year from 
2001 to 2013.

This procedure was repeated from t=2000 to 2012. RSS between 
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Figure 2: Summary of location. The solid line 
indicates the Honshu region in the Sea of Japan. 

Figure 2: Summary of location. The solid line indicates the Honshu region in 
the Sea of Japan.

Model Explanatory variable Season
1 C 6
2 C 7
3 C 8
4 Cumulative C 1-6
5 Cumulative C 1-7
6 Cumulative C 1-8
7 R 6
8 R 7
9 R 8
10 Cumulative R 1-6
11 Cumulative R 1-7
12 Cumulative R 1-8
13 Sibling Pre-season

Table 1: In-season forecast models and sibling model. Coastal catch (C) and 
return (R) of chum salmon.
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actual lnRt,+1 and age-combined lnΣ(Rt+1,a) was calculated using 
Equation (7).

Results and Discussion
In catch models 1,2 and 3, RSS decreased as the season progressed 

from 6 to 8 (Figure 3). In cumulative catch models 4,5 and 6, and in 
return models 7,8 and 9, RSS also decreased in the same manner with 
catch models. To the contrary, in cumulative return models 10,11 and 
12, RSS decreased as the season proceeded from 6 to 7 but increased in 
season 8. Of all 12 in-season models (Table 1), catch model 3 had the 
lowest RSS (Figure 3). RSS in model 3 was lower than that of the sibling 
model 13, indicating that, of all models examined, the optimal model 
was catch model 3.

The optimal model was particularly good at forecasting variation 
in the observed return in 2004-2008 compared with the sibling model 
(Figure 4). Ability of forecast the return of the optimal model (catch 
model 3) was better than that of the sibling model (Figure 3). Therefore, 
our result provides a new, simple, and accurate in-season forecast 
model compared with the sibling model.

The relationship between forecast error rate in catch model 3 and 
the cumulative proportion of return until season 8 (middle October) 
was positive (Figure 5). Yearly variation in the forecast error rate may 
be affected by variability in the timing of return [7,8]. Further study 

would need to incorporate variables associated with variability in the 
return timing into in-season forecast model. However, the forecast 
error rates of catch model 3 were relative low. In addition, smoothing 
splines of catch model 3, which were estimated by GAM framework, 
were soaring curves against coastal catch in season 8 (Figure 6). 
Although the end year for modeling, i.e., year t, changed from 2000 
to 2012, the form of these curves did not change demonstrably. This 
result suggests that little the coastal catch in season 8 as explanatory 
variable in the optimal model is affected by changing of catch inducing 
by the return timing. Thus, the coastal catch in season 8 has robustness 
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Figure 3: Residual sum of squares (RSS) of catch model and cumulative catch model (a) and 
return model and cumulative return model (b).
Figure 3: Residual sum of squares (RSS) of catch model and cumulative 
catch model (a) and return model and cumulative return model (b).
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Figure 4: Forecast returns in model 3 and sibling model, and observed return.Figure 4: Forecast returns in model 3 and sibling model, and observed return.
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Figure 5: Relationship between proportion of cumulative return from season 
1 to 8 and forecast error rate.
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Figure 6: Estimated smoothing spline (s) of catch model 3 for each period 
for 1993 to t.
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of variability of return timing. This model could explain variation in 
the observed return well.
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