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ABSTRACT

Quantifying the workplace risk factors such as body inclination angles, load weights, and vertical and horizontal 
reaching distances is essential to prevent work-related musculoskeletal disorders. Most of these factors need to be 
measured during the task. Assessing the work performed using a direct observation approach is time consuming 
and the study can encounter observational errors as well as disturb the workers. Wearable sensing technologies 
could replace the use of optical motion capturing systems. No review study was conducted to discuss the use of 
wearable technology as a means for providing input variables for various manual material handling job assessment 
methods. The current study provides a review about wearable technologies that can be used to provide input 
variables for different ergonomic assessment methods. The validity of diverse wearable sensors in quantifying 
different biomechanical measures is included. Also, the synchronization of those measures with various ergonomic 
assessment methods is discussed.
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INTRODUCTION

Occupational Low Back Disorders (OLBDs) such as lumbar 
degenerative disc, herniated disc, muscle strain, and ligament 
sprain, among others, have been a costly issue due to the impact 
they have on workers' health, productivity, and absenteeism, 
among others. In the United States, a study estimated the direct 
OLBD medical costs to be between $12.2 to $90.6 billion annually 
[1]. Another study estimated the annual cost of total productive 
time lost due to OLBD in the US workforce to be about $19.8 
billion [2]. Workers’ exposure to various physical factors in manual 
material handling (i.e., extreme torso bending, torso twisting, 
lifting heavy objects, etc.) needs to be assessed in order to make the 
required interventions to reduce the risk of injuries. 

Several approaches such as direct observations, checklists, worker 
interviews, and questionnaires are used to identify risk factors and 
unsafe work conditions. However, these approaches are subjective 
and may differ from one evaluator to another. Optical motion 
capture, force plates, and Electromyography (EMG) systems were 
shown to effectively assess manual material handling jobs [3-6]. 
However, the use of optical motion captures and force plate systems 
are limited to use in controlled laboratory environments. Therefore, 
there is a need for wearable sensors that collect physiological (e.g., 
heart rate, muscle forces, etc.) and biomechanical (e.g., joint angles, 

ground reaction forces, etc.) data in free-living environments with 
no to minimal disturbance to the worker’s movements. Also, 
some of the collected data such as load weight, hand position 
(horizontally and vertically) during lifting, torso asymmetry, task 
frequency, and task duration can be used in the assessment of 
various Manual Material Handling (MMH) jobs such as lifting, 
lowering, pushing, and pulling using the available MMH activities 
assessment methods. Examples of most popular assessment 
methods include the National Institute for Occupational Safety 
and Health (NIOSH) Lifting Equation, American Conference 
of Governmental Industrial Hygienists (ACGIH) Threshold 
Limit Values (TLVs), (WA L&I) lifting calculator, Ohio Bureau 
of Workers' Compensation (BWC), Snook tables, Lifting Fatigue 
Failure Tool (LiFFT), Ovako Working Analysis System (OWAS), 
and Rapid Upper Limb Assessment (RULA) [7-15]. Input variables 
(i.e., exposure factors) to each assessment method are tabulated in 
Table 1. 

To the best of the author’s knowledge, no review study has focused 
on the use of wearable technologies during various MMH activities 
to measure the different MMH activities risk factors (e.g., load 
weight, vertical lifting height, horizontal reach distance) and then 
use these variables as inputs into various MMH activities risk 
assessment methods. The current study aims to review the use of the 
wearable technology in the MMH activities ergonomic assessment 
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methods. The current review adds to the body of knowledge the 
need for reliable and accurate wearable technologies that provide 
measurements of the workplace and working factors to be used as 
inputs in various MMH activities risk assessment methods without 
disrupting the worker.

Methodology

The current review was based on an electronic search using 
Google Scholar, Scopus, and PubMed. The keywords used 
for searching the literature included “wearable technology," 
"wearable sensors," "wearable devices," “wearable computers,” 
“ergonomic,” “assessment,” “manual material handling,” “lifting,” 
and “occupational risk.” More than 400 articles were found from 
the three search engines. By reviewing the titles, abstracts, and 
conclusions, 52 articles were included. Finally, after reading the 
full texts, 32 articles were included in the current review. 

The article selection criteria were as follows:

• Articles related to wearable sensors.

• The wearable sensors were used to measure MMH risk factor 
variables.

• The measured variables were used (or could be used) as 
inputs into various manual material handling risk assessment 
methods such as NIOSH Lifting Equation, ACGIH, OWAS, 
etc. 

• Articles were written in English.

In the next section, four elements are discussed for each wearable 
technology; including the technology description, validation 
efforts, application in MMH activities risk assessment methods, 
and strengths and limitations. Also, the summarized findings are 
tabulated at the end of this study.

WEARABLE SENSORS

The Lumbar Motion Monitor (LMM)

LMM technology description: The lumbar Motion Monitor 
(LMM) is a wearable system that was developed by Marras's 
team to collect three-dimensional torso position, velocity, and 
acceleration [16]. Moreover, instantaneous movement of the 
spine in the three-dimensional space can be assessed through the 
triaxial electrogoniometer that is built into the LMM device [17]. 
Additionally, the device is an exoskeleton of the spine that can 
be attached to the individual’s torso using a chest harness and a 
waist harness. The LMM is used to assess MMH jobs in almost all 
occupational environments since the torso kinematics data can be 
wirelessly transmitted from the LMM to a portable computer via 
the digital telemetry system. The design of the device enabled for 
data collection with minimal obstruction to the user’s movements.

LMM validation and application in MMH risk assessment 
methods: Previous studies have utilized the LMM along with other 
systems (electromyography (EMG), force plate, and goniometer) 
to estimate spinal loadings during lifting [18,19]. Another 
study has utilized the LMM and EMG sensors to evaluate torso 
kinematics and maximum compressive forces [20]. Several studies 
have validated the accuracy of the LMM and its associated model 

(i.e., Ohio State University (OSU) OLBD risk assessment model) 
[16,21,22]. The OLBD Risk model determines the job’s high-
risk group membership probability using torso kinematics data 
collected from the LMM as well as other user input variables 
including load weight, moment arm (horizontal distance between 
the L5/S1 disc and the load being handled), and lift frequency. 
LBD Risk probability of 0-29%, 30-69%, and 70-100% represent a 
low, moderate, and high risk of LBD, respectively [22].

LMM strengths and limitations: The wearable LMM has several 
strengths. First, the LMM device can accurately measure torso 
kinematic data in various workplaces. Also, the collected torso 
data can be interpreted using the OLBD risk assessment model to 
assess the required job by determining the risk level in MMH jobs. 
Furthermore, using the resulted OLBD risk level, the necessary 
interventions (either on the performed job or the physical 
workstation) can be carried out to reduce the spinal loadings, and 
thus, the risk of OLBD. Finally, the LMM is portable, lightweight, 
and easy to use.

On the other hand, some limitations may restrict the use of the 
LMM device. First, it is an expensive device that may limit its use, 
especially in small and medium scale industries. Also, wearing 
the LMM on the back may restrict the worker's movement which 
may not represent accurate torso kinematic data, and thus, under 
or overestimate the LBD Risk probability. Third, the LMM does 
not measure the moment arm which is an input variable to the 
LBD Risk model. Thus, a tape measure or other means need to be 
utilized to measure the moment arm. Finally, the LMM does not 
measure the load weight which is also another input variable into 
the LBD Risk model. This may limit the device use in worksites 
with high variability in weights being lifted or lowered, such as in 
warehouses.

Electromyography (EMG) sensors

EMG technology description: The electrical signal measured 
from a muscle contraction is called an “electromyogram” [23]. 
Electromyography (EMG) sensors were developed to evaluate the 
action of the muscles during various human activities. EMG sensors 
indirectly quantify muscle activity using surface (wireless) or wire 
electrodes. These electrodes determine muscle contraction timing 
and the intensity of muscle contraction through the detection 
of voltage potentials [24]. Several factors can influence the EMG 
signal including fatigue, muscle shortening or lengthening velocity, 
rate of tension build-up, and reflex activity [23]. Wireless EMG 
enables muscle activity capturing beyond the laboratory.

EMG Validation Efforts: Wong, et al. review study showed that by 
positioning the sensor on the optimal location on the muscle, one 
could monitor muscle activity with a classification accuracy range 
of 77%-97% [25]. EMG sensors can be used to assess the physical 
demand of a job, which then can assist in classifying jobs as having 
a high or low risk of injury. Granata and Marras have developed 
an EMG-driven model for lower back loading prediction during 
isokinetic and free lifting [19]. The model effectively estimated the 
loading on the low back with a coefficient of determination (R2) 
of 0.81. Another study has developed a framework for low back 
pain exposure assessment [26]. The framework included various 
assessment approaches including EMG and four other methods 
based on direct observations and questionnaires to evaluate 
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postures. Spinal compression was used as a common metric for 
all the measurement methods. The EMG was utilized to collect 
erector spinae muscles data bilaterally at the T9 and L3 levels 
[26]. Painting, part assembly, and manual material lifting jobs 
were assessed. The authors agreed that using the EMG approach 
would provide a more accurate estimate of the exposure, and 
thus, a better estimate of the risk [26]. Also, EMG sensors can be 
used to classify an individual’s spine as healthy or injured. Several 
studies have examined the sensitivity of surface Electromyography 
(sEMG) sensors in differentiating between healthy individuals and 
individuals with low back pain [27-31]. Results from these studies 
showed that measurements from surface EMG (e.g., greater muscle 
recruitment over time, lack of muscle symmetry, unbalanced muscle 
activity) can effectively be used as objective markers of low back 
pain cases. Loading on the human body's lower extremities can be 
quantified using EMG-assisted models. Kadaba, et al. quantified 
lower limb muscle forces using EMG sensors [32]. The collected 
forces were combined with joint kinematic data (using an optical 
motion analysis system) and ground reaction forces (using force 
plates) to predict knee flexion/extension moments.

EMG application in MMH risk assessment methods: Cabeças 
presented the use of surface EMG data as an alternative to the 
observational methods for the Strain Index (SI) computations [33]. 
EMG data was collected from 20 participants while performing 40 
different cleaning activities. Moreover, EMG data was analyzed in 
the right and left wrist flexor and extensor muscles. Mean values of 
the percent of maximum voluntary exertion (%MVE) (normalized 
values) were calculated for each hand and each muscle. Cabeças 
considered the exertion level of (P10) %MVE from as the static 
load level in the muscle for the cleaning activities [33,34]. The 
selected level represents the amplitude probability distribution 
analysis of EMG signals of the estimated exertion level in the 
event of the muscular loading [34]. Moreover, defined trigger levels 
that represent the amount of exertion in the evaluated cleaning 
activities [33]. Also, exertions are considered when the amplitude 
of the signal is above the trigger level for at least 0.5 s [33]. 
Exertion duration was then quantified as the percentage of time 
the muscle is contracted above the trigger level. This was achieved 
using the Amplitude Probability Distribution Function (APDF) 
developed by [35]. Additionally, the authors utilized MegaWin 
v.2.3 software (MEGA Electronics Ltd.) to process the exertion 
intensity and frequency. The developed SI evaluation method 
used these quantified variables to compute the SI score [33]. The 
results showed the effectiveness of using the EMG data to quantify 
hand exertion intensity, frequency, and duration for jobs that are 
associated with hand/wrist exertions. However, the author stated 
that the usefulness of the proposed model depends on defining 
the appropriate trigger levels for the muscular activation in the 
examined activity. 

Another work utilized two EMG systems (i.e., a custom and 
Shimmer3) [36]. Measurements from the EMG signals were also 
used in the SI assessment method. The intensity of exertion, 
duration of exertion, frequency of exertion, and wrist posture were 
estimated using the EMG systems. The results showed that EMG 
systems could be used to obtain muscle activities data to use in the 
assessment of MMH activities using the SI ergonomic assessment 
method. 

A recent study by Mudiyanselage, et al. utilized 2 wireless sEMG 

muscle sensors attached to the upper back muscles to assess 
the muscles' contractions during various MMH activities [37]. 
Additionally, a webcam was used to help with the synchronization 
of the collected data. A male participant lifted various weights (5-15 
kg) from different horizontal and vertical locations corresponding 
to NIOSH Lifting Equation LI ≤ 1.2, 1.2<LI ≤ 2.4, and LI>2.8 
to represent the lifting tasks with nominal, increased, and high 
risk, respectively. Four different machine learning classification 
algorithms were used to identify the various risk levels. The 
results showed that the developed sEMG system can be used as 
an automatic ergonomic assessment method by classifying the risk 
levels based on the NIOSH Lifting Equation. The highest accuracy 
levels were 97.70%, 99.35%, and 99.05% for the three time-
segmentations 1 second, 0.5 second, and 0.25 second, respectively, 
using the Decision Tree machine learning model.

EMG Strengths and Limitations: EMG systems can be used to 
objectively assess the muscles forces. Also, using the sEMG sensors 
is considered a safe and non-invasive method to obtain information 
about the muscle’s contractions. Such information can be obtained 
without disrupting the workers or the workflow. Finally, through 
the EMG filtered data, ergonomist can determine the occupational 
risk factors using information such as muscle activation, muscle 
effort in the various body segments, and peaks and cumulative 
exposure [36].

On the other hand, several drawbacks related to the EMG sensors 
can be identified. High accuracy EMG sensors are expensive, which 
may limit their use. Also, precise placement of the EMG sensors 
is required. Data from EMG systems might vary across different 
subjects and placement. Also, since these sensors are attached to 
the body, they may become loose, and thus, result in inaccurate 
data collection. Finally, the EMG signals are sensitive to sweat and 
hair, which also may result in errors in the retrieved signals.

Inertial Measurement Units (IMUs)

IMUs technology description: Another wearable technology is the 
inertial measurement unit (IMU). IMU sensors are commercially 
available such as Shimmer3 IMU and Xsense sensors. These 
wearable sensors allow for quick and easy measurements of body 
parts' angles, velocity, and acceleration. The IMU sensor contains 
a low noise accelerometer, both wide range accelerometer and 
magnetometer, and a digital gyroscope. IMUs sensors can be 
effectively used in various working environments.

IMUs validation efforts: A study has developed an algorithm called 
Online Sparse Estimation-based Classification (OSEC) that enables 
for online body posture monitoring during MMH jobs using IMU 
sensors [38]. The results showed that the proposed system could 
effectively be used to monitor various joint angles during different 
MMH activities, and thus, can be utilized to suggest the necessary 
ergonomic interventions to eliminate or reduce the risk of injury 
[38]. Another study has utilized four IMU sensors to estimate the 
acceleration, the rate of change in the acceleration (i.e., jerk level), 
inclination angles, movement durations, and repetitions [39]. The 
included body parts were the ankle, wrist, hip, and torso. This 
data was then utilized to determine the fatigue level for individuals 
performing MMH jobs. It was found that the IMUs are effective in 
determining the above mentioned kinematics data that allowed for 
determining the fatigue state [39]. A later study by Koopman, et al. 
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was conducted to estimate the L5/S1 extension moment using IMU 
sensors [40]. Also, they examined the effect of reducing the number 
of IMU sensors on the accuracy of the estimated L5/S1 moment. 
Lab-based systems including The Optical Motion Capture (OMC) 
(i.e., for full-body kinematics measurements) and force plates (FP's) 
(i.e., for ground reaction forces measurements) were used as a 
reference for the IMU measurements. It was revealed that a set of 6 
IMU sensors is optimal when considering accuracy and simplicity. 
The 6 IMU set consisted of sensors on the pelvis, sternum, upper 
arms, and forearms. It was concluded that the L5/S1 extension 
moments can be alternatively estimated at the workplace using the 
IMU systems with only 6 IMU sensors with no need to use OMC 
and FP systems, in case of utilizing the pressure insoles that can 
result in sufficient ground reaction force accuracy [40].

IMUs application in MMH risk assessment methods: Peppoloni, 
et al. developed an automatic assessment system consisting of 
8-channel surface EMG sensors to estimate the muscular exertion 
efforts as well as the frequency and duration of each exertion [41]. 
An EMG sensor array was attached to each participant's forearm to 
monitor flexor carpi radialis, the palmaris longus, and the flexor 
carpi ulnaris. Also, the system included 4 IMU wearable sensors 
to assess the posture of the worker's upper limb (i.e., upper arm 
flexion, forearm flexion and pronation/supination, and wrist 
flexion/abduction). IMUs were attached to the participant's 
back, upper arm, forearm, and hand. Measurements from these 
sensors were then used as inputs into RULA and SI assessment 
methods (Table 1). The author’s assessed 10 participants (7 males 
and 3 females) while performing various grocery cashier cycles. The 
cycles are composed of reaching for the item, grasping it, scanning, 
and releasing the item. The automatic RULA action level and SI 
scores were compared with the manual evaluation carried out by 
two human evaluators. Their results showed that the developed 
automatic system provides accurate RULA score estimation (i.e., 
about 95%) when compared to the mean score given by the human 
evaluators. The SI score given by the system, on the other hand, 
showed lower accuracy (i.e., about 45%) when compared with the 
evaluators’ assessments [41]. It should be noted that the developed 
system does not track the neck, torso, and leg positions nor provides 
information about the load weight. Thus, one can expect limited 
capabilities of the system as for RULA assessment. 

Another study by Battini, et al. developed a full-body biomechanical 
model linked with 17 IMUs that collect motion data integrated 

with several data-analysis tools developed by the authors [42]. The 
model was designed to be used for real-time ergonomic assessment 
based on the various available ergonomic assessment methods 
including RULA, OWAS, NIOSH lifting index, and Occupational 
Repetitive Action (OCRA). Moreover, the model was designed 
to provide real-time ergonomic-based feedback on the required 
interventions in the assessed workplace. The model evaluated 
warehouse workers while performing MMH activities (i.e., refilling, 
picking, and packing) in two warehouses. The variables measured 
using the IMU sensors included angles of head, neck, right and left 
shoulders, upper right and left arms, right and left forearms, right 
and left hands, spine, and hip. Also, IMUs determined the travel 
distance as well as the position of the two hands (i.e., horizontally 
and vertically) with respect to the center of the body. Task 
frequency and duration were also quantified. The hip movements 
were further analyzed to quantify the travel distance and the task 
frequency [42]. On the other hand, the authors explained that the 
load weight could be manually added to the model during the post-
processing phase and included in the final evaluation. The OWAS 
assessment method was used to assess the refilling activity. The 
inputs to the OWAS method included full-body postures, traveled 
distance, duration and frequency of lifting and lowering, and the 
percentage of the hand positions in the unsafe lifting and lowering 
zones. RULA and OCRA methods were used to assess the workers’ 
upper body while they are in a fixed position performing activities 
in packing workstations. Battini, et al. explained that the feedback 
from the developed model enabled for defining proper workplace 
interventions such as defining safe reachable zones (with respect 
to the body) and reducing the transportation distance between 
working places [42].

A study by Schall Jr, et al. compared thoracolumbar torso 
motion data measured via two IMUs (series SXT IMUs, Nexgen 
Ergonomics, Inc.) to that of the ACUPATH™ LMM™ [43]. Data 
provided from each IMU sensor included acceleration, angular 
velocity, magnetic field strength, and spatial orientation in the 
form of quaternion outputs obtained from a Kalman filter. Data 
from both systems were collected simultaneously from 36 male 
participants while performing material handling tasks. The LMM 
was worn on the participant’s back while one IMU was worn on 
the sternum and another one at the L5/S1 body segment. The data 
quantified from the two systems included angular displacements 
of the thoracolumbar region of the torso in the sagittal flexion/
extension, lateral bending, and axial rotation planes. The 

Authors Assessment methods Activity Exposure factors

Waters, et al. [7]
NIOSH Lifting 

Equation
Lifting and lowering

Load weight, horizontal distance, height, vertical travel distance, 
asymmetry, frequency, duration, and hand coupling

ACGIH [8] ACGIH TLV Lifting
Load weight, horizontal distance, height, asymmetry, frequency, and 

duration

WAC 296-62-051 (2000a), WAC 
296-62-051 (2000b) [9, 10]

WA L&I MMH
Load weight, horizontal distance, height, asymmetry, frequency, and 

duration

Ferguson, et al. [11] Ohio BWC Lifting Load weight, horizontal distance, height, asymmetry, and frequency

Snook, et al. [12] Snook Tables MMH Load weight, horizontal distance, height, and frequency

Gallagher, et al. [13] LiFFT Lifting Load weight, horizontal distance, and frequency

Karhu, et al. [14] OWAS MMH Load weight as well as postures of back, forearms, and legs

McAtamney, et al. [15] RULA
Tasks performed by 

upper limbs
Load weight, muscle use, task duration and frequency, as well as 

postures of the arm, wrist, neck, torso, and legs 

Table 1: Inputs variables to various manual material handling risk assessment methods
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results showed a small RMSE difference for the mean angular 
displacement estimates in the flexion/extension, lateral bending, 
and axial rotation motion planes between the IMU and the LMM 
systems. Furthermore, small Bland and Altman bias estimates 
were observed in the flexion/extension, lateral bending, and axial 
rotation planes across a range of a variety of movements and speeds 
[43]. Finally, it was noted that processing methods that computed 
torso motion data obtained both from IMUs worn on the sternum 
and L5/S1 body segment were more equivalent to the LMM data 
than processing methods that computed torso motion only from 
the IMU worn on the sternum [43].

A later study by Schall Jr, et al. utilized three IMUs (“ArduIMU v3”) 
to measure the physical activity of 36 registered nurses working a 
full shift [44]. Two IMUs were attached to the upper arms, and one 
was attached to the posterior torso. Measurements from the three 
IMUs were compared to those obtained from one accelerometer 
(“wGT3X-BT PA”) attached to the waist. Raw acceleration 
information from each device was summarized into the intensity 
of acceleration (i.e., activity counts/min) by calculating the vector 
magnitude of three-dimensional accelerometer axes to convert raw 
acceleration values to an omnidirectional measure of acceleration. 
The acceleration signals were then filtered and converted to 
activity counts. Additionally, the duration of each physical activity 
was computed from each sensor for each participant. The results 
indicated that the IMUs attached to the upper arms both estimated 
about an average of 200 counts/min more than the “wGT3X-BT.” 
On the other hand, the IMU that was attached to the torso showed 
a smaller difference with an average of 8 counts/min more than 
those obtained via the “wGT3X-BT” [44]. One can conclude that 
the variation in the activity counts can be related to the number of 
activities the nurses perform with their arms, in which they can be 
monitored using the sensors on the arms more accurately than the 
sensors attached to the torso or waist. It is therefore recommended 
that IMUs or accelerometers be worn on the body part that is 
involved in the required monitored movement. Additionally, the 
observed individual may be asked not to perform any movements 
other than those required in the examined activity. For instance, 
if one is interested in estimating the number of lifts (i.e., lift rate) 
MMH workers performs, wearable sensors should be attached to 

the arms, and they may also be instructed to restrict their arm 
movements during the data collection to the lifting and lowering 
activities only.

A study by Valero, et al. developed Activity Tracking with the Body 
Area Network (ATBAN) system to determine body postures and 
motion data, in order to detect the unsafe postures during MMH 
activities [45]. Moreover, the system provides real-time feedback in 
the form of a beep alert as well as the option of a summary report 
that could be generated at the end of a work session. The system 
consists of 7 wearable IMUs integrated into a body area network. 
Four sensors were worn on the arms (i.e., two on each arm) to 
provide information about load location from the body (i.e., 
horizontally and vertically). Also, one sensor was attached to the 
lower back to determine the torso inclination. Additionally, two 
sensors were worn on the shins to determine knee flexion degrees. 
Information from sensors worn on both the lower back and shins 
were used to distinguish squatting and stooping postures during 
low height lifting. The authors demonstrated that the system is 
conservative in which it wrongly detected a bending posture when 
the participant was, in fact, standing up. The system, on the other 
hand, did not miss any stooping or squatting postures. The authors 
related the false positives to the inclusion of one leg only (the 
sensor was worn on the right leg) in the experiment. Monitoring 
both legs may improve the system's performance [45]. 

Another study by Valero, et al. has developed a novel system “Activity 
Tracking with Body Area Network (AT-BAN)” and data processing 
framework to evaluate manual handling activities in construction 
work environments [46]. ISO 11226 posture thresholds were used 
for posture evaluation in the developed system [47]. The AT-BAN 
system included 8 IMUs to quantify body part inclination angles 
by measuring acceleration, magnetic heading, and angular velocity. 
The sensors were attached to body parts that are associated with 
the motion of the bricklaying activity including upper and lower 
back, arms, and upper and lower legs. This placement enabled 
the examination of torso inclination, knee flexion, kneeling, and 
arm elevation. Moreover, the system classifies the state of torso 
inclination angles (i.e., α), knee flexion angles (i.e., β), kneeling, 
and arm elevation degrees (i.e., γ) based on the safe ISO posture 
thresholds (Table 2). To evaluate the validity of the developed 

Body part postures Angle Definition 

Torso inclination

α<0° Torso backward inclination. Not recommended position

0° ≤ α<20° Acceptable torso inclination

20°≤ α<60° 
Torso forward inclination. The holding time is evaluated according to t>−0.075α + 
5.5 where t is time in minutes and α is the angle in degrees. If inequality is true, not 

recommended

α ≥ 60° Torso forward inclination. Not recommended position

Knee flexion
β>140°  Acceptable knee flexion

90°<β ≤ 140° Extreme knee flexion. Not recommended position

Kneeling

β>90° Extreme knee flexion. Not recommended position

β ≤ 90° (and calf parallel to floor) Just one leg kneeling. Squatting movement considered

β ≤ 90° (and calf parallel to floor) Kneeling

Arm elevation

0°≤ γ<20° Acceptable upper arm elevation

20°≤ γ<60°
The holding time is evaluated according to t>−0.05γ +4. If inequality is true, not 

recommended

γ ≥ 60° Not recommended position

Table 2: Safe body postures according to ISO 11226 standard adapted from [46]
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AT-BAN system, an experiment was conducted with six college 
trainees performing typical bricklaying activities at a construction 
training college. Moreover, the performed activities included 
carrying and spreading mortar as well as moving and laying 
different kinds of bricks. In addition to the use of IMU sensors, 
the system simultaneously recorded the participant’s movements 
using a camera video to visually distinguish the movements and 
provide ground truth information for the angles quantified using 
the IMUs and the proposed algorithms. Valero’s colleagues found 
that the AT-BAN system correctly differentiated the basic postures 
and detected those that are susceptible to increase the risk of 
work-related musculoskeletal disorders, based on the ISO 11226 
standard. 

Yan, et al. developed a real-time feedback system to warn 
construction workers of unsafe body postures through a connected 
smartphone application [48]. Also, the system consists of two IMU 
sensors attached to the back of the participant’s safety helmet 
and the middle-upper back to measure the head, neck, and back 
inclination angles. Moreover, a real-time data processing algorithm 
was used to translate raw unit quaternion vectors collected from 
the body segments by IMU sensors into meaningful data in terms 
of flexion-extension, lateral bending, and axial rotation. This data 
was obtained for the head, neck, and torso and compared with 
thresholds of posture angles and time spent in each posture provided 
in the International Organization for Standardization (ISO) 11226 
to determine the safe body postures and holding time in the 
developed system [47,48]. If the inclination angle or the holding 
time exceeded the safe ISO thresholds, the alarm system would 
be activated to warn the worker of the unsafe working conditions 
and the possible risk of LBD. To examine the effectiveness of the 
developed system, the authors recruited a participant who was 
required to perform two construction tasks including brick lifting 
and rebar tying. Yan’s team reported that the developed system had 
provided an adequate real-time warning for unsafe postures and the 
duration of time spent in these postures [48]. To further examine 
the system usability in the field, an experiment was conducted on a 
real construction site. The construction workers reported that the 
system enabled them to avoid working with unsafe postures and 
to reduce the amount of time of awkward working postures. Also, 
they reported that using the developed system did not disturb their 
activities. 

Chen, et al. developed an automated approach based on 17 IMU 
sensors (Noitom Perception Neuron) to evaluate different body 
postures [49]. The study included four male college students. 
One IMU was attached to the head, spine, hip, and the right and 
left shoulders, arms, forearms, hands, upper legs, lower legs, and 
feet for each participant. Motion data was wirelessly transferred 
to a computer for further analysis. The experimental data was 
collected in two phases. The first phase included motion data of six 
predefined postures (i.e., working overhead, torso forward bending, 
reaching, kneeling, squatting, and neck bending) [49]. The second 
phase included multiple sequencing postures while performing 
MMH activities. A video camera was utilized simultaneously to 
record the performed activities for reference purposes. The results 
showed that the developed system could successfully and accurately 
distinguish awkward postures involved in construction operations. 
Also, the authors suggested that such a system can be integrated 

with the available ergonomic postures assessment methods such as 
RULA and NIOSH lifting equation [49].

Hischke, et al. aimed at determining the optimal sensor placement 
on the torso to estimate torso postures [50]. Hischke’s colleagues 
conducted an experiment with 30 college-student participants. 
Participants performed three manual material handling tasks using 
a 0.45 kg box on a table. First, the reaching task in which the 
participants reached the box and pulled it toward their body. Also, 
participants lowered the box to the ground without releasing it and 
then lifted it again to the table. Third, they pushed it across the table. 
Seventeen IMU (Xsens MVN BIOMECH) sensors were attached to 
different body parts of each participant. However, Hischke, Arroyo 
evaluated data from IMUs on the sternum, right shoulder, and 
sacrum only [50]. Estimated torso flexion and extension angles 
were recorded in Euler angle form downloaded using Xsens MVN 
Studio 4.0 and converted to a measure of rotation angles using 
Matlab. The authors followed the manufacturer's instructions for 
measurement of torso flexion and extension angles using IMU 
estimates derived from the sternum and the relative position of 
sacrum. This placement was considered as a reference measure. 
Additionally, Hischke’s team obtained torso flexion and extension 
information from IMU placed on the sternum only and right 
shoulder only. Thus, measurements of sagittal torso inclination 
angles were completed using three configurations including X-SST 
for sternum segment values with respect to sacrum segment values, 
X-ST for sternum segment values only, and X-SH for right shoulder 
values only.

Hischke’s team demonstrated that the torso inclination angles 
obtained from the IMU attached to the right shoulder were similar 
to the X-SST reference measures. Also, measures from the IMU 
attached to the sternum were almost comparable to the reference 
measures. Furthermore, strong correlation coefficients (ranged 
from 0.5 to 0.88) were observed for torso inclination measures 
from IMUs attached to the sternum and right shoulder. However, 
it was shown that data obtained from the sternum segment was 
more comparable to the reference measures than data obtained 
from the right shoulder segment [50]. Moreover, the percent of 
time spent in each posture was estimated using the three sensor 
configurations. The authors demonstrated that the percent of time 
obtained from IMUs attached to the sternum and right shoulder 
showed moderate and acceptable, respectively, agreement when 
both were compared to the reference measure. Thus, the authors 
advocated that using a single IMU sensor worn on the sternum 
would perform similar to two IMUs configuration on the sternum 
and the relative sacrum segment. 

Brents, et al. utilized 17 IMU sensors (Xsens, Enschede, NT) to 
evaluate five male brewery workers while transferring spent kegs 
from two different pallet vertical heights onto a conveyor [51]. 
The sensors were fixed onto a full-body suit. Torso angles were 
assessed using sternum and pelvic sensor data where maximum 
values represented torso sagittal flexion angles and minimum 
values represented the sagittal extension angles. Data from the 
sensors revealed greater average torso flexion (4.2°) during low 
lifts compared to high lifts. Moreover, torso extension angles were 
greater (3.34°) when lifting from lower heights as compared with 
those at higher lifting heights. Also, data from the sensors showed 
no significant differences in lift duration between low and high lift 
heights.
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Barim, et al. utilized wearable IMU sensors (Kinetic Inc.) attached 
to the upper back, left upper arm, right and left wrist, and left thigh 
to aid in manual material handling risk assessment [52]. Optitrack 
motion capture system was used as a reference system. The IMU 
data was used to estimate the lifting duration while lifting from 
the 12 ACGIH lifting zones. Additionally, the angular data of the 
sensors on the body segments and a body segments ratio model were 
used to determine multiple horizontal and vertical hand locations 
(according to 12 ACGIH lifting zones) during lifting. Also, the 
upper back sensor was used to measure the trunk inclination angle. 
Barim's team showed high accuracy for IMU system measurements 
of lifting duration and trunk inclination angle. However, the 
measurements of the hand horizontal and vertical locations 
encountered large errors. The mean errors for the horizontal and 
vertical measurements were 6.5 and 33 cm, respectively. These 
errors could be attributed to the errors in the arm angular data due 
to the rotations of the sensors on the arm. Moreover, using angular 
data measured while each body segment was on a different plane of 
movement might be the reason for the inaccurate estimation of the 
hand location. The IMU system measured the lifting duration with 
minimum and maximum accuracy levels of 1.032 sec and 0.386 sec. 
Also, the results demonstrated a high correlation (r>0.90) between 
the IMU and the reference systems in measuring the hand vertical 
height and trunk inclination angle, while it was poor (r=0.14) for 
the hand horizontal distance [52]. Barim's colleagues stated that the 
longer the horizontal lifting distance, the greater the errors in the 
horizontal distance measurements obtained from the IMU system. 

A later study by Barim, et al. used the same IMU system used 
in a previous study to estimate the various ACGIH TLV lifting 
zones (the combination of horizontal and vertical locations) 
during lifting [52,53]. The new model used the same gyroscope 
information with ratio and the actual measured length of the body 
segments to improve the measurement accuracy [53]. The results 
showed that using the body segment length information reduced 
the measurement errors to be 2.2 and 14 cm, compared to the 
older model errors of 6.5 and 33 cm, for horizontal and vertical 
location measurements, respectively. However, these variables were 
estimated for sagittal lifting tasks, and thus, the usefulness of the 
proposed IMU system in assessing asymmetrical lifting tasks is 
unknown.

Beravs, Rebersek developed a wearable IMU system consisting 
of three-axial accelerometers, gyroscopes, and magnetometers to 
measure the different joints (i.e., hip, knee, and ankle) angles [54]. 
Their results showed that the IMU system could be used to measure 
body joint angles with a median absolute error of up to 5 degrees 
(Optotrak Certus was used as a reference measuring system). This 
error would be expected to increase with more dynamic movements 
due to the changes in the plane of movement of the various body 
segment. Thus, it might be infeasible to rely on the proposed 
wearable system and use the outcome measurements in the various 
ergonomic assessment method (e.g., RULA, REBA, …etc.).

Conforti, et al. used eight wireless IMUs (MIMUs MTw, Xsens 
Technologies—NL) to record kinematic data of the upper and 
lower body segments [55]. These data were then used to distinguish 
between safe and unsafe lifting and releasing load tasks. For the 
upper body segments, a sensor was attached to the sternum body 
and another sensor was attached to the pelvis. For the lower body 
segments, two sensors were on the mid-thighs (laterally), two 

sensors on the mid-shanks (laterally), and two sensors on the instep 
of the feet. The results demonstrated that using the IMU system 
to measure the range of motion of lower limb and lumbosacral 
joints as well as the displacement of the trunk with respect to the 
pelvis, allowed for distinguishing between the safe and unsafe body 
postures during lifting and releasing loads. Also, Conforti's team 
demonstrated that the changes in the hip joint ROM could be 
used to distinguish between different load weights while lifting or 
releasing tasks. IMU measurements of the RoM of the lumbosacral, 
left and right knee, and left and right ankle joint angles could be 
used as inputs into various MMH activities assessment methods 
such as RULA, REBA, and OWAS.

Donisi, et al. utilized a single IMU sensor (Opal System by APDM 
Inc.) attached to the lumbar region to gather acceleration and 
angular velocity signals during lifting activities [56]. The lifting 
activities were designed by diversely combining lifting height, 
frequency, and load weight to correspond to two NIOSH LI risk 
levels, including no-risk class (LI<1.0) and risk class (LI>1.0). Several 
machine learning algorithms use time-domain features extracted 
from the IMU acceleration and angular velocity signals to identify 
the risk level (i.e., no risk or risk). Donisi's colleagues described 
their proposed system as a potential approach to automatically 
classify the biomechanical risk to which users may be exposed 
during lifting activities.

Giannini, et al. utilized a wearable system composed of body IMU 
sensors (a custom system and two commercial ones) [36]. The 
kinematic data was then used to implement postural assessment 
methods including NIOSH and REBA. The results showed that 
the proposed system could be used to obtain kinematic data 
to use in the assessment of MMH activities using the various 
ergonomic assessment methods. The drawback of the proposed 
system; however, is that assessing more complex MMH activities 
would require a longer time to obtain the risk level as compared to 
the manual assessment methods. Additionally, assessing complex 
activities using the proposed method requires the intervention of 
an expert in ergonomic assessment methods for MMH activities 
recognition and segmentation.

Porta, et al. examined the accuracy of using a limited number of 
IMUs to predict the MMH activity type, frequency, and duration 
using a bidirectional long- and short-term memory algorithm [57]. 
Ten individuals (5 males and 5 females) were recruited to participate 
in the study. The participants performed multiple MMH activities 
including walking, load carrying, pulling, and pushing. Also, the 
tasks included lifting and lowering different weights from the 
ground and knuckle heights. Various IMU configurations were 
examined. The first configuration considered four different single 
IMU locations, including the trunk, right wrist, left wrist, and 
pelvis. Three other configurations included 2 IMU sensors attached 
on: both wrist, the pelvis and right wrist, the trunk and right wrist. 
Another configuration included three IMU sensors attached to 
the pelvis and both wrists. The last configuration was for the full-
body monitoring with IMU sensors attached to the head, sternum, 
pelvis, and scapulae, the upper and lower arms, hands, thighs, 
shanks, and feet. Regarding the various task classifications and 
sensor configurations, the results showed that the median values 
of accuracy and F1-scores ranged between 97.1% and 99.7% and 
between 75.9% and 95.5%, respectively, compared to the reference 
configuration outputs (i.e., full-body set). Moreover, Porta's team 
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stated that using a single IMU sensor placed on either of the 
four body segments (i.e., trunk, right wrist, left wrist, and pelvis) 
resulted in satisfactory results in terms of identifying the task type 
and estimate task duration and frequency.

IMUs strengths and limitations: The IMU system provides body 
posture information such as inclination angles comparable to those 
provided by the camera-based and marker-based motion capture 
systems. Thus, the technology is a promising substitute for the 
previously mentioned systems. Also, IMU sensors are wearable, 
small in size, quick, and easy-to-use technology, which makes this 
technology suitable to use as an assessment mean in the workplace. 

However, some limitations may restrict the use of IMU sensors. 
First, the movement of the IMU sensors during work may under 
or overestimate the collected data. Additionally, IMUs generate an 
abundant amount of raw data that requires both a long processing 
time and large memory storage. Furthermore, the accuracy of 
the collected motion data depends on the pre-processing and the 
developed detection algorithms [49]. Moreover, high accuracy IMU 
sensors are expensive which may limit their use. Also, since the 
IMU sensors contain magnetometers, the IMU system performance 
might deteriorate if used in the presence of any magnetic material 
in the surrounding environment [58]. Finally, measuring hand 
location during MMH activity using the IMU sensors encounters 
large errors due to the hand movement in a different plane of 
movement with respect to the other body segments (e.g., feet, 
lumbar) plane of movement [53].

Wearable pressure sensing insoles

Pressure sensing insoles technology description: Portable force 
plates can effectively be used to quantify ground reaction forces for 
kinetic analysis. However, forces that can be estimated using these 
plates are limited to a small area (i.e., the size of the force plate). 
Thus, in-shoe pressure wearable sensors have been developed 
to measure ground reaction forces outside of the controlled 
laboratory. Liu, et al. has developed a shoe-size force plate with 
three triaxial force sensors, three uniaxial gyroscopes, and one 
triaxial accelerometer [59]. These sensors were attached to a shoe 
to measure ground reaction forces, the centre of pressure, angular 
velocity, and acceleration [59]. Another study developed a ground 
reaction force wearable shoe using two six degrees of freedom 
sensors attached to the bottom of the shoe [60]. The sensors were 
attached beneath the heel and forefoot.

Pressure sensing insoles validation efforts: The wearable force 
plate and 3D motion analysis system could measure the triaxial 
force under static and dynamic working conditions with adequate 
precision (error:<6.4% of maximum measurement force) [59]. 
Another study demonstrated that the ground reaction force 
estimated from the developed shoe sensor signals was comparable 
to the reference force plate measurements [60]. Veltink’s team 
showed that the difference of RMSE between the two modules in 
ground reaction force measurements was 2.3 ± 0.4 % of maximal 
vertical ground reaction force.

Pressure sensing insoles application in MMH risk assessment 
methods: Hand forces during lifting can be estimated based on 
information about ground reaction forces and body segments 
acceleration using wearable pressure sensing shoes. A study 
by Faber, et al. utilized hand forces using instrumented Xsens 

ForceShoes and 17 Xsens IMUs to measure hand forces during 
lifting [61]. The force shoes were used to measure the ground 
reaction forces, while the IMUs were used to obtain full-body 
segment acceleration data. Each force shoe included a force sensor 
underneath the heel and another force sensor underneath the 
forefoot. Kinematic data from the IMUs was recorded using Xsens 
software (MVN Studio 3.0, Xsens technologies). IMU sensors were 
worn on the pelvis, head, scapulae, upper arms, forearms, sternum, 
hands, thighs, shanks, and feet. For comparison purposes, full-
body kinematics (acceleration) and ground reaction forces were 
simultaneously measured using an optical motion capture system 
and 6 Kistler force plates, respectively. Hand forces were estimated 
based on the ground reaction forces measured using the force shoes 
and the ground reaction forces were estimated based on different 
body segment accelerations. Moreover, information about the mass 
and the acceleration of the center of the mass of each body segment 
were used to determine the estimated ground reaction forces [61]. 
As a reference, the 3D hand forces were calculated based on the 
object mass, object center of mass acceleration, and the ground 
reaction forces measured by the force plate the object was lifted 
from. The authors compared the estimated hand forces with the 
hand forces calculated based on the object kinematics data and 
ground reaction forces obtained from the force plate the object 
was lifted from. The results showed that the hand forces RMS 
differences ranged between 10-15N when using the laboratory-
based measurements (i.e., optical motion capture system + force 
plate), 11-18N when using the IMUs and force plate, and 17-21N 
when using the IMUs along with the force shoes [61]. 

The L5/S1 moments could encounter larger errors when being 
estimated using the bottom-up model compared to the top-down 
model, for the ground reaction forces used in the bottom-up model 
are usually much larger than the hand forces factor in the top-
down model. Thus, Faber, et al. utilized a Xsens full-body IMU 
system (i.e., 17 IMUs) along with force shoes to compare the 3D 
L5/S1 moments estimated using either a top-down or bottom-up 
inverse dynamics model [58]. The outcomes from these models 
were compared to those obtained from the optical motion capture 
system and force plates. Sixteen participants performed lifting tasks 
from a combination of various horizontal distances and vertical 
heights. The results from the proposed system showed that the 
top-down model resulted in smaller errors (average RMS errors 
were about 10%) compared to the bottom-up model (average RMS 
errors were about 20%). Faber's colleagues explained the cause of 
errors from the IMU system due to insufficient identification of 
shoulder location in the 3D space (influenced top-down model 
outputs) and the inaccurate anatomical calibration (influenced 
bottom-up model outputs).

Matijevich, et al. utilized Xsens IMU sensors and Novel pedar-x 
pressure insoles along with machine learning algorithms for 
multiple variable regressions to determine the lumbar extension 
moment [62]. Ten participants (7 males and 3 females) were 
recruited to perform about 400 tasks that include handling boxes 
of 5-23 kg with various body postures (e.g., twisting, squatting, and 
reaching). IMUs were attached on the feet, shanks, thighs, pelvis, 
and trunk. The pressure insoles were placed inside the shoes. A lab-
based motion capture system and in-ground force plates (AMTI) 
were utilized as a gold-standard reference. The results showed that 
data from IMUs attached on the above mentioned body segments 
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and pressure insoles enabled the prediction of the lumbar 
extension moments with higher accuracy (R2=0.92) as compared to 
the trunk IMU and insole pressure (R2=0.89) and trunk IMU only 
(R2=0.74). The RMSE for the distributed IMUs, trunk IMU and 
insole pressure, and trunk IMU only were 17 nm, 20 nm, 31 nm, 
respectively. Therefore, these RMSE values are about 7%, 8%, and 
13% of the NIOSH Lifting Equation spine compression force limit 
(i.e., 3400 N). In other words, data from a single IMU on the trunk 
and pressure insoles can be considered as an accurate and reliable 
method to automate the ergonomic 

Pressure sensing insoles strengths and limitations: Several 
other strengths can be discussed. First, pressure insoles allow 
for capturing detailed foot pressure information such as ground 
force reaction and pressure distribution [25]. Also, the technology 
of pressure-sensitive insoles and inertial sensors can estimate the 
ground reaction forces that enable kinetic analysis within a free-
living environment. Moreover, the pressure insoles along with the 
IMU sensors could be used in biomechanical models to compute 
the loading on the back.

On the other hand, the commercial pressure insole system is 
expensive which may limit its use [25]. Also, Wong, et al. confirmed 
that complex movement and a vast range of activities might impact 
the pressure insoles’ accuracy [25]. Also, measurements from 
the insole may encounter errors due to the possible slippage of 
the insole within the user’s socks. The use of inaccurate insole 
measurements in the assessment of MMH activities may under or 
overestimate the risk of OLBD.

DISCUSSIONS 

Increased OLBDs cases are mainly related to the exposure to 
various physical factors in MMH activities such as extreme torso 
flexion, torso twisting, and lifting heavy objects, among others. 
Thus, it is critical to identify these factors in workplaces to take 
into consideration the required interventions, and thus, reduce the 
OLBDs cases. Various ergonomic assessment methods are available 
to assess the MMH activities. The application of such assessment 
methods requires direct observation and manual assessment 
to quantify the risk factors. Direct observations, however, may 
not be accurate in highly dynamic jobs, and thus, influence the 
assessment outcomes [36,63]. Additionally, this approach is time 
consuming and increases the cost of the assessment [62-64]. This 
direct observation has the potential of interrupting the worker’s 
performance during the assessment as the ergonomist may require 
to get close to the worker while he/she is performing the task [37]. 

Motion capturing systems provide accurate workplaces risk factor 
measurements that could be used as input variables into various 
MMH assessment methods. However, such systems are difficult to 
transfer and use in workplaces. Also, the long calibration procedures 
increase the difficulty of using such systems in workplaces. 
Furthermore, object movements (i.e., individuals or material) in 
the workplace may obstruct the camera’s view, which may limit the 
system’s ability to determine the reflective marker’s location in the 
three-dimensional space, and thus, result in measurement errors 
[36,62,64].

The usability of various wearable sensors in measuring different 
biomechanical factors was reviewed in the current study. It was 
demonstrated that wearable sensors such as LMM, EMGs, IMUs, 

and pressure insole sensors can be effectively used to provide 
kinematic and kinetic information. This information could be 
used in the various MMH activities assessment methods. One can 
conclude that, besides the use of torso kinematics data obtained 
from the LMM in the OLBD Risk assessment model, information 
about torso asymmetry and task duration can be used to assess 
MMH activities using various assessment methods such as the 
NIOSH Lifting Equation, WA L&I, ACGIH, and RULA, among 
others (Table 1). Moreover, EMG sensors were used in multiple 
EMG-assisted models to estimate muscular forces, task frequency 
and duration, which also can be used as input variables into the SI 
assessment method [33,36,41]. 

The reviewed studies demonstrated that data obtained from 
IMU sensors such as various body segments inclination angles, 
horizontal and vertical reaching of the hands, and task frequency 
and duration could be used as input variables into MMH activities 
assessment methods such as NIOSH Lifting Equation, WA L&I, 
ACGIH, among other assessment methods to evaluate MMH jobs 
(Table 1) [36,41,42,45,46,48-53,57]. Also, variables obtained from 
the insole pressure sensors (i.e., load weight as well as lift frequency 
and duration) could be used to assess MMH jobs using NIOSH 
Lifting Equation; WA L&I; ACGIH, among other assessment 
methods. 

On the other hand, the review showed that even though most of 
the wearable technologies can be used to estimate workplace risk 
factors, the estimated variables include errors, which may result 
in inaccurate risk assessment. Data from the EMG system may 
vary across different subjects and sensor placements. Additionally, 
errors in the EMG signals are expected during working if the 
sensors became lose (due to the dynamic movements) or if the 
user’s body became sweaty.

Additionally, the accuracy of workplace risk factors measured using 
IMUs depends on the data pre-processing and the sophisticated 
prediction algorithms, which may limit their use [49]. Also, due 
to the use of magnetometers in IMU technology, the system 
performance might be negatively influenced if used near magnetic 
material [58]. Also, no efforts were made to show the validation of 
the IMU measurements for hand horizontal and vertical locations 
with respect to the body. Barim, Lu showed that IMU sensors 
provide inaccurate information about hand location with respect to 
the body during lifting [53]. Such information represents a critical 
limitation for using an IMU system to assess MMH activities, as 
the horizontal distance between the load being lifted and the body 
has been shown as a major workplace risk factor [13,65,66]. Also, 
another critical factor in the MMH activities risk assessment is the 
spinal loadings. Faber, Kingma stated that utilizing the pressure 
insoles to determine the spinal loadings of obese workers may 
influence the estimated spinal loadings [58,67]. A similar effect 
would be expected if the insoles were used to assess workers 
handling heavy objects (Table S1) [58].

CONCLUSIONS 

It can be concluded that there is a need for reliable, accurate, 
and effective wearable technology to automate the ergonomic risk 
assessment in real workplaces. It is critical that such technology 
continuously estimate the workplace risk factors such as body 
segment inclination angles, hand horizontal and vertical locations 
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during lifting/lowering, task frequency, and task duration. Future 
studies may improve the body movement detection accuracy by 
developing more sophisticated machine learning algorithms to 
enhance the wearable sensors' performance in detecting hazardous 
activities.
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