
Influx and Efflux of Immune Cells in the Central Nervous System
Fujita M*, Omura S, Sato F, Park AM and Tsunoda I

Department of Microbiology, Kindai University, Osaka, Japan
*Corresponding author: Fujita M, Department of Microbiology, Kindai University, Osaka, Japan, Tel: +81 6-6721-2332; E-mail: mfujita47@gmail.com

Received Date: June 06, 2017; Accepted Date: July 18, 2017; Published Date: July 25, 2017

Copyright: © 2017 Fujita M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The influx and efflux of immune cells in the central nervous system (CNS) have long remained to be unclear. In
this regard, we have addressed this issue using animal models of CNS tumors and experimental autoimmune
encephalitis (EAE) that is relevant to multiple sclerosis (MS) in human. For immune cells to migrate into brain
parenchyma, chemokines play central roles. In contrast, when immune cells exit the brain parenchyma, lymphatic
system plays central roles. Most recently, the relationship between the CNS immunology and gut microbiome is
being addressed using the same systems.

Immune Responses in the Central Nervous System
(CNS)

We have extensively investigated the immune responses in the
central nervous system (CNS) using animal models of CNS tumors
and experimental autoimmune encephalitis (EAE) that is relevant to
multiple sclerosis (MS) in human. More specifically, we have addressed
the influx and efflux of immune cells in the CNS. For immune cells to
migrate into brain parenchyma, chemokines play central roles. In
contrast, when immune cells exit the brain parenchyma, lymphatic
system plays central roles. In this short commentary, we would like to
introduce our achievements as well as our perspectives briefly.

Chemokine-mediated immune cell influx shown by CNS
tumors

Regarding the immune cell influx into the CNS, chemokines are the
most important. Chemokines are a family of cytokines and classified
into four main subfamilies: CXC, CC, CX3C and XC [1] and act as a
chemoattractant to guide the migration of leukocytes [2]. Some
chemokines are involved in immune surveillance; they direct
lymphocytes to the lymph nodes, and the lymphocytes interact with
antigen-presenting cells to screen for pathogens. Some chemokines are
involved in development; they promote angiogenesis or guide cells to
the tissues that provide specific signals critical for cellular maturation.
Other chemokines are involved in chronic inflammation; they are
continuously released from a wide variety of cells during the
inflammation and keep recruiting other leukocytes.

For instance, CXCR3 is a chemokine receptor that is rapidly
induced on naïve T lymphocyte following the activation and
preferentially remains highly expressed on type-1 helper (Th1)-type
CD4+ T lymphocytes, CD8+ cytotoxic T lymphocytes (CTLs), and
innate-type lymphocytes such as natural killer (NK) [3]. CXCR3
interacts with the following chemokines: CXCL9, CXCL10, and
CXCL11. In particular, the CXCR3-CCL10 axis is associated with the
influx of type-1 CTLs (Tc1; the most potent effector T cells against
CNS tumors) into the CNS tumor sites [4-6]. In other words, CXCR3 is
preferentially upregulated on Tc1, which is critical for efficient CNS
tumor-homing of Tc1.

CCR2 is another chemokine receptor, which regulates the
mobilization of monocytes from bone marrow to the CNS
inflammatory sites [7]. CCR2 is activated by several chemokines such
as CCL2, CCL7, CCL8, CCL12, CCL13, and CCL16. Among them,
CCL2 is the most potent activator of CCR2 signaling. In the CNS
tumor setting, CCL2 is secreted by tumor cells [8] and directly
promotes angiogenesis through the recruitment of tumor-associated
macrophages [9]. In addition, CCL2 is critical for cell proliferation,
invasion, and metastasis of the CNS tumors [10]. Based on these
findings, CCL2 is considered to be an immunosuppressive chemokine
and a potent therapeutic target for anti-CNS tumor immunotherapy
[8,11,12].

Lymphatic vessel-mediated immune cell efflux shown by CNS
autoimmune diseases

Recently, tertiary lymphoid organs (TLOs) with ectopic lymphoid
follicles have been observed in the CNS inflammation sites such as
EAE and MS [13,14]. The characteristic features of TLOs include
compartmentalization of T and B cells, presence of lymphatic vessels,
and high endothelial venules [14,15]. Th17 cells and B cells are
suggested to be the main contributors in the formation of these
structures. In addition, regarding the immune cell efflux from the CNS,
we have identified altered expressions of lymphatic molecules such as
LYVE-1, VEGF-D, etc. [16]. Here, LYVE-1 is suggested to be involved
in lymph angiogenesis [17]. VEGF-D is also one of the most potent
lymphangiogenic factors [18] and plays an important role in neuronal
synaptic activity, dendritic length, and dendrite arborization [19]. We
observed the alteration of VEGF-D expression levels in EAE/MS
settings [16]. These observations indicate that CNS
neuroinflammatory diseases alter neuro-lymphatic protein expressions
that are involved in the clearance of fluids from the CNS diseases
[20,21]. The detailed mechanism of these proteins in the etiology,
development and progression of MS remains an important area of
investigation.

The impact of gut microbiome on CNS immunology
We recently directed our focus on the relationship between the CNS

immunology and gut microbiome. Although a variety of factors can
affect the CNS immunopathology, two essential systems maintaining
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whole-body homeostasis might be involved: the lymphatic system and
microbiota. Although the lymphatic system and microbiota have been
independently described in most medical textbooks of anatomy,
immunology, and microbiology, their roles in CNS immunopathology
had long been unclear. To elucidate this question, we are currently
focusing on the involvement of the CNS lymphatics and gut
microbiota [22].
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