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implement a CA-mediated CDR system and provide an energy and 
cost efficient process to limit atmospheric CO2. With the current global 
dependency on fossil-fuels for energy production, CA may provide a 
means to reduce human induced climate change.
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Figure 1: Model of a proposed CA-mediated CO2 absorber to be used in 
industrial CDR processes. Highlighted are specific biochemical and biophysical 
characteristics that would be ideal for a bio-catalytic CA (green) immobilized on 
a resin (shown as mesh) within a CO2 absorber. These would include: a compact 
and oligomeric structure to have thermal stability, exhibit enzyme activity in a 
broad pH range, and resistance to anionic inhibition (shown are common 
anions found in fossil-fuel combustion by-products). Figure was made in part 
using PyMol [22]. CA structure shown is that of the α-CA from Thiomicrospira 
crunogena (PDB: 4XZ5) [15].

Atmospheric concentrations of greenhouse gases (GHG) such 
as carbon dioxide (CO2), chloroflourocarbons, methane, and nitrous 
oxide have been rising considerably due to human-induced processes 
[1]. One of the most abundant of the GHG is CO2, and a main 
contributor to a rise in global temperatures [2]. The burning of fossil 
fuels has sharply increased the concentration of atmospheric CO2 
and has been correlated with increased global temperatures over the 
past century [3,4]. This presents a global threat that has recently been 
addressed by world leaders in the Paris Climate Talks [5] promoting 
an extensive effort to limit CO2 production in industrial processes and 
to slow the rate of climate change. Despite the recognition of these 
issues, implementation of large scale CO2 removal from the burning 
fossil-fuels has been limited [6]. Most of this is due to the use of harsh 
chemical processes and extreme temperatures to remove CO2, which 
translates to an energy and cost inefficient process [4,7]. Therefore, 
more efficient CO2 removal processes must be implemented. One such 
potential avenue is the utilization of enzymatic CO2 sequestration [8]. 
Specifically, the use of the enzyme, carbonic anhydrase (CA) for CO2 
removal (CDR) has shown promise for its catalytic efficiency and its 
ability to be produced in large quantities from recombinant technology 
[7,9-11].

However, for a successful CA-mediated CDR, the enzyme must 
maintain its catalytic efficiency in extreme conditions, such as high 
temperature (up to 80°C), pressure, extreme pH levels (between pH 
3 – 11), and more recently, resistance to anionic inhibition [10,12-16]. 
Furthermore, a mechanism to feasibly incorporate a CA-mediated 
CDR step in the fossil-fuel combustion process needs to be developed. 
To date, several possibilities have come in the form of CO2 absorbers 
containing immobilized CA resins, or bioreactors containing algae 
that over express CA, all of which have been extensively reviewed by 
Frost and McKenna et al. [17]. A model depicting a CA-mediated 
CO2 absorber is depicted in Figure 1 with favorable biochemical and 
biophysical characteristics of the enzyme highlighted. 

Our group and others, have made efforts to characterize CAs from 
organisms that thrive in extreme environments [15,18] and utilize 
these biochemical and biophysical characteristics to engineer thermal 
and pH stable CA variants [11,19-21], to address the need for a suitable 
bio-catalytic CDR agent. Previously it has been shown: that truncating 
surface loops, the present of an intramolecular disulfide bond, and 
dimerization allows CA to maintain its catalytic activity at 70°C, and 
a range of pH (from pH 5-9) [15,20]. In addition, it has been shown 
that the presents of charged residues in the catalytic site of CA can 
contribute to the reduction in anionic inhibition (common anions 
found in fossil-fuel by-products and their CA inhibition constants 
are shown in Table 1). Although these parameters still fall short of the 
ideal characteristics of a CA-mediated CDR agent, they provide us with 
avenues which we can further exploit to engineer a useful candidate to 
reduce fossil-fuel produced CO2 emissions. Future studies will includes 
implementing an enzymatic design of an oligomeric and compact CA, 
that exhibits resistance to anionic inhibition, and retains its activity in 
a range of pH from 3-11 and temperatures up to 80°C (Figure 1) [13-
16,18]. These results can further be combined with current designs to 

Anion TcruCA hCA II SspCA
Ki (mM)a

Hg2+ 8.40 0.85 0.77
HSO3

- 0.97 89 21.1
SO3

2- 7.6 7.5 2.3
HS- 0.70 0.04 0.58

TcruCA: α-CA isolated from Thiomicrospira crunogena XL2 [15]; hCA II: α-CA 
from humans (isoform II); SspCA: α-CA isolated from Sulfurihydrogenibium 
yellowstonense YO3AOP1 [18]; aInhibition contstants adapted from Mahon et al. 
[14]

Table 1: Selected anion inhibition constants of CAs suggested as CDR-agents.
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