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Abstract
Factor VIII, one of the most complex proteins known, plays a major

role in blood coagulation pathway. Defects in factor VIII protein result
in hemophilia A, a severe bleeding disorder. Plasma derived factor VIII
or recombinant factor VIII has been used extensively for treating
hemophilia A patients. Number of attempts at gene therapy for
hemophilia A has failed for various unknown/not much studied
reasons including immune rejection. Here, the progress that has been
made in establishing iPSC-based disease models and the potentials of
iPSC technology for personalized medicine and cell therapy for
hemophilia A are reviewed. The challenges of iPSC technology are also
briefly discussed.

Introduction
Hemophilia A is one of the most common genetic coagulation

disorders arising due to the deficiency of factor VIII protein. It is
estimated that 1 in 5,000 males are affected by hemophilia A [1]. It is
caused by several genetic mutations, which include deletions,
insertions, inversions and point mutations in the factor VIII gene
(Haemophilia A Mutation, Structure, Test and Resource Site; http://
hadb.org.uk). According to the severity of bleeding and time taken for
clotting, hemophilia A can be characterized as severe, moderate or
mild [1]. Currently, there is no cure for hemophilia A. The only
available treatment for this disease is the infusion of or administration
of recombinant factor VIII. However, the treatment with recombinant
factor VIII is limited due the formation of factor VIII inactivating
antibodies, exorbitant cost and requirement of frequent injections.

After the introduction of gene therapy, it is found that gene therapy
is a promising option for the treatment of hemophilia A. Natwani et al.
has used the adeno-associated virus vector (AAV) to deliver factor IX
cDNA to correct hemophilia B. This method of delivery could not be
used for hemophilia A patients since the size of full length factor VIII
cDNA is too large and AAV cannot accommodate the large size of
factor VIII cDNA. Besides, gene therapy is ideally used to correct
genetic defects rather than to deliver a functional gene.

Usage of iPSC in hemophilia A
Another promising option for the treatment of hemophilia A is the

introduction of patient-derived induced pluripotent stem cells (iPSCs).
The defective gene can be corrected in iPSCs by using programmable
nucleases like zinc ginger nucleases (ZFNs) [2-5], transcription
activator-like effector nucleases [6-8] and clusters of regularly
interspaced palindromic repeats [9-16]. In case of these programmable
nucleases they cleave the chromosomal DNA in a targeted manner and
produce DNA double stranded breaks. The nick will be repaired by
endogenous mechanisms known as homologous recombination or

non-homologous end-joining. Finally, it will result in the correction
mutagenesis such as deletions [17,18], duplications and inversion [19].
These gene-corrected iPSCs are then allowed to differentiate into
appropriate somatic cells before delivery to patients to ensure the
expression of the functional gene.

Challenges of the technology
iPSCs have their own merits and demerits. Though iPSCs are

mentioned to be the cells that will rule the future medical industry to
provide patient-specific stem cells [20-22], there are controversies over
its application to human subjects [23,24]. Challenges are encountered
with the recent advancements which can harness its true activity for
biomedical research to successfully formulate effective therapeutic
approach [25]. It is worth to estimate the potentials of iPSCs as they
are quite prominent being the readily accessible such as skin or blood
which are enough to generate the disease-specific models. Existing
challenges include the kinetics of disease onset and progression and
also the spatial localization of the disease to create disease models
which are commented can be tackled with advanced strategies such as
gene modification, biomaterials, reprogramming etc. [26]. Researchers
have been already working to correlate hemophilia A using patient-
specific iPSCs because of its unlimited self-renewal and differentiation
capabilities [27-31].

Conclusion
Approaches to generate an effective mechanism involving iPSCs are

noteworthy to clearly define the potentials to tackle Hemophilia A and
with priority attention over this much needed technology will play an
eminent role in therapeutic scenario.
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