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Introduction
Candida albicans is the most frequently observed opportunistic 

fungal pathogen and causes deep-seated fungal infection, mainly 
in immune compromised hosts such as cancer patients, transplant 
recipients, or patients with human immunodeficiency virus (HIV) 
infection [1]. Infection by this microorganism is often life threatening; 
however, antifungal therapy remains limited. Presently, only four 
chemical classes are available commercially for treating deep-seated 
fungal infection: polyenes, azoles, echinocandine, and nucleic acid 
analogs [2]. The first two inhibit the biosynthesis of cell membranes in 
fungal cells, whereas echinocandine inhibits synthesis of the cell wall. 
Worldwide, azole agents are the most widely used agents for treating 
deep-seated candidiasis; however, an increase in the number of azole-
resistant C. albicans strains is causing problems in the treatment 
of candidiasis [3]. The number of available antifungal agents is very 
small compared with the numbers of antibacterial and antiviral agents. 
This is because it is difficult to identify unique targets not shared with 
the human host, as the fungal cell is eukaryotic, like human cells. 
Consequently, research on compounds that have synergistic effects 
with azole agents has flourished. Calcineurin inhibitors [4-7], HMG-
CoA reductase inhibitors (statins) [8,9], and non-steroidal anti-
inflammatory drugs (NSAIDs) are representative examples [10,11]. 
Low-molecular-weight antitumor agents are divided into six classes 
based on their mechanism of action: antimetabolites, alkylating 
agents, topoisomerase inhibitors, microtubule inhibitors, microtubule 
depolymerizing agents, and molecular target agents. Topoisomerase 
is an enzyme that plays roles in the processes of DNA cleavage and 
recombination and is divided into two classes, I and II, based on 
the mode of DNA cleavage. Topoisomerase I cleaves one strand of a 
duplex DNA molecule, whereas topoisomerase II cleaves both strands 
of the DNA molecule [12]. Topoisomerase inhibitors are further 
classified into four classes chemically: camptothecins, anthracyclines, 
epipodophyllotoxins, and quinolones. Of these, camptothecin targets 
topoisomerase I, whereas the others target topoisomerase II. Several 
studies suggested that topoisomerase might be a target for antifungal 
drugs [13-15]. As an example, aclarubicin, an anthrax cycline antitumor 
agent, inhibited the growth of C. albicans at low concentrations [16]. 
In this study, we found that anthracycline antitumor agents have 
synergistic effects with fluconazole against azole-resistant C. albicans 
strains.

Materials and Methods
Strains used

Twelve azole-resistant Candida albicans strains obtained from 
patients’ blood were examined in this study. All strains were cultured 
on Sabouraud dextrose agar (SDA) plates at 37°C.

Reagents

Fluconazole and five anthracycline antitumor agents (aclarubicin, 
daunorubicin, doxorubicin, epirubicin, and idarubicin) were examined. 
The chemical structures of the anthracycline antitumor agents are 
shown in (Figure 1). Additionally, the antitumor agents camptothecin, 
irinotecan, etoposide, paclitaxel, vincristine, and methotrexate were 
investigated for comparison. All reagents were purchased from Wako 
Pure Chemical (Osaka, Japan) and were dissolved in dimethyl sulfoxide 
(DMSO) at a concentration of 10 mg/mL. They were stored at -20°C in 
the dark until use.

Susceptibility testing

The minimum inhibitory concentrations (MICs) of fluconazole 
and the antitumor agents for the C. albicans strains were determined 
according to the method described in the Clinical and Laboratory 
Standards Institute (CLSI) guideline M27-A3 [17]. Briefly, a cell 
suspension of each strain was diluted in 3-(N-morpholino) propane 
sulfonic (MOPS)-buffered RPMI 1640 medium to a final inoculum 
ranging between 0.5×103 and 2.5×103 cfu/mL. Serial two-fold dilutions 
were also made in the MOPS-buffered RPMI 1640 medium. A total 
volume of 200 µL of drug plus cell suspension was placed in each well of 
96-well micro titration plates, and the plates were incubated at 35°C for 
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48 h. The MIC was defined as the lowest concentration of the agent that 
substantially inhibited the growth of Candida. A final concentration 
of 2% (v/v) DMSO was included in the wells; this concentration was 
found to not affect the viability of the Candida strains. The experiment 
was performed in triplicate.

Checkerboard test

The combinations antitumor agent and fluconazole were studied 
using the checkerboard method. Each antitumor agent was serially 
diluted two-fold in MOPS-buffered RPMI 1640. The final drug 
concentrations ranged from 32 to 0.03125 µg/mL for fluconazole and 
50 to 0.0244 µg/mL for the antitumor agents. Each 50 µL dilution of 
fluconazole and antitumor agent was added to a well on a micro titer 
plate. A 100 µL suspension of the C. albicans strain was added to each 
well, and the plate was incubated at 35°C for 48 h. The MIC of both 
compounds in combination was determined in the same manner as 
the susceptibility testing described above. The fractional inhibitory 
concentration (FIC) and FIC index (FICI) were determined to assess the 
synergistic activity of the drug combinations. The FIC was calculated 
by dividing the MIC of the combination of fluconazole and antitumor 
agent by the MIC of fluconazole or the antitumor agent alone. The FICI 
was calculated by adding both FICs. Synergism and antagonism were 
defined by an FICI ≤ 0.5 and >4, respectively. Intermediate values were 
considered indifferent [18]. The number of colony-forming units (cfu) 
in each well was also determined. A 100-µL sample was removed from 
the well and serially diluted 10-fold in sterile saline solution, and the 
solution was subsequently plated onto SDA. The fungi static effect was 
defined as a reduction in cfu/mL from the starting inoculum of <99.9%. 
The experiment was performed in triplicate.

Time-kill curves analysis

Time-kill curves were plotted for the combination of fluconazole 
and aclarubicin or daunorubicin against three C. albicans strains (strains 
36,40, 42). Each experiment was conducted for six concentration 
groups of culture tubes: control (no drug), 1/4×MIC, 1/2×MIC, 1×MIC, 
2×MIC, and 4×MIC against fluconazole. Then, 1×MIC of aclarubicin 
or daunorubicin was added to each tube, except for the control group. 
Consequently, the fluconazole concentrations varied in the wells, while 
the concentrations of the antitumor agents were kept constant [19]. A 
100 µL sample was removed from the tube and serially diluted 10-fold 
in sterile saline solution, and the solution was subsequently plated onto 
SDA. The experiment was performed in triplicate for each strain.

Results
Checkerboard method

Aclarubicin inhibited the growth of C. albicans strains at MICs 
of 6.25-25 µg/mL, whereas no growth inhibition was observed for the 
other 10 compounds at a concentration of 200 µg/mL (Supplementary 
Table 1). Of the 10 compounds, the MICs of aclarubicin, daunorubicin, 
doxorubicin, epirubicin, and idarubicin against the microorganisms 
were between 0.098 and 25 µg/mL in the presence of fluconazole, which 
was at concentrations of 0.125-4 µg/mL, with an FICI of 0.0032-0.0781. 
The remaining six compounds did not show any effect on the growth 
of C. albicans. The inhibitory effect of aclarubicin increased 100~200 
times in combination with fluconazole. Aclarubicin and daunorubicin 
in combination with fluconazole showed fungicidal activity, whereas 
the other three anthracycline compounds were fungi static [20].

Time-kill curves analysis

As aclarubicin and daunorubicin had high synergistic effects in 

combination with fluconazole, time-kill-curve analysis was performed 
for the two compounds. Representative time-kill curves are shown in 
(Figure 2) using strain 36. At concentrations of 1×MIC, 2×MIC, and 
4×MIC, both compounds were fungicidal against azole-resistant strains 
after 48 h in a concentration and time-dependent manner. After 24 h, 
the viable count at 1×MIC, 2×MIC, and 4×MIC was reduced by 1×10-2, 
8×10-3, and 1×10-3, respectively, for aclarubicin and by 9×10-2, 7×10-2, 
and 4×10-2 for daunorubicin. Aclarubicin inhibited the growth of the 
microorganism more rapidly than did daunorubicin. Among the three 
strains analyzed in this study, no remarkable differences were found.

Discussion
We found that anthracycline antitumor agents have a synergistic 

effect with fluconazole against azole-resistant C. albicans strains. 
Several studies have suggested that DNA topoisomerase is a 
potential target of antifungal agents [12-15,16] found that the DNA 
topoisomerase inhibitor aclarubicin at 0.8-7.3 µg/mL inhibited the 
growth of C. albicans in vitro, whereas other inhibitors, including 
daunorubicin, doxorubicin, idarubicin, beta-lapachone, camptothecin, 
irinotecan, topotecan, etoposide, and mitoxantrone, did not inhibit 
the growth. Nevertheless, the first four of these compounds affected 
the morphology of C. albicans. In the present study, only the DNA 
topoisomerase inhibitor anthracycline was found to have inhibitory 
or synergistic effects against azole-resistant C. albicans strains. 
Chemical structure may play a significant role in the uptake of 
compounds into fungal cells. Of the anthracycline compounds, only 
aclarubicin had anti-Candida activity when used alone, with MICs 
of 6.25-25 µg/mL. Anthracyclines are glycosides. Aclarubicin is a 
trisaccharide, whereas the other anthracyclines are monosaccharides 
(Figure 1). This structural difference may also influence the uptake of 
these compounds into fungal cells. However, the synergistic effects 
of aclarubicin and daunorubicin with fluconazole were similar, i.e., 
the FICIs of aclarubicin and daunorubicin were 0.0083-0.0162 and 
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Figure 1: Chemical structures of the anthracycline antitumor agents.
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0.0032-0.0256, respectively. Fluconazole is known to have synergistic 
effects with several compounds, including calcineurin inhibitors [4-7], 
HMG-CoA reductase inhibitors (statins) [8,9], and non-steroidal anti-
inflammatory drugs [10, 11]. In addition to their synergistic effect with 
fluconazole, anthracyclines have a unique function. Phospholipase B 
and secretory aspartyl protease are major virulence factors. Of these, 
anthracycline compounds inhibit the activity of phospholipase B in a 
dose-dependent manner [21]. Doxorubicin also inhibits the replication 
of HIV [22], herpes simplex virus [23], dengue virus, and yellow fever 
virus [24]. Novel antimicrobial agents might be developed using 
anthracycline as the lead compound.
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