
Improving the Security of Time-Bounded Mission-Critical K-Variant Systems by
Inserting Unreachable Code

Berk Bekiroglu*, Bogdan Korel

Department of Computer Science, Illinois Institute of Technology, Chicago, USA

ABSTRACT
K-variant is a multiple variant architecture designed to enhance the security of time-constrained systems, particularly

against memory exploitation attacks. In a K-variant system, variants are generated through controlled source code

program transformations. Inserting unreachable code is one of the program transformations used to generate new

variants in K-variant systems. It is possible to generate functionally equivalent programs by inserting random

unreachable code. Because critical instructions in memory are shifted by inserting unreachable code, the survivability

of K-variant systems can be improved against memory exploitation attacks. The purpose of this study is to determine

the effectiveness of inserting unreachable code in enhancing the security of time-bounded K-variant systems against

memory exploitation attacks. The effect of inserting unreachable code on the survivability of time-bounded K-variant

systems is investigated experimentally for a variety of memory attacks. The results indicate that increasing the number

of variants by inserting unreachable code significantly improves the survivability of time-bounded K-variant systems

against memory exploitation attacks. We conclude that introducing unreachable code into time-bounded K-variant

systems significantly improves the security of time-bounded K-variant systems against memory exploitation attacks

while maintaining a reasonable runtime and memory overhead.

Keywords: K-variant architecture; Source code transformation; Memory exploitation attacks; System security;

Multiple variant architecture

INTRODUCTION
Mission-critical systems have stringent security requirements
during operation, as compromising them can result in
catastrophic losses. Numerous attacks may occur during the
operation of those systems to compromise them. Failure to
implement such systems can result in legal and financial
consequences for organizations. As a result, numerous defense
mechanisms have been developed to enhance these systems'
survivability.

Memory exploitation vulnerabilities enable adversaries to take
control of systems, expose sensitive data, or simply cause systems
to crash and fail. By exploiting memory vulnerabilities such as a
buffer overflow and a format string, attackers can write and read
arbitrary memory locations. Numerous defense mechanisms
have been implemented to enhance security against memory

vulnerabilities. Operating systems employ a variety of defense
mechanisms, including address space layout randomization,
Data Execution Prevention (DEP), and stack canaries.
Nonetheless, adversaries have breached these defense
mechanisms. Additionally, these defense mechanisms and their
variants terminate programs properly when they detect attacks.
That is not a possibility for time-constrained mission-critical
systems, as re-running a failed program is impossible [1-10].

Multiple variant architectures have been used to increase security
by reducing successful attacks. Generally, multi-variant execution
provides statistical protection to defenders. The K-variant is one
of the fault-tolerant architectures used to improve the security of
systems with multi-variant execution. K-variant systems enable
the execution of functionally equivalent programs concurrently
to accomplish a task or mission. A task or mission can be
completed with at least one surviving variant from an attack.

Journal of Information Technology and
Software Engineering Research Article

Correspondence to: Berk Bekiroglu, Department of Computer Science, Illinois Institute of Technology, Chicago, USA, Tel:
3129122538; E-mail: bbekirog@iit.edu

Received: 01-Mar-2022, Manuscript No. JITSE-22-15849; Editor assigned: 03-Mar-2022, PreQC No. JITSE-22-15849 (PQ); Reviewed:
17-Mar-2022, QC No. JITSE-22-15849; Revised: 02-May-2022, Manuscript No. JITSE-22-15849 (R); Published: 09-May-2022,
DOI: 10.35248/2165-7866.22.12.301

Citation: Bekiroglu B, Korel B (2022) Improving the Security of Time-Bounded Mission-Critical K-Variant Systems by Inserting Unreachable
Code. J Inform Tech Softw Eng. 12:301

Copyright: ©2022 Bekiroglu B, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 1

• For K-variant systems, a program transformation for inserting
unreachable code is presented.

• Experiments are conducted to determine the effectiveness of
program transformation on the survivability of K-variant
systems under various attack types.

• Investigating and comparing the effectiveness of various attack
types against an increasing number of variants and attack
attempts.

• Investigation of the runtime and memory overhead associated
with systems generated by the insertion of unreachable code
transformations.

• The experimental results indicate that generating multiple
variants by inserting unreachable code results in a significant
increase in survivability at a reasonable cost.

The remainder of this paper will be structured as follows.
Section 2 discusses the architecture and attack model of the K-
Variant. Section 3 discusses the underlying research. Section 4
provides an illustrative example of how to transform a program
by inserting unreachable code. Section 5 describes the program
transformation that occurs when unreachable code is inserted.
Section 6 discusses the different attack types that exist in K-
variant systems. Section 7 discusses the experimental study and
its findings, which demonstrate the effectiveness and cost of the
program transformation. Section 8 concludes and describes
future works.

MATERIALS AND METHODS

K-Variant architecture and attack model

The K-variant architecture is an alternative to the N-version
architecture, which utilizes multiple versions of a program to
complete a mission or task concurrently. Using the same
specifications, different developer teams create variants of a
system in the N-version architecture. Each version of the N-
version architecture may be designed differently and even
implemented in a different programming language. As a result,
each version of the N-version architecture is expected to have a
unique set of vulnerabilities. As a result, exploiting vulnerability
in one variant may have no impact on other variants in a system.

While the N-version is an effective architecture for enhancing
security, it is quite expensive. Each additional variant may cost
the same as developing a new piece of software due to the fact
that it requires unique design, implementation, and testing. As a
result, the cost of the N-version architecture may double or triple
for two- and three-version systems, respectively. To obtain the
benefits of the N-version architecture at a reasonable cost, the K-
variant may be used. The K-variant architecture generates
variants automatically through program transformations. As a
result, the cost of creating new variants has decreased
significantly. Additionally, the K-variant architecture's program
transformations generate functionally equivalent variants. As a
result, no extensive software testing is required to ensure that
each variant is correct [17-22].

The system depicted in Figure 1 is a K-version system with three
variants. Variant #1 is the original program that has not been
transformed. The system's other two variants are generated
through program transformations. As illustrated in Figure 1,
program transformations in a K-variant architecture modify or
shift the memory addresses of critical instructions. The program
trace contains critical instructions and changing any of them
will almost certainly cause the program to crash or produce
incorrect output. In the attack model depicted in Figure 1, the
same memory address is attacked simultaneously in all variants.
Variant #2 was compromised as a result of the attack, as the
attacked address was vulnerable. Variant #1 and Variant #3, on
the other hand, survived the attack. The attack failed because
two variants continued to operate normally and produce correct
outputs.

Bekiroglu and Korel

The level of diversity distinguishes the K-variant architecture
from other multi-variant execution systems. Numerous multi-
variant execution systems generate new variants via binary-level
program transformations. On the other hand, the K-variant
architecture generates variants through simple, secure, and
inexpensive source code program transformations. Because
program transformations are performed at the source code level,
variant portability is significantly increased. The adaptability of
transformed programs' compilation enables them to run in a
variety of environments, which is impossible with operating
system-dependent binary program transformations. On the
other hand, if the source code is not available, the K-variant
architecture is not applicable. In that case, other multi-execution
systems that utilize binary-level program transformations may be
preferred. In addition, source code program transformations
require the compilation of programs. Thus, unlike binary
program transformations, K-variant systems have a one-time
compilation cost before running the system.

The survivability of K-variant systems can be significantly
increased in the face of memory exploitation attacks directed at
the program's data segment in memory. Inserting dummy
buffers, increasing the size of existing buffers, increasing the
dimension of existing buffers, and converting primitive data
type variables to buffers are all examples of program
transformations that move vulnerable data into memory.
Nonetheless, none of these program transformations alter the
memory location of the code (text) segments of programs. As a
result, if adversaries compromise an address within a code
segment, these program transformations do not increase the
survivability of K-variant systems. The purpose of this paper is to
shift vulnerable instructions in memory for each variant in order
to increase security against memory exploitation attacks directed
at the code segment. This paper introduces a program
transformation technique for inserting unreachable code into
the code segment of a program in order to shift the vulnerable
instructions. Inserting code that is unreachable has no effect on
the program's normal execution. When comparing the original
program, the memory addresses of critical instructions are
shifted by introducing unreachable code. As a result, the
survivability of multiple variant systems against memory
exploitation attacks may be enhanced [11-16].

This research incorporates the following contributions:

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 2

Figure 1: K-variant architecture with three variants.

As with other multi-variant/version execution architectures, the
K-variant architecture requires a dependable voting mechanism
to obtain a single result from multiple variants. Additionally,
each variant's results can be passed through an acceptance test to
eliminate compromised variants prior to voting.

A metric known as the probability of an unsuccessful attack (Pu)
is used to determine the survivability of K-variant systems. Pu
(K, M) denotes the probability of a system with K variants being
successfully attacked after M attempts. If the attack's Pu (K, M)
value is 1, the attack will always fail. As a result, Pu (K, M)=1
denotes the system with the greatest survivability in a K-variant.
On the other hand, when Pu (K, M) is equal to zero during an
attack, no K-variant system survives. All defense strategies in K-
variant architecture attempt to maximize Pu in order to increase
survivability [23-31].

The attack model from the previous study is used in this paper.
In that attack model, adversaries are assumed to be capable of
accessing and writing to any memory address via vulnerability
such as a buffer overflow or format string. In actual attacks, this
assumption may not always be correct due to the existence of
additional security mechanisms such as No executable and NO
Read and execute (NORAX). As a result, the attack model used
in this paper represents the defender's worst-case scenario. Thus,
in actual attacks, the effectiveness of program transformation in
K-variant systems is expected to be significantly greater.

Background/Related works

Buffer overflow attacks may allow attackers to write memory
addresses outside the buffers' allocated memory. When a
program contains buffer overflow vulnerability, attackers can
manipulate the call stack's return address by providing malicious
input. Additionally, the attacker may embed malicious code
within the input to execute it. To prevent such attacks in
modern operating systems, the execution of code within the
data segment is prohibited through the use of a security
mechanism known as Data Execution Prevention (DEP).
Nonetheless, attackers circumvent DEP by employing more
sophisticated stack smashing attacks. Rather than providing
malicious code as an input, Return-oriented Programming
(ROP) makes use of gadgets (pre-existing instructions in memory

that end in a return instruction such as ret). In ROP, the
attacker must locate useful memory gadgets in order to execute
the malicious code. ASLR is a defense mechanism that is also
used in modern operating systems to make it more difficult to
guess the location of processes and functions in memory. Each
time a program is executed, the virtual addresses of the stack,
heap, code, and library segments are randomized to reduce the
likelihood of a successful ROP. Nonetheless, attackers can
bypass ASLR by brute-forcing the address space and exploiting
libraries that are not ASLR enabled. Control Flow Integrity is
another effective defense mechanism against buffer overflow
attacks (CFI). A Control Flow Graph (CFG) is generated from
the source and binary code of a program to ensure that control
instructions are transferred to a valid address. CFG determines
the destination addresses during execution. As a result,
whenever a destination address is modified, the CFI detects the
attack. However, attackers may circumvent CFI by exploiting
vulnerabilities that go unnoticed by CFI [32-40].

Numerous defense mechanisms and technologies have been
developed to enhance memory exploitation attack security. No
executable, No Read and Execute, Stack Smashing Protection
(SSP), Code hiding, Address-space Layout Randomization,
Control Flow Integrity, and Renew Stack Smashing Projector
(Renews), are some of the techniques to enhance the security
against the memory exploitation attacks.

Software diversity is a concept used to improve system security.
Some randomizations, such as the addition or removal of non-
functional instructions, may improve system security against
buffer overflow attacks. Software diversities are implemented at
various levels to improve system security, including application,
execution, operating system, and hardware. To improve security
against memory exploitation attacks, address space, stack space,
heap, and instruction set are randomized for diversity. ROP
(Return-oriented programming) attacks are also mitigated by
code randomization techniques. Larsen and Sadeghi conducted
a condensed survey on software diversity techniques and data
leaks.

Numerous program transformation techniques are used to
address security vulnerabilities in the authorization,
authentication, and input validation processes Certain
security flaws are caused by unsafe libraries such as "stripy" in
the C programming language, which does not check buffer
length. Program transformations can be used to substitute safe
functions for unsafe functions. Additionally, program
transformations can be used to mitigate the C programming
language's integer vulnerability. Also, secure programming
languages such as Rust can be used to circumvent security
vulnerabilities.

Multi-execution has been used to enhance security in the
context of information flow control. Data integrity and
confidentiality violations can be avoided by executing a program
with varying levels of security. Secure multi-execution is a sound
and precise procedure.

Introducing garbage instructions, such as No-Operation
Instructions (NOPs) or new complex instructions, into a

Bekiroglu and Korel

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 3

inserting dummy buffers into the attacked program in Figure
2c. Because of the malicious code, the last two print calls are
still not being executed. The illustrative example shows that
vulnerable data shifter program transformations provide no
benefit in such attacks.

Finally, an unreachable code is inserted into the source code in
Figure 2d. The unreachable chunk contains program
statements that were generated at random, including integer
declaration and assignment, array declaration and initialization,
and a compound while condition statement. To ensure that the
unreachable statement chunk is not executable, it is enclosed in
an if (false) condition statement. Following the unreachable
statement transformation, the final two print calls are executed,
producing all outputs.

Figure 2: Motivating example of inserting unreachable code.

As demonstrated by the motivating example, inserting
unreachable code can provide a variety of critical instructions in
the memory code segment. If an attacker can inject malicious
code into the real world, he will most likely execute more
harmful operations than just skipping instructions. However,
the attack model investigated in this paper neither intends to
execute malicious code nor takes control of the time-bounded

Bekiroglu and Korel

program is a way to increase security against a variety of attacks,
including memory corruption, code injection, and code reuse.

RESULTS
Statistical protection against memory exploitation attacks has
also been achieved through automated software diversity. At the
instruction level, automated software diversity techniques
include garbage code insertion, random register allocation, and
instruction reordering. Analytically, the process of generating
multiple variants in K-variant systems by inserting dummy
buffers was investigated. A theoretical simulator demonstrated
that inserting dummy buffers can significantly increase the
system's survivability against memory exploitation attacks.
Finally, the effectiveness of the K-variant architecture against
memory exploitation attacks targeting data segments in memory
was investigated.

The motivating example for inserting unreachable code

This section will demonstrate the effectiveness of unreachable
code transformation on code segment attacks. The example
demonstrated that while other program transformations in K-
variant systems are ineffective at preventing an attack that
manipulates the program trace via stack smashing, the
unreachable code transformation is.

In K-variants systems, the program transformation of inserting
dummy buffers has been used to generate new variants to
improve security against memory exploitation attacks. The
vulnerable data shifter program transformations relocate
vulnerable data in a program's memory segment. Some of the
vulnerable data shifter program transformations include
inserting dummy buffers, increasing the size of buffers,
increasing the dimension of buffers, and converting primitive
data type variables into buffers. Although vulnerable data shifter
program transformations improve attacks on data segments, they
are ineffective against attacks on memory code segments. Thus,
the program transformation of inserting unreachable code is
introduced to shift the vulnerable code in memory.

(Figure 2) illustrates a motivating example of inserting
unreachable code. The following motivating example
demonstrates the advantage of inserting unreachable code over
vulnerable data shifter program transformations. Three print
calls are required in Figure 2a to obtain the expected outputs
from the original program. The attacker takes advantage of
vulnerability such as a buffer overflow or a format string to
execute code in memory that skips two print statements, thereby
completing the mission. The source code and malicious binary
code are shown in Figure 2b, which is either stored in memory
or injected by attackers exploiting vulnerability. The malicious
Call function in Figure 2b enables attackers to conduct a stack
smashing attack, which modifies the program trace by
manipulating the program stack's return address. The malicious
call at line 3 in Figure 2b causes the last two print calls to be
skipped, preventing the expected outputs from being generated.

One of the vulnerable data shifter program transformations is
inserting dummy buffers. The transformed program is depicted
in Figure 2c. The stack smashing attack is still successful after

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 4

• It is a simple program transformation. Therefore, it can be
automated easily.

• It is a safe program transformation. This means that program
transformation does not introduce new bugs into the
program. Therefore, no extensive software testing is required
for the transformed variants.

• In theory, there is no limit to the number of unreachable
statements that can be inserted. As a result, any number of
unreachable statements can be inserted if sufficient memory
and disk space are available.

• There are no changes to the existing source code. Thus, the
existing source code is preserved.

• In contrast to binary level program transformations, the
transformed source can be recompiled in other environments.
This improves the portability of transformed programs.

Figure 3: The memory layout of a program before and after
inserting unreachable code.

DISCUSSION
The pseudo code for the program transformation is shown in
Figure 4. The original source code (sc), the maximum number of
unreachable statement chunks (max# Of Chunks), and the
maximum number of unreachable statements within an
unreachable statement chunk (max# Of Statements) are used as
inputs to the program transformation. The transformed source
code (sc′) is the output of the program transformation.
Unreachable statements are inserted into chunks surrounded by
no executable conditions. Following a random selection of
unreachable statement chunks in line 2, the loop in line 4
generates random statement chunks in random locations and
inserts them into the source code. Within the loop on line 4, a
random location (loc) for the chunk in line 5 is chosen. In line
6, an if (false) condition chunk is inserted into the source code
to generate unreachable code. Line 7 randomly selects the
number of statements (# Of Statements) in each chunk. Line 8's
inner loop generates random unreachable statements and
inserts them into the condition chunk if (false). The program
transformation is complete when the loop in line 4 terminates
and the transformed source code is returned.

Figure 4: Pseudo code of inserting unreachable code.

Unreachable statements are no executable program statements
in this paper. In other words, there are no such program inputs
to execute unreachable statements. Unreachable statements are
encased in if (false) conditions to prevent them from being
executed. Unreachable statements can be simple program
statements (assignment, go to, return, call, etc.), compound
statements (do-loop, for-loop, if-statement, switch statement,

Bekiroglu and Korel

mission-critical systems. However, the attack model in this paper
involves skipping or manipulating instructions in the memory to
prevent the system from producing expected outcomes during a
time-bound mission. Injecting malicious code is one of the
techniques used to implement the attack model in this paper.
Buffer overflow vulnerabilities, format string bugs, and
malicious programs may also perform the same type of attacks
similar to the motivating example. The motivating example
shows how inserting unreachable code may help improve the
survivability of these types of attacks.

Program transformation of inserting unreachable code

The purpose of program transformation is to shift critical
instructions in memory in order to increase the survivability of
K-variant systems. Unreachable statements are inserted at
random locations throughout the source code. Unreachable
statements consume a small amount of memory. They do not,
however, increase the runtime of a program. The following
benefits accrue from incorporating unreachable code:

Figure 3 depicts the program's memory layout before and after
inserting unreachable code. Unreachable statement instructions
are inserted in memory between two program instructions, as
shown in Figure 3b. Some program instructions are shifted in
memory in this manner. Some instructions, however, remain at
the same memory addresses. Because the attacker can
compromise more than one variant in a single attack, this may
cause weakness in K-variant systems. In order to insert no
executable statements at the source code level, a small number
of executable statements must be inserted. For example, an
unreachable code is inserted inside a false condition.
Furthermore, because those condition instructions can be
executed, they are vulnerable to attacks. That is because
manipulating an executable condition instruction may hang the
program or fail the program so that expected outputs are not
produced.

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 5

Figure 5: Inserting three unreachable statement chunks. (a) The
partial source code before the program transformation. (b) The
partial source code after the program transformation.

The assembly code for the first unreachable statement chunk in
Figure 5 is depicted in (Figure 6). Microsoft Visual Studio is
used to generate the assembly code. As illustrated in (Figure 6), a
single statement can be interpreted as a collection of assembly
instructions. The if condition statement is equivalent to two
assembly instructions located at the addresses 00357E3C and
00357E3E. These two instructions are executable and require a
small amount of CPU time. The assignment statement in Figure
5 corresponds to ten assembly instructions located at addresses
00357E40 to 00357E7F. Due to the fact that these assembly
instructions are enclosed in the condition, which is always false;
they do not consume additional CPU time during program
execution.

Compiler optimizations are widely used and useful to improve
the performance of programs. Most modern compilers optimize
source code in such a way that no binary code for unreachable
code is generated. Compiler optimization for dead code
(unreachable code) elimination should be disabled to perform
the program transformations depicted in (Figure 5). Otherwise,
unreachable statements are not converted into binary code.
Compilers usually have an option to disable the optimization of
dead code elimination. After disabling that optimization,
compilers generate binaries for unreachable code, as illustrated
in (Figure 6).

Figure 6: Assembly code for the first unreachable statement
chunk in (Figure 5), after compiling the program.

To summarize, inserting unreachable code is a simple and safe
program transformation. Various techniques exist for generating
unreachable code. To enclose unreachable statements, a small
number of executable statements need to be inserted into the
source code. By inserting unreachable code, vulnerable
instructions can be sifted in memory.

Attack types

Buffer overflow vulnerability and programming bugs like format
string may allow attackers to write to arbitrary memory
addresses. For the defenders, this is the worst-case scenario.
Because of other defense mechanisms, writing arbitrary memory
addresses by exploiting vulnerability may not be possible in
actual attacks. As a result, the proposed program transformation
may offer higher security in actual attacks.

When performing memory exploitation attacks, a variety of
strategies can be used to select target addresses. The previous
study examined four attack types in K-variant systems. There are
four different types of attacks: uniform, normal distribution,
binary, and stepwise. Random attacks use uniform and normal
distributions. Binary and stepwise attacks, on the other hand,
are deterministic attacks in which all target addresses are
predetermined. Unlike random attacks, deterministic attacks
require additional information, such as the memory size targeted
and the maximum number of attack attempts.

The attacker chooses a memory address based on the attack type
in this paper's attack model. If address x is chosen to be
manipulated, all variants of instructions at address x are
manipulated in a single attack. For a successful attack, the
attacker must compromise all variants within the allowed
number of attack attempts. Because a greater number of variants
must be compromised for a successful attack, increasing the

Bekiroglu and Korel

while-loop, etc.), or declaration statements. For two reasons,
declaring statements is preferable to producing unreachable
statements. Firstly, one declaration statement corresponds to
numerous assembly instructions. Second, the number of
unreachable instructions associated with the assignment
statement can be determined easily.

(Figure 5) illustrates an example program
transformation involving the insertion of unreachable code.
Figure 5a depicts the original program's partial source code
prior to program transformation. Three unreachable
statement chunks are inserted into random locations
following the program transformation depicted in Figure
5b. Between lines 2 and 4, the first unreachable statement
chunk is inserted. It only contains one assignment
statement. The second chunk of unreachable statements is
located between lines 8 and 12. The second chunk of
unreachable statements includes a loop statement and two
random calculation statements. Finally, the last chunk of
unreachable statements is between lines 15 and 18. The final
chunk contains random declaration and calculation
statements. Each chunk of unreachable statements
is surrounded by and if (false) condition. Thus, none of
the unreachable statements in the source code are executable.

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 6

Figure 8: Normal distribution attack.

Binary attack: Target addresses do not have to be chosen at
random all of the time. To select target addresses, the attacker
may use a systematic approach. To select target addresses, a
binary tree's breadth-first traversal is used. The first attacked
address in this attack type is ½ N, which is the middle address of
the attacked address space. Addresses ¼ N, ¾ N, 1/8 N, and
3/8 N follow this attack. An obvious assumption in this type of
attack is that the attacker knows the size of the memory (N).
Random attacks do not have to have this information.

Figure 9 depicts the binary attack on memory for seven
attempts. When advancing to the next level of a binary tree, the
gap between attacked addresses shrinks. If the attack lasts long
enough, there is a greater chance of compromising a vulnerable
address. Unlike random attacks, deterministic attacks guarantee
a successful attack after a certain number of attempts, known as
a survivability breaking point.

Because the same addresses are used in each repetition, the
binary attack may produce the same Pu. To perform the binary
attack with different results, the memory size under attack (N)
can be shrunk by a random small size (r) so that different
addresses are selected in each iteration. As a result, the attacked
addresses in Figure 9 will differ slightly depending on the r in
each repetition of the attack.

Figure 9: Binary attack.

Stepwise attack: Similar to the binary attack, the stepwise is a
deterministic attack in which attacked addresses are
compromised systematically. The first address attacked is the
first available address, and the last address attacked is the last
available address. Beginning with the first available address,
addresses are compromised linearly by constant delta steps (∆).
Formula 1 computes the delta step.

Figure 10 illustrates the memory addresses that were attacked
during the stepwise attack. Like the binary attack, the stepwise
attack produces identical results with each repetition. To avoid
repeating the same addresses, a small random starting address (r)
is chosen. As illustrated in Figure 10, the first attack targets the
address following r. additionally; the final attack compromises
the program's last address. When the number of attacks is large
enough, the stepwise method also ensures a successful attack.

Bekiroglu and Korel

number of variants is likely to increase the survivability of K-
variant systems.

N denotes the size of the memory under attack in this section.
Additionally, n indicates the size of the vulnerable memory,
which must be equal to or less than N. The value n/N indicates
the percentage of vulnerable memory. Besides that, M denotes
the number of attack attempts and is a good proxy for the attack
duration. As a result, M refers to the duration of the attack in
the experimental study. The remainder of this section describes
four attack types that were used in the experimental study.
These attack types were also presented.

Uniform attack: When little or no information about the target
system is available, attacked addresses can be chosen using a
uniform distribution. Thus, target addresses are chosen
randomly, and the probability of selecting each address is the
same, which is 1/N. For K-variant systems, the uniform
attack was first analyzed.

Figure 7 depicts five uniform attacks in memory. Five addresses
were chosen at random from the program's first and
last available addresses in memory. The first four
attacks compromise non-vulnerable instructions, allowing the
program to continue to run normally. The fifth attack, on
the other hand, manipulates the vulnerable memory, causing
the program to produce incorrect outputs or to crash.

Figure 7: Uniform Attack.

Normal distribution attack: A normal distribution can be used
to choose target addresses. As is the case with the uniform
attack, the first attack is chosen at random using a uniform
distribution. However, the second and subsequent attacks are
chosen randomly from a normal distribution with a mean in the
first attacked address. This attack enables adversaries to choose
addresses in the vicinity of the initial attack. In contrast to the
uniform attack, the normal distribution attack targets a single
region of memory. It is improbable that memory addresses far
from the initial attack will be chosen. Addresses located near the
initial attack, on the other hand, are more likely to become
targets.

The range parameter specifies the attack's perimeter. If the range
is large, the attacked addresses are chosen from a larger pool of
addresses. If the range is narrow, on the other hand, the target
addresses are chosen from a small address set. Figure 8 illustrates
five attempts of the normal distribution attack. The initial attack
is chosen at random using a uniform distribution. The
remaining four attacks are generated at random using a specified
range of a normal distribution. Outside the range, the
probability of selecting a target address is nil. Due to the
vulnerability of the fifth selected address, the system is
compromised in Figure 8.

7J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301

Figure 10: Binary attack.

Experimental study: The purpose of this experiment is to
determine the effect of introducing unreachable code on the
survivability of K-variant systems under four different attack
types: uniform random, normal distribution, binary, and
stepwise.

The experimental study involves:

• investigating the effect of increasing the number of variants
(K)

• investigating the effect of increasing the number of attack
attempts (M) on the survivability of K-variant systems for
programs that are generated by inserting unreachable code

• investigating and comparing the effectiveness of four attack
types

• investigate runtime and memory overhead of transformed
programs

The loop in line 3 of the algorithm in Figure 11 generates RF
different K-variant systems. Line 3 of the loop generates K-1
source codes from the original source code by inserting
unreachable code, as shown in Figure 4. In line 4, the source
codes for K-1 variants and the original program are compiled.
The attack is then run on the generated K-variant system. Line
6's loop repeats the entire attack simulation RA times. In line 7,
M memory addresses are chosen for each repetition based on
attack type A. In line 8, binaries are then manipulated from the
selected memory addresses. Inside the loop in line 9,
manipulated variants or binaries are executed with test cases
from test suite TS. Each test case in test suite TS is associated
with a single mission. As a result, only one test case is executed
in each run of the experiment. If at least one of the
variants passes a test case, the # of Unsuccessful attacks is
increased. In line 3, at the end of the loop, Pu is obtained
by dividing # of unsuccessful attacks by the total number of
executed test cases, which is the product of RF, RA, and the
number of test cases in TS.

Figure 11: Pseudo code of the tool to estimate Pu.

RF (Repetition Factor of K-variant generation) and RA (Number
of repetitions of M-attack in repetition factor) are both ten in
this experimental study. In addition, for each attacked variant,
ten test cases with statement coverage ranging from 50% to
100% are executed. Therefore, the number of executions,
RF∙RA∙ size of (TS), in the estimation of Pu in Figure 11 is 1000.
When generating each variant, the program transformation
inserts at most five unreachable statement chunks into the
source code. Furthermore, each unreachable statement chunk
can only contain five statements. Unreachable statements are
also made up of random buffer declarations and initializations.
The data types and sizes of buffers in unreachable statements are
also chosen at random. Furthermore, the size of each buffer is at

Bekiroglu and Korel

When the delta step is less than the size of the vulnerable
memory, the system will be compromised by the stepwise attack.

A prototype of a C++ tool for automating the transformation of
unreachable code has been developed. By applying the inserting
unreachable code transformation, the tool automatically
generates variants from a program. The tool randomly
transforms the program, resulting in a unique variant being
generated each time.

The remainder of this section describes the steps taken by the
tool to calculate the probability of an unsuccessful attack (Pu)
and the experimental results.

The algorithm for estimating Pu is depicted in Figure 11. The
tool accepts the following inputs: the number of variants (K), the
number of attack attempts (M), the type of attack (A), the source
code (S), and the test suite (TS). The tool's output is the
probability of an unsuccessful attack (Pu). Additionally, the tool
includes two parameters, RF and RA, which affect the accuracy
of Pu estimations. RF represents the repetition factor of K-
variant generation. In other words, RF denotes the number of
distinct K-variant systems generated by inserting unreachable
code. The other tool parameter is RA, which represents the
number of times M attacks are repeated in the repetition factor.
RA denotes the repetition of the entire attack process for each
K-variant system generated. Increases in RF and RA result in
more accurate estimations of Pu. However, it necessitates a
greater number of executions.

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 8

The scope of this experimental study is as follows:

• The experimental study employs three programs ranging in
size from 500 LOC to 5 KLOC. Table 1 contains basic
information about selected programs.

• Variants are run for ten test cases with three attack durations
(or attack attempts): short, medium, and long attacks.

• The analysis is performed on up to ten-variant systems.
• When selecting programs for the experimental study, the

following criteria were used.
• C or C++ programs are popular and not memory-safe. As a

result, programmers are accountable for memory-related
security concerns.

• Open-source and accessible through public code repositories
such as Gather and Code project.

• Because the tools used in the experimental study were written
in. NET, the programs must be compiled and run in a
Windows environment (Table 1).

Table 1: Basic information about programs in the experimental study.

Program # Source code size Binary size Description

Program #1 1000 LOC 203 KB The optimum routing path is
determined using a linked state
protocol.

Program #2 500 LOC 102 KB Encrypts plain texts

Program #3 5000 LOC 313 KB Provides services for storing,
retrieving, and deleting user data.

a noticeable improvement in Pu for the binary attack. Except for
the single variant system, the binary attack still produces the
lowest Pu. Furthermore, Pu grew significantly in stepwise and
uniform attacks. Despite the fact that increasing the number of
variants increases Pu significantly for the normal distribution
attack, it maintains the lowest Pu for all variants among all
attack types. As shown in Figure 12c, Pu falls precipitously in
all attack types when the attack duration is long. The data in
Figure 12c is interesting because it shows that binary and
stepwise attacks compromise systems regardless of the number of
variants in the system in twenty attacks. Both deterministic
attacks nearly reached their survivability breaking points in
twenty attacks against Program #1. As a result, increasing the
number of variants has no effect on Pu. Furthermore, the
normal distribution attack has the highest survivability because
it only targets specific memory parts. Increasing the number of
variants improves Pu in both random and deterministic attacks.
Pu is expected to increase after the tenth variant in the long
attack in uniform and normal distribution attacks.

Bekiroglu and Korel

most 500. As a result, at most 500 elements are initialized in
each buffer with randomly generated data of the selected data
type.

The attacker is assumed to be capable of writing to any memory
address in the attack model used in the experimental study. This
may be impossible in real-world attacks. As a result, the
experimental study's attack model represents the defender's
worst-case scenario. Thus, the effectiveness of the program
transformations can be much higher in actual attacks.

The number of attack attempts accurately represents the
duration of the attack. The number of attack attempts increases
as the attack duration increases. Thus, the attack duration refers
to the attack durations in this paper or vice versa. In the
emulation, one byte of an executable file is manipulated in each
attack attempt. The attacked byte is filled with "0". In this
experiment, five, ten, and twenty bytes are manipulated in short,
medium, and long attacks, respectively. Twenty is the maximum
number of attack attempts in the experimental study because a
program has a slim chance of surviving more than twenty
attacks.

The attacks are directed against the entire program, including all
of its parts (data, instruction/text, and metadata). As a result,
the attack range is 100%. The following sections present the
results of the experimental study for three programs. Finally, this
section compares attack types to the average Pu of all programs
and discusses deductions for three programs and three attack
durations.

Figure 12 depicts the effectiveness of inserting unreachable code
into Program #1. (Figures 12a-c) show three line charts
that correspond to different attack durations. Figure 12
shows the Probability of an unsuccessful attack (Pu) versus
the number of variants for four different attack types.
Looking at Figure 12a, it is clear that introducing a couple of
variants in a K-variant system improves Pu significantly in a
short attack. Even after introducing the second variant in
binary and stepwise attacks, Pu can reach one. Random
attacks, including uniform and normal distribution attacks
are more likely to compromise systems than deterministic
attacks with two to seven variants. Furthermore, there is no
need to add eight or more variants because Pu has already
achieved nearly one in all attack types.

When the average Pu of all variants is considered in Figure 12a,
the uniform attack has the lowest Pu (0.902) of the four attack
types. Pu fell dramatically when the number of attacks was
doubled, as shown in Figure 12b. What stands out in this line
chart is that increasing the number of variants does not result in

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301

9

always has a lower Pu than the normal distribution attack.
Nonetheless, when all K-variants are considered, the normal
distribution achieves a lower average Pu than the stepwise
attack. Figure 13c shows that Pu decreased dramatically for all
attack types during the long attack. What stands out in this
figure is the increase in the probability of a successful attack in
deterministic attacks, which are stepwise and binary. Because
deterministic attacks use a systematic approach to compromise
K-variant systems, they become more efficient as the attack
duration increases. Pu of binary and stepwise attacks is 0.2 and
0.25, respectively, in terms of average Pu for all K-variant
systems. Pu in the uniform and normal distribution attacks, on
the other hand, is only 0.27 and 0.35, respectively. Figure 13c)
also clearly shows the disadvantage of the normal distribution
attack. Because target addresses are chosen from a limited
address space, the normal distribution attack has a lower Pu
than other attack types. According to the results of the
experiment study, Pu is expected to increase after ten variants
for all attack types.

Figure 13: The effectiveness of inserting unreachable code for
Program #2.

Figure 14 depicts the effectiveness of inserting unreachable code
for Program #3. Only second variants, as shown in Figure 14a,
provide a noticeable improvement in Pu for all attack types in
short attacks. Adding more than two variants has no effect on
Pu. The most intriguing aspect of the line chart in Figure 14a is
the superiority of random attacks over deterministic attacks.

Bekiroglu B

Figure 12: The effectiveness of inserting unreachable code for
Program #1.

Figure 13 represents the effectiveness of inserting unreachable
code into Program #2. Figure 13a shows that uniform and
normal distribution attacks produce nearly identical results for a
short attack. The small program size and the number of attacks
(five) are two reasons for the identical results of both random
attacks. Although the binary attack has a high probability of
compromising a single variant system, increasing the number of
variants improves Pu significantly even after the second variant.
After the sixth variant, all attack types produce nearly identical
results because the system has already achieved the maximum
survivability for these attack types in the short attack. All attack
types except the binary attack yield a similar average Pu (0.89) in
five attacks when all variants are considered. From the
standpoint of the attacker, the binary is the least effective of the
four investigated attack types. In the binary attack, the average
Pu for all variants is only 0.94. When the attack duration was
doubled, as shown in Figure 13b, Pu fell in all attack types as
expected. The binary attack has evolved into the most effective
attack type. The stepwise attack, like the short attack, provides
the lowest Pu in a single variant system. However, increasing the
number of variants improves Pu significantly. Furthermore, the
stepwise attack produces the lowest average Pu (0.76) of all
variants. In contrast to the short attack, there is a discernible
difference between uniform and normal distribution attacks.
Because it targets a smaller address space, the uniform attack

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 10

Figure 14: The effectiveness of inserting unreachable code for
Program #3.

Comparisons based on the average Pu of all
programs

The previous section examined the survivability of K-variant
systems for three distinct programs. This section compares four
different attack types using the average Pu of three different
programs. The average Pu of three programs is shown in Figure
15 in relation to the increasing number of variants for four
attack types over three attack durations. The comparisons in
Figure 15a, Figure 15b, and Figure 15c are for short, medium,
and long attacks, respectively.

Figure 15a shows that for five attack attempts, random attacks
(uniform and normal distribution attacks) produce a smaller
average Pu than deterministic attacks (stepwise and binary
attacks). Among the four attack types, the uniform attack has
the best chance of compromising K-variant systems. On the
other hand, K-variant architecture significantly improves the
average Pu for the binary attack in the short attack. After
introducing the third variant in the binary attack, the average Pu
reaches nearly one (0.996). Moreover, adding more than six
variants provides only a slight improvement in average Pu for all
attack types. Furthermore, no significant improvement in
average Pu is observed for all attack types after the fourth
variant.

When the number of attacks is increased from five to ten, the
difference in the average Pu between attack types becomes
obvious in Figure 15b. Due to deterministic attacks' systematic
approach, the binary attack has emerged as the most effective
attack type for compromising K-variant systems. However, the
binary attack produces a greater average Pu than the uniform
attack. Additionally, on average, the normal distribution attack
has the lowest probability of compromising K-variant systems.

Figure 15c depicts the advantage of deterministic attacks for long
attacks. In twenty attacks, the stepwise and binary attacks provide
the lowest average Pu. Because ∆ (delta step) becomes smaller in
the long attack, it becomes significantly more efficient than the
short and medium attack durations. Although the average Pu in
the uniform and binary attacks is similar, the uniform attack
yields a slightly higher average Pu than the binary attack. The
long attack highlights the difference between the normal
distribution attack and other attacks. As a result, the normal
distribution attack is the least preferable of the four attack types
in long attack durations for attackers.

Bekiroglu and Korel

When the program is large, and the attack duration is short, the
data in Figure 14a suggests that random attacks have a greater
chance of compromising K-variant systems than
deterministic attacks. Moreover, stepwise and binary attacks
produce nearly identical Pu for all K-variant systems.
Furthermore, from the attacker's perspective, the uniform
attack is the most successful attack type in short attacks.
Unlike the other programs in the experimental study,
doubling the attack duration results in a minor decrease in
Pu for all attack types in Figure 14b. The binary attack causes
the most noticeable change in Pu. Also, the binary attack
provides the lowest Pu (0.87) on average for all K-variant
systems. Stepwise, on the other hand, has the highest Pu. Pu
attains one following the introduction of the second variant.
Although the normal distribution attack yields slightly lower Pu
than the stepwise attack on average Pu for all K-variant systems,
it is not as effective as the uniform attack in compromising
the system. When the number of attack attempts is
doubled, Pu decreases dramatically from single to four variant
systems in the long attack, as shown in Figure 14c. The
stepwise exploits the long attack's advantage by decreasing the
delta-step value, which is the gap between attacked addresses. As
a result, it becomes the most effective type of attack to
compromise the system. After the third variant, the uniform
and stepwise attacks produce the same Pu.

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 11

Figure 15: Comparison of attack types for tree attack durations
based on the average Pu of three programs.

To summarize, random attacks may have a higher probability of
compromising K-variant systems than deterministic attacks in
short attacks. Deterministic attacks, on the other hand, become
more efficient as the number of attack attempts increases.
Furthermore, introducing the second variant always results in
the most noticeable improvement in Pu for all attack types. The
level of improvement in Pu is likely to diminish with each
additional variant for all attack types.

Overhead of the program transformation: As is the case with
all multi-variant/version execution architectures, K-variant
incurs a cost associated with executing multiple variants. Each
variant/version necessitates the utilization of additional CPU
and memory resources. This is an overhead due to the multi-
variant/version architecture's nature. This section, on the other
hand, discusses the overhead associated with the program
transformation caused by the addition of unreachable code.

Inserting unreachable code increases the program's size and
memory usage. Unreachable statement chunks are enclosed by
never-executed conditions. They do, however, consume memory.
Additionally, inserted conditions remain executable and
consume a negligible amount of CPU time. Five unreachable
statement chunks are inserted into each variant during the
experimental study. As a result, the source code contains five
additional executable conditions. Due to the small number of

executed instructions, CPU overhead is negligible. In the
experimental study, the average memory overhead for Program
#1, Program #2, and Program #3 is 2.6%, 6.4%, and 4.6%,
respectively.

In an experimental study, the program transformation of
inserting unreachable code significantly improves the
survivability of systems against memory exploitation attacks
while incurring minimal CPU and memory overhead. On the
other hand, introducing a large number of unreachable
statement chunks may result in a degradation of system
performance. Additionally, increasing the number of statements
in each unreachable statement chunk increases the variants'
memory overhead.

Threats to validity of experiments: The following threats to
experiment validity are identified and addressed in this
experimental study.

• The number and size of programs: Three programs were used
in the experimental study. Furthermore, program sizes range
between 500, 1 K, and 5 K LOC. The small number of
programs could be a threat to validity. These three programs
may not be representative of the general behavior of program
transformations and attack types. Furthermore, the three
programs are relatively small in size. For large programs,
different outcomes may be obtained.

• Insufficient statistical power: Because the experiment has a
small number of iterations, the results may vary. Each
experiment is iterated 1000 times in order to eliminate that
threat. When the number of iterations is increased from 1000
to 10,000, there is no discernible difference.

• Implementation of the tool: The tool's bugs could lead to
incorrect results. To counteract this threat, the tool includes
multiple versions of program transformation and attack
simulations. The outcomes of these variants are compared.

CONCLUSION
The K-variant is an alternative architecture to the N-variant that
is intended to strengthen systems' defenses against memory
exploitation attacks. In contrast to the N-version architecture,
the K-variant architecture generates variants through program
transformations. By implementing a safe and simple program
transformation into the source code, functionally equivalent
source codes are generated. Additionally, variants in the K-
variant architecture can be generated via automated program
transformation, significantly reducing the cost of variant
generation.

Inserting unreachable code is a program transformation that can
be used to generate variants in the K-variant architecture to
improve system resistance to memory exploitation attacks. A
random number of unreachable statement chunks are inserted
into a random location in the source code during this program
transformation. Unreachable statements are surrounded by
conditions that are always false, preventing them from being
executed. They do, however, consume memory addresses in
memory. Inserting unreachable code is a secure program
transformation. It means that the program transformation does
not introduce new bugs. As a result, no extensive software

Bekiroglu and Korel

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 12

REFERENCES
1. Avizienis A. The N-version approach to fault-tolerant software. IEEE

Trans Softw Eng. 1985;11:1491–1501.
2. Bekiroglu B, Korel B. Survivability analysis of K-variant architecture

for different memory attacks and defense strategies. IEEE Trans
Dependable Secure Comput. 2021;18:1868–1881.

3. Bekiroglu B, Korel B. Source code transformations for improving
security of time-bounded k-variant systems. Inf Softw Technol
2021;137:106601.

4. Bhatkar S. Defeating memory error exploits using automated software
diversity. Phd, State University of New York at Stony Brook. 2007.

5. Bhatkar S, Sekar R, Du Varney DC (2005) Efficient techniques for
comprehensive protection from memory error exploits. In:
Proceedings of the 14th conference on USENIX Security
Symposiu. USENIX Association, Jul 31-Aug 5, Baltimore,
MD,USA,14-17.

6. Bletsch T (2011) Code-reuse attacks: new frontiers and defenses.
Raleigh, North Carolina State University, United States. 95.

7. Burow N, Carr SA, Nash J, Larsen P, Franz M, Brunthaler S, et al.
Control-Flow Integrity: Precision, Security, and Performance. ACM
Comput Surv. 2017;50:1–33.

8. Carlini N, Barresi A, Payer M, Wagner D, Gross TR. Control-Flow
Bending: On the Effectiveness of Control-Flow Integrity. 2015;161–
176.

9. Chen Y, Zhang D, Wang R, Qiao R, Azab AM, Lu L, et al.
NORAX: Enabling Execute-Only Memory for COTS Binaries on
AArch 64. IEEE Secur Priv. 2017;304–319.

10. Coker Z, Hafiz M (2013) Program transformations to fix C integers.
In: Proceedings of the 2013 International Conference on Software
Engineering. IEEE. May 18-26, San Francisco, CA, USA,792–801.

11. Coker ZF (2012) Security-oriented program transformations to
cure integer overflow vulnerabilities. In: Proceedings of the 3rd
annual conference on systems, programming, and applications:
software for humanity. Oct, Arizona, USA,103–104.

12. Cowan C, Pu C, Maier D, Hintony H, Walpole J, Bakke P, et al
(1998) StackGuard: automatic adaptive detection and prevention of
buffer-overflow attacks. In: Proceedings of the 7th conference on
USENIX Security Symposium. Jan 26-29, San Antonio, Texas,7-5.

13. Crane S, Liebchen C, Homescu A, Davi L, Larsen P, Sadeghi AR,
et al. Readactor: practical code randomization resilient to memory
disclosure. IEEE Secur Priv. 2015;763–780.

14. Deswarte Y, Kanoun K, Laprie JC (1998) Diversity against
accidental and deliberate faults. In: Proceedings Computer Security,
Dependability, and Assurance: From Needs to Solutions. July
7-09, York, UK & Williamsburg, VA, USA,171–181.

15. Devriese D, Piessens F. Noninterference through Secure Multi-
execution. IEEE Secur Priv. 2010;109–124.

16. Farvardin N, Modestino J. On overflow and underflow problems in
buffer-instrumented variable-length coding of fixed- rate memoryless
sources (Corresp.). IEEE Trans Inf Theory 1986;32:839–845.

17. Forrest S, Somayaji A, Ackley DH (1997) Building diverse computer
systems. In: Proceedings. The Sixth Workshop on Hot Topics in
Operating Systems (Cat. No.97TB 100133). Los Alamitos, CA,67–
72.

18. Gionta J, Enck W, Ning P (2015) HideM: Protecting the Contents
of Userspace Memory in the Face of Disclosure Vulnerabilities. In:
Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy. March 2-4, San Antonio, Texas, USA,325–
336.

19. Gisbert HM, Ripoll I. On the Effectiveness of NX, SSP, RenewSSP,
and ASLR against Stack Buffer Overflows. In: 2014 IEEE 13th

Bekiroglu and Korel

testing is required to validate variants. Furthermore, the
program transformation can be easily automated, lowering the
cost of generating variants significantly.

The effectiveness of the program transformation of inserting
unreachable code is investigated experimentally on K-variant
systems with four different attack types in this paper. The
experimental study examines four attack types: uniform, normal
distribution, binary, and stepwise. Three programs of varying
sizes are examined less than three different attack durations.
The experimental study's attack model, which allows attackers to
write arbitrary memory addresses, is the worst-case scenario for
defenders. Because the experimental study's assumptions may
not be possible in actual attacks, the effectiveness of the
program transformation is expected to be greater in the wild.

The experimental results indicate that generating variants by
inserting unreachable code is a valuable strategy for improving
the survivability of K-variant systems against memory
exploitation attacks at a reasonable cost. Increasing the number
of variants may improve survivability significantly, especially
during long attacks. In the experimental study, the effectiveness
of random attacks in short attack durations and the efficiency of
deterministic attacks in long attack durations were observed.

We will investigate the effectiveness of program transformation
in larger programs in future work (which are significantly larger
than 5 KLOC). Additionally, the performance of large programs
will be examined following the addition of unreachable code.
Moreover, the effectiveness of the program transformation for
inserting unreachable code will be compared to the effectiveness
of other K-variant architecture program transformations.

ACKNOWLEDGMENTS
Not applicable.

AUTHORS' CONTRIBUTIONS
Both authors formulated the idea of the study and wrote the
paper; both authors reviewed the results and improved the final
manuscript. All authors examined and approved the final
manuscript.

FUNDING
Not applicable.

AVAILABILITY OF DATA AND
MATERIALS
Not applicable.

DECLARATIONS
Competing interests

The authors declare that they have no competing interests.

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 13

https://ieeexplore.ieee.org/abstract/document/1701972
https://ieeexplore.ieee.org/abstract/document/8839868
https://ieeexplore.ieee.org/abstract/document/8839868
https://www.sciencedirect.com/science/article/abs/pii/S095058492100080X
https://www.sciencedirect.com/science/article/abs/pii/S095058492100080X
https://dspace.sunyconnect.suny.edu/bitstream/handle/1951/44777/000000157.sbu.pdf?sequence=3
https://dspace.sunyconnect.suny.edu/bitstream/handle/1951/44777/000000157.sbu.pdf?sequence=3
https://www.usenix.org/legacy/publications/library/proceedings/sec05/tech/full_papers/bhatkar/bhatkar.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec05/tech/full_papers/bhatkar/bhatkar.pdf
https://repository.lib.ncsu.edu/bitstream/handle/1840.16/6698/etd.pdf?sequence=1
https://dl.acm.org/doi/abs/10.1145/3054924
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://ieeexplore.ieee.org/abstract/document/7958584
https://ieeexplore.ieee.org/abstract/document/7958584
https://ieeexplore.ieee.org/abstract/document/6606625
https://dl.acm.org/doi/abs/10.5555/1267549.1267554
https://dl.acm.org/doi/abs/10.5555/1267549.1267554
https://ieeexplore.ieee.org/abstract/document/7163059
https://ieeexplore.ieee.org/abstract/document/7163059
https://ieeexplore.ieee.org/abstract/document/798364
https://ieeexplore.ieee.org/abstract/document/798364
https://ieeexplore.ieee.org/abstract/document/5504711
https://ieeexplore.ieee.org/abstract/document/5504711
https://ieeexplore.ieee.org/abstract/document/1057235
https://ieeexplore.ieee.org/abstract/document/1057235
https://ieeexplore.ieee.org/abstract/document/1057235
https://ieeexplore.ieee.org/abstract/document/595185/
https://ieeexplore.ieee.org/abstract/document/595185/
https://dl.acm.org/doi/abs/10.1145/2699026.2699107
https://dl.acm.org/doi/abs/10.1145/2699026.2699107
https://ieeexplore.ieee.org/abstract/document/6924219
https://ieeexplore.ieee.org/abstract/document/6924219

International Symposium on Network Computing and
Applications. 2014;145–152.

20. Hafiz M. Security oriented program transformations (or how to
add security on demand). In: Companion to the 23rd ACM
SIGPLAN conference on Object-oriented programming systems
languages and applications. Association for Computing
Machinery, Nashville, TN, USA. 2008;927–928.

21. Hafiz M, Johnson R. A security oriented program transformation to
"add on" policies to prevent injection attacks. In: Proceedings of the
2nd Workshop on Refactoring Tools. Association for Computing
Machinery, Nashville, Tennessee.2008;1–4.

22. Hafiz M, Johnson RE. Security-oriented program transformations.
In: Proceedings of the 5th Annual Workshop on Cyber Security
and Information Intelligence Research: Cyber Security and
Information Intelligence Challenges and Strategies. Association
for Computing Machinery, Oak Ridge, Tennessee, USA. 2009;1–
4.

23. Hafiz M, Johnson RE. Improving perimeter security with security-
oriented program transformations. In: 2009 ICSE Workshop on
Software Engineering for Secure Systems. 2009;61–67.

24. Kc GS, Keromytis AD, Prevelakis V. Countering code-injection
attacks with instruction-set randomization. In: Proceedings of the
10th ACM conference on Computer and communications
security. Association for Computing Machinery, Washington
D.C., USA. 2003;272–280.

25. Korel B, Ren S, Kwiat K, Auguste A, Vignaux A. Improving
operation time bounded mission critical systems' attack-survivability
through controlled source-code transformation. In: Proceedings of
the 4th international conference on security of information and
networks. Association for Computing Machinery, Sydney,
Australia. 2011;183–190.

26. Larsen P, Homescu A, Brunthaler S, Franz M. SoK: Automated
Software Diversity. In: 2014 IEEE Symposium on Security and
Privacy 2014;276–291.

27. Larsen P, Sadeghi AR. The Continuing Arms Race: Code-Reuse
Attacks and Defenses. Association for Computing Machinery and
Morgan & Claypool. 2018.

28. Marco-Gisbert H, Ripoll I. Preventing Brute Force Attacks Against
Stack Canary Protection on Networking Servers. In: 2013 IEEE 12th

International Symposium on Network Computing and
Applications. 2013;243–250.

29. Mashtizadeh AJ, Bittau A, Boneh D, Mazières D. CCFI:
Cryptographically Enforced Control Flow Integrity. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing Machinery,
Denver, Colorado, USA. 2015;941–951.

30. Molnar I. "Exec Shield", new Linux security feature. In: "Exec
Shield", new Linux security feature. 2003.

31. Newsham T. (2000) Format String Attacks. Guardent, 1-8.

32. Paulson LD. New chips stop buffer overflow attacks. Computer
2004;37:28.

33. Roemer R, Buchanan E, Shacham H, Savage S. Return-Oriented
Programming: Systems, Languages, and Applications. ACM Trans Inf
Syst Secur. 2012;15:2:1–2:34 .

34. Russinovich ME, Solomon DA, Ionescu A. Windows Internals,
Part 2, 6 edition. Microsoft Press. 2012.

35. Schmitz T, Algehed M, Flanagan C, Russo A. Faceted Secure Multi
Execution. In: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. Association for
Computing Machinery, New York, NY, USA. 2018;1617–1634.

36. Shaw A, Doggett D, Hafiz M. Automatically Fixing C Buffer
Overflows Using Program Transformations. In: 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks. 2014;124–135.

37. Tech GB. Mission-critical systems, and why you need them
managed. In: GB Tech. 2020.

38. Zhiyuan A, Haiyan L. Realization of Buffer Overflow. In: 2010
International Forum on Information Technology and
Applications. 2010;347–349.

39. Xu J, Kalbarczyk Z, Iyer R. Transparent runtime randomization for
security. 260–269.

40. Abatchy's blog Exploit Dev 101: Bypassing ASLR on Windows. In:
Exploit Dev. 101: Bypassing ASLR on Windows. 2017.

Bekiroglu and Korel

J Inform Tech Softw Eng, Vol.12 Iss.4 No:1000301 14

https://dl.acm.org/doi/abs/10.1145/1636642.1636654
https://dl.acm.org/doi/abs/10.1145/1636642.1636654
https://ieeexplore.ieee.org/abstract/document/5068460
https://ieeexplore.ieee.org/abstract/document/5068460
https://dl.acm.org/doi/abs/10.1145/948109.948146
https://dl.acm.org/doi/abs/10.1145/948109.948146
https://dl.acm.org/doi/abs/10.1145/2070425.2070454
https://dl.acm.org/doi/abs/10.1145/2070425.2070454
https://dl.acm.org/doi/abs/10.1145/2070425.2070454
https://dl.acm.org/doi/abs/10.1145/2070425.2070454
https://dl.acm.org/doi/abs/10.1145/2070425.2070454
https://ieeexplore.ieee.org/abstract/document/6623669
https://ieeexplore.ieee.org/abstract/document/6623669
https://ieeexplore.ieee.org/abstract/document/6623669
https://ieeexplore.ieee.org/abstract/document/6623669
https://dl.acm.org/doi/abs/10.1145/2810103.2813676
https://dl.acm.org/doi/abs/10.1145/2810103.2813676
https://dl.acm.org/doi/abs/10.1145/2810103.2813676
https://ieeexplore.ieee.org/abstract/document/1350723
https://dl.acm.org/doi/abs/10.1145/2133375.2133377
https://dl.acm.org/doi/abs/10.1145/2133375.2133377
https://dl.acm.org/doi/abs/10.1145/3243734.3243806
https://dl.acm.org/doi/abs/10.1145/3243734.3243806
https://ieeexplore.ieee.org/document/6903573
https://ieeexplore.ieee.org/document/6903573
https://ieeexplore.ieee.org/abstract/document/5635047/

	Contents
	Improving the Security of Time-Bounded Mission-Critical K-Variant Systems by Inserting Unreachable Code
	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	K-Variant architecture and attack model
	Background/Related works

	RESULTS
	DISCUSSION
	Attack types
	Comparisons based on the average Pu of all programs

	CONCLUSION
	ACKNOWLEDGMENTS
	AUTHORS' CONTRIBUTIONS
	FUNDING
	AVAILABILITY OF DATA AND MATERIALS
	DECLARATIONS
	REFERENCES

