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Introduction
Inefficient acquisition of less mobile nutrients (like phosphorus, zinc, 

copper etc.) by crops is one major constraint of agriculture, particularly 
under rainfed ecology, prone to drought, occurring in various crop 
growth stages [1]. This reduces nutrient uptake, particularly the major 
nutrient of phosphorus (P) by plants [2,3]. The available ‘non-occluded 
soil P’ (inorganic P) remains in continuous equilibrium between 
‘solution P pool’ which is readily available to plant and ‘labile P pool’ 
that remains adsorbed on soil surface and needs root interception for its 
acquisition by plant [4]. This ‘labile P pool’ is accessed by mycorrhizal 
plants through interception by extraradical (external) mycelial network 
extended beyond root zone that may extend up to several centimeters 
out in the soil [5] and help plant to acquire P beyond P depletion zone 
around root [6] which is otherwise not available to plant. Evidence 
of releasing nutrients from insoluble forms of inorganic sources like 
mineral particles and rock surfaces by AMF is conflicting [7]. Although 
there are some reports supporting mobilization of insoluble nutrients 
by AMF these effects could depend upon synergistic interactions with 
other P-solubilizing micro-organisms growing endosymbiotically with 
AM plants [8]. Other beneficial soil microbes like N fixing bacteria and 
P solubilising bacteria, may synergistically interact with AM fungi and 
thereby benefit plant growth [9]. 

Beside nutritional benefits to plant, AM also provides 
numerous ecological advantages like influencing microbial and 
chemical environment of the mycorrhizospher, more precisely the 
hyphosphere, the zone surrounding individual hyphae [10], stabilizing 
soil aggregates, conferring tolerance (plant) to several abiotic and biotic 
stresses, bioremediation of soil and supplying protective (antioxidants) 
nutrient components to human being through agricultural products 
(food) contributing a key role in the earth’s ecosystem services [11].

AM fungal association may influence bacterial communities 
associated with the roots in both direct and indirect ways [10]. While 
the fungus provides directly energy-rich carbon compounds derived 
from host assimilates, which are transported to the mycorrhizosphere 
via fungal extraradical hyphal network, changes in pH of the 
mycorrhizosphere induced by the fungus, competition for nutrients, 
and fungal exudation of other inhibitory or stimulatory compounds 
induces indirect interactions in the form of mycorrhiza mediated 
effects on host plant growth, root exudation and soil structure. 

The extraradical mycelial network of AMF also imparts binding 
action on the soil and improves soil structure. In addition, the secretion 
by AM fungi of hydrophobic, ‘sticky’ proteinaceous substances, known 
as ‘glomalin’ [12], also contributes to soil stability and water retention 
[13]. The combination of extraradical mycalial network and glomalin 
secretion is considered to be an important element for stabilization 
of soil aggregates [14], thereby leading to reduced soil erosion and 
increased soil structural stability and quality [13].

AM association has been proved to be beneficial to agriculture 
under abiotic and biotic stressed environment including drought 
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Abstract
Agricultural importance and ecological implications of arbuscular mycorrhizal (AM) symbiosis with land 

plants are well known. AM symbiosis facilitates plant growth through enhancing uptake of several macro- and 
micro-nutrients of low mobility in soil, like phosphorus, zinc, copper etc. Beside nutritional benefits to plant, 
AM also contributes to numerous ecological advantages like influencing microbial and chemical environment 
of the mycorrhizosphere, stabilizing soil aggregates, conferring tolerance (plant) to several abiotic and biotic 
stresses, bioremediation of soil and supplying protective (antioxidants) nutrient components to human being 
through agricultural products (food). There are two approaches to exploit arbuscular mycorrhiza for crops: (1) 
soil introduction of non-native inoculum and (2) exploitation of native AM fungal (AMF) population. The approach 
of soil introduction of non-native inoculum of selected AMF to field crops suffers from (i) cost intensiveness, 
(ii) inconsistent competitive performance of introduced inoculum due to lack of adaptability to new ecology 
and (iii) negative ecological consequences in terms of possible introduction of invasive species as unintended 
contaminants. Exploitation of native AM fungal (AMF) population of soils, keeping it undisturbed by avoiding 
faulty agricultural practices, is an alternative approach, now promoted for sound ecological management of crop 
production, particularly under stressful situations. The approach is based on twin attributes of AM symbiosis 
– ubiquitous nature and lack of host specificity of AMF. Several prospective avenues of enhancing native AM
activities through agronomic manipulations of crop management practices and cropping systems for enhanced 
response to diverse native AMF population have been discussed in the present article
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(abiotic) and pathogen infection (biotic). AM, under moisture stress 
benefits in two ways by increasing (i) moisture retention property of 
soil [15] and (ii) greater exploration of soil moisture [16]. Subsequently, 
Ruiz-Lazano et al. [17] suggested involvement of modulating drought-
induced genes of AM plant in imparting drought tolerance. 

Despite several reports of pathogen (soil borne) suppression by 
AM fungi [18], the underlying mechanism is still not well understood. 
Some possible mechanisms could be (i) improvement of plant nutrition 
and competition for photosynthates [19], (ii) AM induced stimulation 
of saprotophs and plant growth promoting microbes [20], (iii) AM 
induced anatomical and morphological changes in root system and 
(iv) AM induced local (at infection site) elicitation of plant defence 
mechanism [21]. However, additive pathogen suppressing effect of 
combined application of other antagonistic microbes with AM indicates 
possible function of AMF as vectors for the antagonists [10]. 

Improvement of nutritional quality in plant products as a result of 
mycorrhizal association was demonstrated in lettuce [22]. Such AM 
induced improvement was found to be dependent on phosphorus 
sources also. While copper, iron, starch and protein concentrations 
were increased in lettuce leaves under application of water insoluble 
P source, water soluble source increased mostly nonstructural sugars. 
The role of AMF in soil bioremediation, however, is mostly through 
encouraging associated microflora directly involved in bioremediation 
[23] as compared to direct role of ecto-mycorrhizas. 

The well-drained, aerobic soil conditions of upland ecology 
supporting native AM activities [24] indicated that AM has greater 
potential in this ecology. Benefits from AM fungi (AMF) can be accrued 
by exploiting native AM flora or by application of external exotic 
inoculum. The former approach is considered to be more effective [25] 
owing to its stronger ecological adaptation and suitability due to less 
negative ecological consequences [26]. Thus, AMF inoculum developed 
from native sources is considered to be more efficient [27] and also 
cost effective. So, attempts have been made in the present article to 
discuss possible options of exploiting native AMF by enhancing its 
activity through (i) manipulations in agro-practices, (ii) adoption of 
AM supportive cropping systems/rotations and (iii) development and 
application of AMF inoculum of native origin.

Options for Exploiting Native AM Fungi
Manipulation in agro-practices

 Optimizing tillage schedule: Tillage is one important agricultural 
operation that influences activities of native AMF in soil. Off-season 
tillage is an agronomic recommendation for management of weed and 
soil borne plant pathogens. On the other hand, this operation results 
in soil disturbance induced (SDI) deleterious effects on natural AMF 
by disrupting established mycelial network [28] leading to delayed 
colonization in subsequent crops and less P acquisition. Disruption 
AMF mycelia network in soil causes a delay in the colonizing roots of 
the next crop, because more time is needed for the inoculum around the 
roots to accumulate. Tillage induced reductions in mycorrhizal activity 
and phosphate nutrition is well known in corn [29], and the effect could 
be replicated in laboratory systems [30] for confirmation. The timing of 
the reduction in colonization is important, because the crop demands 
adequate phosphate early in the season for yield potential to be reached 
[31]. Hence, a compromise between no-tillage (most suitable for 
native AMF) and optimum tillage for accruing both mycorrhizal and 
agronomic benefits was felt to be worked out for recommendation. 
Magnitude of SDI effects depends upon length of undisturbed period 

(no-till period) [32,33] and degree of soil disturbance in terms of extent 
of soil pulverization [34]. Under temperate ecology of Canada, ‘reduced 
tillage’ (only spring disking) was observed to have less severe negative 
impact on the abundance of soil hyphae and mycorrhizal colonization 
in corn by native AMF than ‘conventional tillage’ (fall mould-board 
ploughing + spring disking) [35]. A threshold of undisturbed period 
in terms of maintaining gap between two consecutive tillage operations 
(using bullock drawn country plough, tilling up to a depth of 10-15cm) 
of 13 weeks has been worked out for rainfed uplands of eastern India 
(tropical ecology) [36]. Having maintained this gap, two options of off-
season tillage schedules (summer tillage alone and initial tillage after 
harvest + summer tillage) have been recommended for rainfed, mono-
cropped (rice), upland ecosystem under study for maintaining optimum 
activities of native arbuscular mycorrhizal fungi. Heavy tillage both in 
terms of frequency and use of fine pulverizing machine reduced size of 
post tillage soil blocks. Resultant (post tillage) soil cutting blocks less 
than 4 cubic cm reduced AM induced P uptake in maize [34]. Thus, 
maintaining both (i) threshold of undisturbed period and (ii) use of 
coarser pulverizing machines are important for sustenance of native 
AMF activities in soil.

Optimizing P amendment: Higher soil P concentration was 
observed to reduce AMF activity [37] probably by reducing root 
colonization due to reduced root membrane permeability resulting in 
decreased loss of metabolites [38]. At the same time, plant rich in P are 
poor in carbohydrate content which reduces AMF colonization [39]. 
Effects of plant tissue P concentration on AMF colonization, however, 
is dependent on nitrogen (N) concentration. Root colonization 
remained unaffected with increasing P concentration when plants 
were N deficient, but increasing P inhibited mycorrhizal formation 
when plants were N sufficient [40,41]. Corroborating these findings, P 
fertilization was also observed to reduce mycorrhizal development in 
several crops [42,43]. P amendment through organic sources, however, 
did not adversely affect AMF activities possibly by improving soil 
biological properties favoring AMF [35]. Since organic manure is not 
available in required quantity everywhere, optimum dose of inorganic 
P, supporting maximum native AMF activities, without sacrificing crop 
yield, for each crop-ecosystem (at micro-level) combination is needed 
to be worked out. In a similar attempt, P optimum of 20 kg P2O5/ha 
was worked out for upland rice under AM supportive, two years crop 
rotation of maize (Zea mays L.) relay cropped by horse gram (Dolichos 
biflorus L.) in the first year followed by upland rice in the second year’ 
[44] as compared to the recommended dose of 30 kg P2O5/ha. This P 
optima, however, was not effective under rice mono-cropping because 
soil P concentration threshold for maximum benefits from the AM 
symbiosis were observed to be lower than P concentration threshold for 
maximum plant benefit without enhanced AMF activities (inoculation) 
in crops like Phasiolus mumgo and Triticum aestivum [45].

Adoption of AM supportive cropping systems/rotations

Reduction in AMF population under fallow (no crop) due to 
‘fallow disorder’ was confirmed by several workers [46,47,48]. Even, 
contrary to the earlier speculations [49] and subsequent report [50], 
growing non-host (to AMF) crops, as compared to fallow, not only 
maintained better AMF activities in terms of colonizing the succeeding 
host crops [51] and spore population of native AMF [52], in certain 
cases, pre-cropping of non-host crop like oilseed rape (Brassica napus 
L) significantly increased colonization in succeeding host crop like 
barley (Hordeum vulgare L.). This can be attributed to the previous 
findings that AM fungal hyphae can make some hyphal growth around 
the roots of non-host plants without colonizing the roots due to absence 
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long-lasting as evident from the resulting mycorrhizal benefits drawn 
by mycorrhiza responsive crop like sugarcane even after 2-4 years cycle 
[68]. Such residual effects can also be exploited under comparatively less 
AMF-favorable ecology like wetland rice with anaerobic soil condition. 
Pre-cropping rice seed bed (dry seedbed) with several host crops 
like fodder varieties of maize, sorghum (S. bicolor), Dinanath grass 
(Pennisetum pedicilliatum), finger millet (Elusin indica) and little millet 
(Panicum miliare) enhanced AMF colonization of rice seedlings and P 
uptake [69] after transplanting at maturity under rainfed conditions. In 
pre-colonized roots, AMF remained dormant during inundated period 
and became active during intermittent drought periods [70] leading to 
moisture stress which is very common under rainfed ecology. 

Development and application of AMF inoculum of native 
origin

Practical and ecological advantages of native AMF inoculum over 
that of non-native one have been discussed in the previous chapter 
(Introduction). AMF inoculum developed from native source are 
more effective [71] mainly due to its ecological adaptation beside other 
advantages of less negative ecological consequences in terms of possible 
invasive species introduction as unintended contaminants [26] and 
cost effectiveness. Having known these advantages, developing AMF 
inoculum of native origin has been thought of. Several small scale 
inoculum production techniques developed by different researchers, 
time to time, have been reviewed by Marleen et al. (2011) [72]. In the 
present review we have emphasized on various on-farm protocols for 
mass-production of native AMF inoculum suitable to various agro-
eco systems. Soil-root based AMF inoculum produced by (i) growing 
pre-colonized (by native AMF) Bahia grass (Paspalum notatum Flugge) 
on fumigated plots [73] or raised beds amended with vermiculite 
and compost [74], (ii) multiplying native AMF fungal consortium on 
Sorghum roots (Sorghum bicolor) grown in partially sterilized (by soil 
solarization) [75] have been effectively used respectively as amendment 
to horticultural potting media for production of vegetable seedlings and 
as band placement in field for growing direct sown upland rice. A more 
recent approach of multifunctional microbial consortium inoculum 
facilitates integrated crop production system. The microbial consortium 
may include combination of compatible beneficial microorganisms 
having various plant growth promoting and pest controlling functions 
catering to the diversified crop cultivation need by one inoculum. Co-
inoculation of multifunctional microorganisms combinations like (i) 
AMF + PGPR + PSB in lettuce [76], (ii) AMF + PGPR (Azospirillum, 
Azotobacter, Pseudomonas etc.) in Rhodes grass (Chloris gayana Kunth) 
[77], (iii) AMF + PSB in clover [78] and in English mint (Mentha 
piperita L.) [79] not only expressed individual beneficial effects, also 
resulted in additive or synergistic effects on plant growth promotion. 
Such results prompted the researchers to develop microbial consortium 
inoculum. In this effort many microbial consortium inoculum have 
been developed, tested [80] and commercialized.  Integration of native 
AM supportive components is likely to produce additive or synergistic 
effects on plant growth promotion. In such effort, integration of AM 
supportive components of (i) crop rotation and (ii) application of 
on-farm produced native AMF inoculum under blanket practice of 
optimum tillage schedule and P amendment enhanced native AMF 
activity, P uptake and grain yield of upland rice under rainfed ecology 
[62]. Further validation, however, are required for their efficiency 
under farmers field condition for assessing technical feasibility and 
necessary fine tuning. While producing AMF inoculums of native 
origin, however, precautions should be taken to check the efficacy of 

of signals from non-host roots required by AM fungi for successful 
colonization [53]. Such roots surrounded by AM hyphal growth are 
more efficient in colonizing host plants than chlamydospores or other 
inoculum source [51]. Such phenomenon is also influenced by soil 
P level. In non-host Swedes, although not infected by native AMF, 
magnitude of spore associations was found to be similar as that of host 
crops like barley and potato [49] grown under both low and high doses 
of P. The intermediate P level, however, increased spore population only 
with host crops (barley and potato) indicating the intermediate dose to 
be P optimum for maximum native AMF activity under AM favorable/
supporting environment (barley and potato rhizosphere). 

 Mono-cropping of a particular crop leads to narrowing of 
AMF species diversity index [54] and distribution of AM fungi [52] 
due to obvious reason of encouraging a particular species favored by 
the particular crop in continuity without any break [55]. Apart from 
adverse ecological consequences of reducing AMF diversity, mono-
cropping also was reported to reduce proliferation of AMF population 
than mixed cropping [56,57] due to three main reasons: (1) higher root 
density under mixed cropping favors AMF multiplication [58], (2) 
higher plant density exhausting soil nutrients faster stimulates AMF 
activities in soil [59] and (3) under mixed cropping with legumes, the 
companion crops get additional nitrogen from the legumes through 
AM fungi and thereby favoring AMF colonization [56]. 

 Having information on ‘fallow disorder’ and adverse effects 
of mono-cropping on AMF, improving native AMF efficiency for 
enhancing P nutrition of crops through removing or reducing the 
factors (fallowing and mono-cropping) favoring these disorders/
adverse effects were thought of. The factors could be removed/reduced 
by increasing cropping intensity through introduction of AM supportive 
crops, suitable to specific ecology, in the cropping rotation or cropping 
system. Several crop combinations suitable to various ecologies were 
evaluated by different researchers under diverse ecologies worldwide 
for the purpose. Native AMF population build up varied with different 
cropping regimes in the same soil under temperate [49,60] and tropical 
climates [58,61]. 

While enhancement of mycorrhizal colonization resulting in 
improved nutrient (P) uptake by cereals under mixed cropping of ‘cereals 
- non-legumes’ or ‘cereal - cereal’ combinations like rice (Oryza sativa 
L.) – finger millet (Eleusine coracana L. Gaertn) [62] was attributed 
to higher root density per volume of soil favoring the spread of the 
symbiotic fungi [60], higher root volume coupled with N backup to the 
symbiotic system in ‘legume – legume’ combination, like of berseem 
clover (Trifolium alexandrinum L.) – Persian clover (T. resupinatum 
L.) [63], and ‘cereals – legumes’ combination like maize (Zea maize L.) 
– berseem (T. alexandrinum L.) [64], rice (Oryza sativa L.) – pigeon 
pea (Cajanus cajan L.) [62] and rice – peanut (Arachis hypogea L.) [57] 
led to additive mycorrhizal benefits in terms of nutrient uptake and 
growth promotion. Ability of AM fungi to interconnect crop species 
grown together might allow translocation of N from legumes to cereals 
in mixed cropping.

Continuous mixed cropping of ‘cereal – legume’ and ‘legume – 
legume’ combinations, however, enhances chances of developing sick-
plot of soil-borne plant pathogens, mostly for legumes, particularly 
under rainfed agro-ecosystem having mono-modal rainfall pattern 
with single annual crop season. For this ecology, crop rotations are safer 
options. Advantages of crop rotations in terms of mycorrhizal benefits 
can be attributed to (1) soil mycorrhizal potential left by both non-host 
and host pre-crops [65,66,67,61] and (2) reducing ‘fallow disorder’ 
[61]. The residual soil mycorrhizal potential of the pre-crop is also 
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the mixed fungal composition in terms nutrient acquisition and growth 
improvement of the target crops.

Conclusion
Possibilities of exploiting native AMF for mycorrhizal benefits 

in agriculture through several eco-friendly avenues including 
manipulation of agro-practices, crop rotations and application of native 
AMF inoculum was well documented and their practical feasibility has 
been validated for adoption and recommendation as integrated crop 
production component. The following suggestions have been made to 
further strengthen the research for harnessing additional benefits from 
native AMF and other beneficial microorganisms for developing more 
ecologically sound integrated crop management strategy.

1. Location, soil type and agro-ecosystem specific optimum tillage 
schedule and type in terms of tillage depth and pulverization 
(favoring native AMF/supporting minimum damage to native 
AMF) need to be worked out at micro level for location specific 
recommendation.

2. Development of soil fertility and agro-system based prediction 
model of mycorrhizal activity would provide basis for regular 
updating of location specific fertilizer and microbial inoculums 
amendment schedule as recommendation which would reduce 
cost of cultivation beside mycorrhizal advantages.

3. Farmers’ wisdom need to be considered for fine tuning suitable 
AM supportive crop rotation recommendations with the help of 
extensive farmers’ participatory on-farm trials.

4. Further refinement of native AMF based inoculum production 
protocol in terms of quality, longevity and broader ecological 
adaptability would make the technology more suitable.

5. Inclusion of multifunctional microorganisms like bio-controlling 
(pests) agents beside biofertilizer agents in the microbial 
consortium inoculum would strengthen ecologically sound crop 
management strategy.

6. The research on native AMF aided agricultural benefits needs to 
be integrated with exploiting other beneficial microorganisms. 

7. Strengthening research on integration of beneficial 
microorganisms’ supportive agricultural components followed 
by proper validation under farmers’ participatory mode would 
result in tangible recommendation as component of integrated 
crop management strategy. 
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