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Background
The detection and analysis of community structure in networks 

has received considerable attention in recent years [1-3]. Community 
structure based clustering is the division of a network into groups of 
nodes with relatively dense connections within the group and sparser 
connections to other groups in the network. In many networks, finding 
the underlying groups provides practical and important information. 
Groups within social networks for example, may correspond to social 
units; in biological networks it helps to reveal substructures with common 
functionality or association with diseases [4-6]. Many algorithms now exist 
to solve the problem of breaking up the network into its communities, but 
most struggle to scale with current biological datasets.

Method
We focused on a sub-set of community detection algorithms, with 

the goal of applying these to protein interaction networks. Nodes in 
these networks represent biomolecules, such as genes or proteins, 
and the edges the structural or protein interactions connecting them. 
We implemented in C++ a suite of three algorithms, optimised 
for the scalable analysis of large interaction networks based on the 
Modularity measure containing: Geodesic and Random Walk edge 
Betweenness, and Spectral Modularity; we also include a Cytoscape 
[7] App (version 3.0) for the Spectral Modularity algorithm. We tested
the suite’s performance on synthetic networks, on the scale of 1000
proteins to represent realistic biomolecular complexity on multi-core
workstations. We also tested the suite’s clustering performance on two
previously published datasets [8,9], and investigated the enrichment
of the clusters obtained for functional annotations and common
neurological and neurodevelopmental diseases/disorders. Evaluation
of enrichment was performed using a combination of Hypergeometric
and permutation tests. We evaluated the robustness of clusters found
with our suite’s boot-strap facility, and against commonly used
Modularity based clustering algorithms available [10,11].

Datasets
Synthetic networks were generated using the [12] benchmark and 

modelled on the order of 1000 proteins and 5000 interactions as described 
in Table 1 (Networks 2, 3 and 4, see also Supplementary Table S1). 
Three previously studied biological datasets were included. The MASC 
complex, representing a protein complex surrounding the mammalian 
NMDA receptor [8] consists of 101 proteins and 246 interactions 
(Network 1 in Table 1, see also Supplementary Table S2). The second, 
from a list of 1461 proteins obtained from a study of the PostSynaptic 
Density (PSD) in the human brain [9]. Protein-protein interactions 
were obtained by mining publicly available databases: HIPPIE [13], 
BioGRID [14], IntAct [15] and performing an InterologWalk over 
different species using Bio::Homology::InterologWalk [16]. This 
second network (Network 5 in Table 1, see also Supplementary Table 
S3) consists of 1312 proteins and 8031 protein interactions. The third is 
the Human interactome network BioPlex [17]. This network (Network 
6 in Table 1, see also Supplementary Table S7) contains 7668 proteins 
and 23744 protein interactions, found using high-thoughput affinity-
purification mass spectrometry in human embryonic kidney (HEK) 
293T cells.

Implementation
Modularity (Q) measures the quality of a particular network 

division into communities. It measures the number of edges found 
within the communities relative to the expected number of edges 
within the communities, if these edges had been placed at random. 
The Modularity based algorithms we implemented [18,19] are largely 
designed for single workstation deployment which is not ideal for 
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bootstrap analysis of large networks. Further we found no readily 
available implementation of the Random Walk algorithm [18]: 
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In eqn-1 the degree of the ith vertex is given by i ijj
K A= ∑ . Where 

Aij is the interaction matrix, m the total number of edges in the network 
and the final term the Kronecker delta function, which equals 1 if the 
ith and jth nodes fall into the same community and 0 otherwise. The 
maximum value of Modularity is 1, with typical values for real networks 
ranging from 0.3 to 0.7. We can optimise clustering in the Geodesic 
and Random Walk algorithms by searching for the global maximum.

The third algorithm, Spectral Modularity, makes use of the spectral 
properties of the network [19]. The spectral properties are obtained 
using the Modularity matrix (B) using eqn-2: 
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The network is expressed in terms of its eigenvectors and eigenvalues 
and recursively partition into two communities; positive values of the 
eigenvector giving a set of nodes belonging to one community, and 
the negative values to another. The partition can be expressed as a 
column vector (S) of the nodes with values ± 1. Partitioning occurs if 
the maximum positive eigenvalue is greater than the tolerance (10-5) for 
the current partition, and if it results in a positive contribution to the 
Modularity. The change in Modularity is calculated from this leading 
eigenvector and the generalised Modularity matrix (B(g)) for the split is 
given by eqn-3:
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where the generalised Modularity matrix for a given split is 
expressed as,
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Given an initial separation using the Spectral method, it is possible 
to maximise for the change in Modularity using a fine-tuning step. 
The first stage here is to find the node which, when moved from one 
community to the other, gives the maximum change in Modularity. 
This node’s community is then fixed and we repeat the process until all 
nodes have been moved. The whole process is repeated from this new 
state until the change in the Modularity, between the new and old state, 
is less than the predefined tolerance. Our implementations were tested 
on the widely used benchmark, Zachary’s “karate club” network, which 
represents observed social patterns between members in a university 
sports club. Our implementations reproduced the results as reported 
in [18,19].

The suite is designed to run on computing clusters and includes 
a boot-strap facility, allowing a random sub-sample of the data to be 
selected; currently set to 80% of the network’s node size. Sampling 

from multiple bootstrap runs allows the robustness of each algorithm 
applied to the data to be investigated. The package clusterCons [20] has 
been used in conjunction with the suite, to build a consensus matrix 
from which to test the robustness of discovered communities, and 
proteins found inside each community.

Results
Our implementations were found comparable in terms of speed and 

scalability with other implementations, when a direct comparison could 
be made, as shown in Figure 1a. However, performance of the sequential 
Geodesic and Random Walk implementations was found inadequate 
over our datasets, as shown in Table 2. To improve their performance 
required re-programming, by parallelising the implementations using 
OpenMP. This allows the implementations to make use of the multiple 
processors on common a workstation, and still remain portable to run on 
computing clusters. The OpenMP implementations of the Geodesic and 
Random Walk algorithms parallelise the betweenness score calculations 
of the edges. Both implementations were tested and found to perform 
optimally for multi-cores as discussed in Section Speed and Scalability.

A quantitative and qualitative discussion of our suite’s clustering 
performance applied to the MASC, human PSD and BioPlex datasets 

Network Nodes Edges PPI dataset
Network 1 101 246 MASC complex
Network 2 493 1971 Synthetic Pre-Synaptic Density
Network 3 855 4182 Synthetic Pre-Synaptic Density
Network 4 1108 4691 Synthetic Post-Synaptic Density
Network 5 1312 8031 Human PSD
Network 6 7668 23744 BioPlex network

Table 1: Network.
Synthetically generated networks (Networks 2, 3 and 4) showing the number of 
Nodes and Edges. These networks are based on unpublished proteomic studies. 
Networks 1, 5 and 6 are taken from published studies [8,9,17] respectfully. Final 
column gives the networks commonly referred to dataset name.
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Figure 1: CPU-time verses network size for the Geodesic and Random 
Walk edge Betweenness algorithms.
CPU-time verses number of network edges for Geodesic (A) and Random 
Walk (B) implementations as given in Table 2. Showing R’s igraph package 
[10] implementation (crosses), single core (circles), 4 cores (squares), 
8 cores (up-triangles) and 12 cores (down-triangles). Figures show both 
implementations scale to large network size using multiple cores. Figure 
(B) shows the sequential Random walk implementation unscalable at 
largest network size, and a predicted linear time (dotted line) given.
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Algorithm Network 1 Network 2 Network 3 Network 4 Network 5 Network 6
Geodesic 0.02 0.73 2.71 4.91 28.30 -
Geodesic 
( R ) 0.03 0.28 1.38 3.00 24.60 -

Random 
Walk 0.05 212.0 1930.0 9690.0 - -

Spectral 0.006 0.034 0.2 0.4 0.75 253.0
FC 0.002 0.0013 0.002 0.002 0.004 0.25
SG1 0.04 2.03 3.54 6.10 5.7 75.0

Table 2: Single core CPU-times.
CPU-time (in minutes) on a single core for Geodesic (and igraph’s R implementation), 
Random Walk, and Spectral Modularity algorithms. CPU-times are also given for 
the popular Modularity based clustering algorithms, the fast-greedy community 
algorithm (FC) [36] and coupled Potts model and simulated annealing algorithm 
with gamma set to 1.0 (SG1) [39,40]. No timing information was available for the 
fast-greedy community algorithm (GLay) [37].

is given in Sections MASC network, Human PSD network and BioPlex 
network. For this we made use of the functional annotation studies 
[8,21] and the topOnto package (https://github.com/statbio/topOnto), 
to perform the disease ontology enrichment analysis. Annotation 
enrichment of the clusters was carried out using a combination of the 
Hypergeometric test and permutation study as described in Section 
Clustering Performance. We find our implementations reproduce 
results found in the MASC network study, whilst our Spectral 
Modularity algorithm out performs others when applied to the human 
PSD network. The increase in diverse functional clusters, found in 
the human PSD network, with our Spectral Modularity algorithm is 
a result of our fine-tuning step as discussed in Section Comparison 
with Existing Cluster Algorithms. We further tested and compared the 
clustering performance of our suite’s Spectral Modularity algorithm on 
the larger BioPlex network [17].

Speed and scalability

We checked the suite’s performance against single and multi-core 
instances (2.4 GHz Intel Xeon “Westmere” with 12-cores) using gcc 
version 4.4.7. Table 2 details the CPU time in minutes for each algorithm 
with respect to varying sized synthetic networks as given in Table 1. 
Figure 1 shows the execution times for the sequential and OpenMP 
implementations of the Geodesic and Random Walk algorithms (see 
Supplementary Table S1 for details). Our Geodesic edge Betweenness 
algorithm was tested against the current known R implementation 
[10] with comparable performance (Figure 1a). For the Random Walk 
algorithm on Network 5, the execution time using a single core was 
over 14 days (20160 minutes), a limit beyond which the algorithm was 
considered unscalable. The predicted time of 26 days (37889 minutes) 
is shown by the dotted line in Figure 1b. For Network 4, the Random 
Walk algorithm took approximately 5 days (6827 minutes) to complete. 
This execution time dropped to 23 hours (1360 minutes) using the 
OpenMP implementation with 12 cores. As illustrated in Figure 1 there 
is no significant performance difference for networks smaller than 600 
nodes (or less than 4000 edges). For networks larger than this size the 
performance difference is significant. 

Clustering performance

The performance of each algorithm on the MASC and human 
PSD networks was studied. Tables 3 and 4 summarise the results with 
clustering consistency tested using the Normalised Mutual Information 
(NMI) and Adjusted Rand Index (ARI) metrics to the MASC and 
human PSD networks respectively. The original MASC study provides 
an analysis of the organisation and underlying functionality of the 
modularised MASC complex, clustered using the Random Walk 

algorithm and shown in the Figure 3 of [8]. We replicated this using 
our Random Walk algorithm in Figures 2a, and with our Spectral 
Modularity algorithm as shown in Figure 2b, visualised using the 
package Visone [22]. We generally find one or two large clusters 
(coloured in blue) containing molecules commonly associated with 
signal processing. Feeding into these are the primary signal reception 
clusters (coloured in red), formed around ionotropic and metabotropic 
receptors. Also feeding into signal processing clusters are several 
intermediate clusters (coloured in orange) regulate overlapping sets of 
pathways, and numerous clusters (coloured in green) are enriched for 
common downstream effector pathways.

For each cluster in the MASC and human PSD network found, we 
further tested the significance of enrichment for function and disease, 
using the Hypergeometric distribution formula for sampling without 
replacement:
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Where in eqn-5 N is the total number of genes in the network; Cn 
the number of genes in the community; F the total number of functional 
annotated genes in the network, and f the number of functional 
annotated genes per community. P-values, ≤ 10-2, were tested for their 
strength of significance (sig), by recording the percentage of P-values 
found from every community/annotation combination, lower than 
or equal to the observed P-value, when 1000 random permutations 
of the annotation labels were made. P-values found with a strength of 
significance <5% where consider statistically significant. P-values lower 
than the more stringent Bonferroni correction at the 0.05 significant 
levels is highlighted throughout the enrichment tables. 

Algorithm Modularity (Q) No: 
Communities CPU-time NMI ARI

Geodesic 0.45 14 0.02 0.78 0.68
Geodesic (R) 0.45 14 0.03 0.78 0.68
Random Walk 0.47 13 0.05 1.0 1.0
Spectral 0.45 13 0.006 0.69 0.4
FC 0.48 8 0.002 0.72 0.52
SG1 0.48 10 0.04 0.75 0.56
Glay 0.68 7 - 0.73 0.53

Table 3: Algorithm characteristics applied to MASC complex.
Maximum Modularity (Q), number of detected communities (C), sequential CPU 
time (in minutes) for each algorithm applied to the MASC complex in Table 1. 
The Normalised Mutual Information (NMI) and Adjusted Rand Index (ARI) metrics 
relative to the clustered MASC complex is given for each algorithm.

Algorithm Modularity 
(Q)

No: 
Communities CPU-time NMI

G R S FC SG1 Glay
Geodesic 
(G) 0.27 533 5.70 1.0 0.87 0.69 0.47 0.51 0.45

Random 
Walk (R) 0.18 738 8362.0 0.87 1.0 0.69 0.48 0.50 0.45

Spectral 
(S) 0.36 60 0.75 0.69 0.69 1.0 0.39 0.46 0.36

FC 0.38 37 0.004 0.47 0.48 0.39 1.0 0.37 0.45

SG1 0.38 23 5.7 0.51 0.50 0.46 0.37 1.0 0.43

GLay 0.65 31 - 0.73 0.45 0.45 0.47 0.45 1.0

Table 4: Algorithm characteristics applied to human PSD network.
Maximum Modularity (Q), number of detected communities (C), sequential CPU 
time (in minutes) and the Normalised Mutual Information (NMI) metric for each 
algorithm applied to the human PSD network in Table 1.
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Figure 2: Clustering of the MASC complex.
Clustering of the MASC PPI dataset [8] using the Random Walk edge Betweenness (A) and Spectral Modularity (B) algorithms. Protein communities have been 
colour coded in accordance with the clustering found in Figure 3 of [8]. Here red coloured communities (1 and 2) indicate proteins involved in input, blue (community 
3, and 4 in (B)) information processing, orange communities (4 and 5 in (A), 5 and 6 in (B)) for sets of pathway outputs, and the remaining green communities for 
specific individual effector responses. The Spectral Modularity algorithm (B) captures many of the clustering results found in [8], and shown in (A). Key difference 
includes the separation of the central processing unit (community 3 in (A)) into two (communities 3 and 4 in (B)), diversifying communication between communities.



Citation: Mclean C, He X, Simpson IT, Armstrong JD (2016) Improved Functional Enrichment Analysis of Biological Networks using Scalable 
Modularity Based Clustering. J Proteomics Bioinform 9: 009-018. doi:10.4172/jpb.1000383

Microarray Proteomics

Volume 9(1) 009-018 (2016) - 13 
J Proteomics Bioinform
ISSN: 0974-276X JPB, an open access journal 

Performance of the suite’s boot-strap facility was also tested on 
the MASC and human PSD datasets. We ran each implementation 
on a distributed computing facility provided by ECDF (Edinburgh 
Compute and Data Facility, U of Edinburgh. 2013, www.ecdf.ed.ac.uk) 
500 times, randomly selecting 80% of the network node size each time. 
The package clusterCons [20] was used in conjunction with the suite, to 
build a consensus matrix from which to test the robustness of discovered 
communities, and proteins found inside the communities. Community 
and protein robustness values range from 0, indicating no confidence in 
existing to 1, indicating absolute confidence in the cluster existing.

Discussion
MASC network

We first discuss the clustering performance of the MASC network. 
Supplementary Table S4 gives the community enrichment values for 
the three algorithms relative to the functional family, sub-family, 

disease and phenotype annotation as found in the original MASC study 
[8]. The community enrichment values confirm the expected similarity 
between the Geodesic and Random Walk algorithms, and agree with 
the enrichment results reported in [8]. For example, community 2 in 
Supplementary Table S4 for the Geodesic algorithm and Random Walk 
algorithm appears to be enriched with proteins annotated as involved 
in G-protein coupling and in Depression. Similarly community 4, 
is enriched for Erk1/2 MAP kinases (Kinases P=4.7 × 10-4 in both 
algorithms respectively) and also Depression (P=4.2 × 10-2 in both 
respectively). These findings are supported by the high similarity 
between gene clusters generated by the Geodesic and Random Walk 
algorithms as shown in Table 3. 

The Spectral Modularity algorithm also captures the important 
enrichment results found in both Geodesic and Random Walk 
algorithms. Enrichment for Kinase and Depression functional families 
can be found in community 5 (see Supplementary Table S4) for the 
Spectral Modularity algorithm, and correspondingly communities 4 
in the Geodesic and Random Walk algorithms. As shown in Figure 2 
this community encapsulates the well-studied MAPK/ERK signalling 
pathway [23]. There also exists a noticeable structural difference when 
clustering with the Spectral Modularity, compared to the Geodesic and 
Random Walk algorithms. The large community 3, observed in Figure 
2a, was found to assimilate signals from various sources, including 
ionotropic and metabotropic signals from communities 1 and 2 [8]. 
This community, and the multiple signals it processes, separates as 
shown in Figure 2b into communities 3 and 4. With SH2 motif proteins 
(Src,Grb2) and PI3K/AKT pathway proteins (PI3-K,Akt2) bound to 
community 3, and Cytoskeletal and the well-studied Ser/Thr kinase 
Pka protein into community 4.

We further investigated the phenotype enrichment results with 
updated gene-disease annotation data collected from the OMIM [24], 
GeneRIF [25] and Ensembl variation [26] databases using the topOnto 
package, as shown in Supplementary Table S4. The annotation data 
was standardised using MetaMap [27] and NCBO Annotator [28,29] 
to recognise terms found in the Human Disease Ontology (HDO) 
[30]. Recognised disease ontology terms were then associated with 
gene identifiers and stored locally. Disease term enrichment, for a 
given dataset, could then be calculated using the Topology-based 
Elimination Fisher method [31] found in the topGO package (http://
topgo.bioinf.mpi-inf.mpg.de/), together with the standardised gene-
disease annotation data and the full HDO tree. As shown in Table 5, 
this approach allows us to compare the gene-disease association for 
the MASC dataset using the combined OMIM/GeneRIF/Ensembl 
variation data for common neurological and neurodevelopmental 
diseases and disorders: Schizophrenia, Alzheimer’s disease, Autistic 
disorder and Bipolar disorder. We further tested the enrichment results 
against a Neurological and Immunological clipped HDO tree following 
results found in [32], and a more stringent Neurological-specific tree, 
by clipping the full HDO tree for the “disease of mental health” and 
its children terms. From Table 5, we see the MASC dataset remains 
enriched for Schizophrenia and Alzheimer’s disease (P=1.5 × 10-9 and 
P=3.1 × 10-7) respectively. The following community enrichment values 
applied to the MASC network, use the combined OMIM/GeneRIF/
GeneRIF gene-disease annotation data and the neuro-specific ontology 
tree. 

Supplementary Table S4 shows that community 1 using the 
Geodesic, Random Walk and Spectral algorithms is enriched for 
Schizophrenia (P=5.5 × 10-3, P=1.4 × 10-3 and P=4.0 × 10-3 respectively). 
Evidence linking Alzheimer’s disease with crosstalk between the ERK/
MAPK and PI3K/AKT signalling pathways through activation of AKT 

Figure 3: Clustering of the human PSD network.
The human PSD network is shown as a furball (A) with 291 Schizophrenia related 
genes, as given in Table 5, highlighted in magenta. Clustering from commonly 
available algorithms (Random Walk, Geodesic, Walktrap and MCL algorithms) 
tends towards many single (or two gene) communities, the MCL (B) algorithm 
is shown. Algorithms also tend towards the other extreme, generating a small 
number of communities of large size. These include the FC, SG, GLay and 
LEC (D) algorithms. Clustering results from our implementation of the Spectral 
Modularity (C) algorithm is shown to lie between these two extremes. Further 
details for each algorithms clustering characteristics can be found in Table 8.
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performance on human PSD network using each algorithm. Where 
the Modularity values in Table 4 show evidence of greater clustering of 
the data using the Spectral Modularity algorithm (0.36), relative to the 
Geodesic (0.27) and Random Walk (0.18) algorithms.

Communities in Table 6, with size greater than 2, were further studied 
for possible enrichment of Schizophrenia related synaptic functional 
groups. Use was made of the 18 synaptic functional gene groups, 
covering 1026 pre- and post-synaptic genes, significantly associated 
with Schizophrenia [21]. It should be noted that the 18 functional 
gene groups are only used as classifications of functional type, and not 
group-truth clusters to test against. Three of the synaptic groups were 
found significantly associated with increased risk of Schizophrenia:  
Intracellular signal transduction (P=2.0 × 10-4), Excitability (P=9.0 × 
10-4) and Cell Adhesion and Trans-synaptic (CAT) signalling (P=2.4 
× 10-3). As shown in Table 7 (see also Supplementary Table S6), we 
found evidence supporting communities enriched for CAT signalling 
in each algorithm: community 106 (P=1.5 × 10-4) with the Geodesic 
algorithm, community 21 (P=1.3 × 10-2) with the Random Walk 
algorithm, community 25 (P=2.9 × 10-5) and community 17 (P=1.4 × 
10-8) with the Spectral Modularity algorithm. The Spectral algorithm 
further supported enrichment of Intracellular signal transduction in 
community 14 (P=1.3 × 10-2), Structural plasticity in community 7 
(P=2.8 × 10-5) and Protein cluster in community 22 (P=3.0 × 10-9). 
Community 22 shows postsynaptic adhesion molecules (including 
the DLG’s: DLG1/2/3/4) binding to specific presynaptic membrane 
proteins (CASK,LIN7A/B/C), providing evidence of a transynaptic 
link between the PSD and presynaptic active zone [34,35]. Our Spectral 
Modularity algorithm therefore (also the Geodesic algorithm through 
community 21 Table 7), captures tentative evidence for trans-synaptic 
signalling molecules involved in Schizophrenia clustered together 
solely driven by data. 

Robustness of the communities found with the Spectral algorithm 
applied on the human PSD network was further investigated using 
our boot-strap procedure applied to the MASC complex. Typical 
values for community robustness range from 0.13 to 0.95 and from 
0.04 to 0.98 for protein robustness as shown in Supplementary Figure 
S2. The robustness of each community is shown by the opacity of 
the community’s colour, while robustness of proteins inside the 
community is shown by the node’s size. Schizophrenia related genes 
are highlighted in magenta. Communities corresponding to those 
shown in Table 7 are highlighted along with the community robustness 
values. Edges have been made opaque to allow the networks clusters to 
be visualised.

Comparison with existing cluster algorithms

Enrichment results for the MASC and human PSD networks were 
also compared against popular Modularity based clustering algorithms 
available in R’s igraph package [10] and Cytoscape [11], shown in 

proteins (Akt1) has been observed [33]. Using the Spectral algorithm, 
we find further evidence supporting this observation, with enrichment 
for Alzheimer’s disease (P=4.3 × 10-2) in the MAPK/ERK signalling 
pathway cluster, community 5 in Figure 2(b).

Typical community robustness values for the MASC network 
in our studies were found to range from 0.4 to 1.0, and from 0.26 to 
1.0 for protein robustness. We used Cytoscape [7] to visualise the 
robustness information for the Geodesic (A), Random Walk (B) and 
Spectral Modularity (C) algorithms, as shown in Supplementary Figure 
S1. The robustness of each community is shown by the opacity of the 
community’s colour; the more opaque a community’s colour, the more 
confidence we have in it existing. The robustness of proteins inside the 
community is shown by the nodes size; bigger the node size, the more 
confidence we have in the protein existing within the community. In 
Supplementary Figure S1 we see the inter-connected nature of the 
enriched communities 1 and 2, and MAPK/ERK signalling pathway 
community 4 (community 5 for the Spectral Modularity algorithm). 
The large community 3 (communities 3 and 4 for the Spectral 
Modularity algorithm) is less robust. It is influenced by changes in the 
network structure, supporting its central role connecting communities 
in the network.

Human PSD network

Scalability of the suite’s performance to extract functional and 
disease enrichment was tested on the larger human PSD network. 
In a similar approach to that carried out on the MASC complex, we 
made use of the topOnto package to extract gene-disease annotation 
data from the OMIM, GeneRIF and Ensembl variation databases. 
The original study of the human PSD dataset was shown to exhibit a 
high density of neural disease enrichment [9]; reporting 269 diseases 
associated with 199 genes obtained using the OMIM database. A 
comparison of frequency of hits between the top 5 diseases in the 
original study and using the OMIM database with the topOnto package 
shows comparable results, see Supplementary Table S5. We extended 
the study to find enrichment for our diseases of interest in the PSD 
dataset, using the more populated OMIM/GeneRIF/Ensembl variation 
gene-disease annotation data and full HDO tree as shown in Table 5. We 
found the human PSD dataset significantly enriched for Schizophrenia 
and Alzheimer’s disease (P=1.0 × 10-30 and P=1.3 × 10-23 respectively), 
this remained true using the our clipped HDO ontology’s: P=6.6 × 10-24 
and P=2.7 × 10-5 for Schizophrenia and Alzheimer’s disease respectively 
using the Neurological clipped tree.

For each algorithm we tested the disease enrichment per community 
for the top diseases shown in Table 5 (see Supplementary Table S6 for 
details). The community enrichment values for Schizophrenia, the 
most significantly enriched disease found in the human PSD network, 
are presented in Table 6. The P-values were calculated using eqn-5 and 
tested for their strength of significance. Table 4 compares the clustering 

MASC Human PSD BioPlex network
Disease Name N HDO Neural/Immune Neural N HDO Neural/Immune Neural N HDO Neural/Immune Neural
Schizophrenia 59 1.9 × 10-29 1.0 × 10-28 1.5 × 10-9 291 1.0 × 10-30 1.0 × 10-30 6.6 × 10-24 571 3.0 × 10-2 3.0 × 10-2 0.3
Alzheimer’s 19 1.2 × 10-23 5.1 × 10-23 3.1 × 10-7 196 1.3 × 10-23 2.2 × 10-22 2.7 × 10-5 537 3.6 × 10-7 3.7 × 10-7 1.3 × 10-5

Autistic disorder 25 5.6 × 10-7 8.8 × 10-7 3.7 × 10-2 62 1.1 × 10-5 2.0 × 10-5 0.27 158 0.84 0.84 0.96
Bipolar disorder 25 7.0 × 10-6 1.1 × 10-4 0.70 89 7.8 × 10-2 0.11 0.99 316 0.99 0.99 1.0

Table 5: Top disease enrichment values for MASC and the human PSD datasets.
Top disease enrichment values for MASC [8], the human PSD [9] and BioPlex [17] datasets using combined OMIM/geneRIF/Ensembl variation annotation data (135782 
gene-disease associations). Where enrichment values were calculated using the Topology-based Elimination Fisher method [31] and N gives the number of disease genes 
found in the dataset. First column in each section makes use of the full HDO ontology tree (6331 terms), the second the Neurological and Immunological clipped HDO tree 
(1118 terms) following [32], and the final a Neurological specific clipped HDO tree (243 terms) make use of the HDO:150 term and its children.
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Supplementary Tables S4 and S6 respectfully. Algorithms tested 
include implementations of the agglomerative fast-greedy community 
algorithms (FC and GLay) [36,37], the agglomerative Random Walk 
algorithm (Walktrap) [38], the coupled Potts model and simulated 
annealing algorithm (SG) [39,40], the Markov clustering algorithm 
(MCL) [41], and implementation of the Spectral Modularity algorithm 
(LEC) [19] from R’s igraph package [10].

The parameters used in the FC, LEC, SG and Walktrap algorithms 
have been chosen to maximising the Modularity; further details of 
each algorithms parameter sets can be found in Supplementary Table 
S4 and S6. We used these algorithms with their optimised settings to 
test against the clustering results from our implementations. We find 
functional cluster similarities exist between each algorithm when 
applied to the smaller MASC network. However, when applied to 
the larger human PSD network, evidence for structurally relevant 
communities is restricted to the Spectral Modularity algorithm with 
fine-tuning step. Evidence for this is summarised in Section Human 
PSD network, Table 8 and shown in Figure 3. The Random Walk, 

Geodesic, Walktrap and MCL algorithms were found to generate 
skewed distributions of community size; one or two large communities 
with many single (or two gene) communities. The skewed distribution 
is a known cause of the hierarchical approach to clustering and the 
distribution of the hub (highest degree) nodes inside the network 
[42,43]. The FC, LEC, SG and GLay algorithms are observed to 
produce a small number of large communities. The agglomerative fast-
greedy community algorithms, FC and GLay, are known to produce 
a small number of large communities [44,45]; the unbalanced nature 
of the algorithms merging step, results in a few large communities 
growing fast, by merging in many smaller communities. The SG and 
LEC algorithms are divisive in nature. Clustering results of the SG 
algorithm was found to be sensitive to the parameter gamma, which is 
set to 1.0 to maximise the Modularity. However increasing gamma to 
5, which favouring more edges between communities than edges inside 
(lowering the Modularity score), we find the SG algorithm can also lead 
to improved functional enrichment results. We also note differences 
in the clustering results between our Spectral Modularity and the LEC 
algorithm. 

Geodesic Random Walk Spectral
C Cn P-value sig (%) C Cn P-value sig (%) C Cn P-value sig (%)
21 57 9.4 × 10-3 0.05 21 7 4.0 × 10-2 0.09 7 61 4.1 × 10-2 1.7
22 8 6.7 × 10-2 2.7 157 1 0.21 11.4 17 21 2.0 × 10-2 0.7
106 5 8.2 × 10-3 0.05 206 2 4.5 × 10-2 0.6 22 80 1.0 × 10-2 0.4
125 2 4.5 × 10-2 0.4 238 1 0.21 11.4 25 38 1.8 × 10-2 0.7
215 8 1.3 × 10-2 0.07 462 1 0.21 11.4 60 29 1.4 × 10-1 7.1

Table 6: Community enrichment for Schizophrenia in the human PSD network.
Top 5 communities for each algorithm in human PSD network enriched for Schizophrenia, based on the OMIM/geneRIF/Ensembl variation gene-disease annotation values 
from Table 5. Where Cn denotes community size and C the corresponding cluster number. P-value denotes the disease enrichment value for the cluster, and sig the 
percentage of P-values found, lower than or equal to the actual P-value, when 1000 random permutations of the disease labels were made.

Geodesic Random 
walk Spectral

Synaptic Function Ng N C 21 C 106 C 215 C 21 C 7 C 14 C 17 C 22 C 60
Intracellular signalling 
transduction 150 86 7.4 × 10-2

(2.2) 1 9.2 × 10-2
(2.4) 1 0.5 1.3 × 10-2

(0.4) 1 0.1 1

Neurotransmitter metabolism 29 6 1 1 1 1 0.2 1 1 1 1

Intracellular trafficking 80 43 0.9 1 1 1 0.3 1 1 0.9 0.6

LGIC signalling 36 13 0.1 1 1 1 1 0.1 1.7 × 10-2
(0.5) 6.0 × 10-3

(0.2) 1

Exocytosis 26 37 7.3 × 10-2
(2.3) 1 1 1 0.8 1 1 1 1

RPSFB 71 50 1 1 1 1 1 1 0.6 1 0.7

Ion balance/transport 43 25 0.7 1 1 1 1 0.3 1 0.8 1

Peptide/Neurotrophin signals 28 0 1 1 1 1 1 1 1 1 1

G-proteins relay 27 18 1 1 1 1 0.6 1 1 1 1

’Unknown’ 61 25 1 1 1 1 0.7 0.3 1 0.2 1

Excitability 59 8 1 1 1 1 1 1 1 8.1 × 10-2
(3.0) 1

CAT signalling 81 34 0.2 1.5 × 10-4
(0) 1 1.3 × 10-2

(0.2) 1 1 1.4 × 10-8
(0) 0.6 1

Endocytosis 26 21 0.6 1 1 1 1 1 1 0.7 1

Structural plasticity 98 78 0.9 0.3 1 6.0 × 10-2
(1.8) 2.8 × 10-5

(0) 0.2 0.4 0.9 1

GPCR signalling 41 4 1 1 1 1 1 4.5 × 10-2
(1.6) 1 0.2 5.8 × 10-3

(0.2)

Protein cluster 47 35 3.4 × 10-10
(0) 1 1 1 1 1 1 3.0 × 10-9

(0) 1

Tyrosine Kinase signalling 7 3 1 1 1 1 1 1 1 0.2 1

Cell metabolism 57 36 1 1 1 1 0.8 1 1 1 0.6

Table 7: Enrichment values for synaptic functional groups associated with Schizophrenia for the human PSD network. 
The 18 synaptic functional gene groups associated with Schizophrenia [21]. This table shows the community enrichment and associated significance values, for community 
size (Cn) greater than 2, for each synaptic group, given in Table 7. Where N corresponds to the 522 functional genes (of the 1026 genes (Ng) assigned to groups in [21]) 
found in the network and C the corresponding cluster number. P-values the Bonferroni correction at the 0.05 significance level are also highlighted.
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There are differences in implementation between the two 
Spectral Modularity algorithms. We provide here a descriptive 
and quantitative account for why, in our opinion, our Spectral 
Modularity implementation delivers functionally more relevant 
clusters when applied to the proteomic datasets. We do not claim to 
cover all differences here. Both implementations use the same divisive 
hierarchical method to clustering data [19]. We therefore tested 
whether our fine-tuning step gave closer agreement to the LEC results 
or not. If the two implementations were identical, with the fine-tuning 
step in operation or not, we would expect a NMI value of 1. We note 
we reproduced the Modularity values quoted in [19] for the Zachary’s 
``karate club’’ network, with and without the fine-tuning step (see 
Supplementary Table S6). We further find agreement with the LEC 
algorithm results with our fine-tuning step switched off (NMI value 
of 0.72 compared to 0.31, see Supplementary Table S6) when applied 
to the human PSD network. This would suggest it is the addition 
of a fine-tuning step, which has a positive effect on the clustering 
of proteomic data and quality of functional clustering results, as 
highlighted in Section Human PSD network and Supplementary Tables 
7 and 8. Differences in speed between the two implementations can 
be explained in the different eigenvector solver used. We make use of 
Numerical Recipes [46], which computes the full eigenvalue spectrum. 
The LEC implementation makes use of ARPACK [47], which calculates 
only a few of the leading eigenvalues, and is commonly found to 
perform faster than Numerical Recipes (Performance of ARPACK, 
Eigen, and Numerical Recipes, https://github.com/meznom/arpaca/tree/
performance/).

BioPlex network

To test how our findings translate to other large proteome datasets 
we looked at the BioPlex network [17]. This network is made from data 
obtained from a large-scale proteomic analysis of 2594 affinity purified 
baits that identify 7668 proteins from HEK cells. Therefore, we used a 
similar approach to that carried out on the MASC complex and human 
PSD network and extracted gene-disease annotation data for the 
BioPlex network as shown in Table 5 (see also Supplementary Table S8) 
and tested for enrichment. Unexpectedly we found evidence that the 
BioPlex network is enriched for proteins implicated for Alzheimer’s 
disease (P=3.7 × 10-7), this remained true using our Neurological and 
Immunological clipped HDO tree (P=3.7 × 10-7) and Neurological 
clipped tree (P=1.3 × 10-5). We note that this result supports in part a 
possible neuronal origin of the HEK293 cell line [48,49].

The clustering performance of our Spectral Modularity algorithm 
was tested against the clustering found in the BioPlex study [17]. The 

BioPlex network was first clustered using clique percolation, before 
further sub-divided using the fast-greedy community algorithm into 
345 communities. A priori we would not expect similarity between 
the clique-based BioPlex clustering and our Modularity-based 
Spectral algorithm, as both starts from different definition of what a 
community is. However, if we compare the BioPlex clustering to our 
Spectral Modularity algorithm as shown in Table 9, we find our Spectral 
Modularity algorithm shows evidence for cluster similarities (NMI 0.7 
and ARI 0.38) with those found in the BioPlex study. The coupled Potts 
model and simulated annealing algorithm (SG) [39,40] also shows 
evidence for cluster similarity, but as we discuss in Section Comparison 
with existing cluster algorithms this algorithm is sensitive to tuning its 
parameter gamma.

We further tested the communities found using our Spectral 
Modularity algorithm, and those in the BioPlex study, for enrichment 
of our diseases of interest (see Supplementary Table S8). As shown 
in Table 10, we found evidence supporting communities statistically 
enriched for Alzheimer’s disease using our Spectral Modularity 
algorithm. It was noted that by clustering the BioPlex network using 
the Spectral Modularity algorithm, we started to reach the known 
Modularity resolution limit [50]. However, we found many (110) of 
the BioPlex communities (greater than 2 in size) contained within 
our own, and by re-running our Spectral Modularity algorithm over 
these communities, could recover the sub-structure contained within 
them, including core components of the original BioPlex clusters. An 
example of this is shown in Supplementary Table S8, where BioPlex’s 
cluster 12 has been extracted from within our original community 6.

Conclusion
We present a suite of C++ implemented Modularity based 

community detection algorithms. The implementations have been 
optimised for speed using OpenMP and tested on varying sizes of 
synthetic networks. The suite is designed to run on clusters and 
includes a boot-strap facility, allowing a random sub-sample of the 
data to be selected; currently set to 80% of the network node size. 
Sampling from multiple bootstrap runs allows the robustness of 
each algorithm applied to the data to be investigated. The package 
clusterCons [20] has been used in conjunction with the suite, to build 
a consensus matrix from which to test the robustness of discovered 
communities, and proteins found inside each community. The 
package topOnto has been used in conjunction with this suite, 
to study the disease enrichment values of clusters obtained from 
published studies. We find our Spectral Modularity algorithm 
out performs the Geodesic and Random Walk edge Betweenness 

Algorithm Source Modularity (Q) No: C No: Cn=1 No: Cn=2 No: Cn>2 No: Cn ≥ 100 Largest Cn
Random Walk Suite 0.18 738 670 22 35 1 352
Geodesic Suite 0.27 533 417 64 51 1 326
Spectral Suite 0.36 60 14 5 41 1 146
FC igraph 0.38 37 19 4 14 3 333
LEC igraph 0.34 17 8 3 6 6 305
SG (gamma 1) igraph 0.38 22 0 0 22 5 215
SG (gamma 2) igraph 0.32 37 0 0 37 0 89
SG (gamma 5) igraph 0.25 84 0 0 84 0 35
Walktrap Cytoscape 0.30 242 166 19 56 3 301
MCL Cytoscape - 284 0 118 166 0 39
GLay Cytoscape 0.65 31 11 7 13 3 387

Table 8: Algorithm cluster characteristics applied to the human PSD network.
The cluster characteristics for each algorithm applied to the human PSD network is given, including: the source of the algorithm, the maximum Modularity obtained (where 
possible), number of detected communities (C), the number of communities with size (Cn) equal to 1, the number of communities with Cn equal to 2, number of communities 
with Cn>2, the number of communities with Cn 100, and size of the largest community.

https://github.com/meznom/arpaca/tree/performance/
https://github.com/meznom/arpaca/tree/performance/
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Algorithm Modularity (Q) No: 
Communities CPU-time NMI ARI

BioPlex - 354 - 1.0 1.0
Spectral 0.56 250 253.0 0.7 0.38
FC 0.6 61 0.025 0.47 0.12
SG1 0.63 64 75.0 0.63 0.25
GLay 0.77 60 - 0.47 0.12

Table 9: Algorithm characteristics applied to BioPlex network.
Maximum Modularity (Q), number of detected communities (C) and sequential CPU 
time (in minutes) for the Spectral Modularity, FC, SG1 and GLay algorithms (as 
discussed in Table 2) applied to the BioPlex network in Table 1. The Normalised 
Mutual Information (NMI) and Adjusted Rand Index (ARI) metrics for each algorithm 
relative to the clustered BioPlex network is given.

Spectral BioPlex 
C Cn P-value sig (%) C Cn P-value sig (%)
11 37 4.1 × 10-2 1.6 4 22 0.12 11.0
34 38 4.1 × 10-3 2.7 8 17 6.6 × 10-2 10.4
58 132 2.0 × 10-2 0.05 9 51 0.32 13.3
82 3 1.4 × 10-2 0.4 18 13 0.16 11.4
237 63 7.0 × 10-2 0.07 51 5 1.6 × 10-3 9.8

Table 10: Community enrichment for Alzheimer’s disease in the BioPlex 
network.
Top 5 communities enriched for Alzheimer’s disease using the Spectral Modularity 
and BioPlex clustering algorithms, based on the OMIM/geneRIF/Ensembl variation 
gene-disease annotation values from Table 5, where Cn denotes community size 
and C the corresponding cluster number. P-value denotes the disease enrichment 
value for the cluster, and sig the percentage of P-values found, lower than or equal 
to the actual P-value, when 1000 random permutations of the disease labels were 
made.

algorithms in terms of speed as shown in Table 2. It also out 
performs commonly available clustering algorithms in unveiling 
functional enrichment in proteomic datasets, as shown in Table 8 
and in Supplementary Tables S4 to S6. Further investigation reveals 
the fine-tuning step, in conjunction with the Spectral Modularity 
method, is of key importance.

Availability and Requirements
The datasets supporting the results of the article are included within 

the article (and its additional files). A C++ version of the suite is available 
to download at SourceForge following: http://sourceforge.net/projects/
cdmsuite/. The C++ version requires a standard gcc compiler; we tested 
against version 4.4.7, and has no external dependencies. A Cytoscape App 
for the Spectral Modularity method is also available. The App requires 
Cytoscape version 3.0.0 or higher, and was tested against version 3.2.1.
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