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Abstract

Pulsed Electric Field (PEF) treatment is a non-thermal food processing technology that mostly applied to low
viscosity high acidity food samples. Due to its non-thermal nature, it is preferred over thermal processing
technologies since it has a superiority to preserve physical, chemical, biochemical and sensory properties of food
with extended shelf life. Studies focused on preservation of bioactive and health-related compounds usually involve
effect of PEF on water soluble vitamins, total antioxidant capacity, total phenolic compounds, phenolic substances,
organic acids, and anthocyanins and are limited on how bioaccessibility and bioavailability of these compounds are
changed by PEF processing. Thus, effects of PEF processing on bioaccessibility and bioavailability of food
components with both in vivo and in vitro studies emphasizing on future needs are emphasized in this review.

Keywords: Pulsed Electric Field (PEF); Bioavailability; Bioactive
compounds; Bioactivity

Abbreviations:
PEF: Pulsed Electric Fields; HPP: High Pressure Processing; TT:

Thermal Treatment; HAA: Hydrophilic Antioxidant Activity; BC:
Bioactive Compound; WB: Water-Fruit Juice Beverage; MB: Milk-Fruit
Juice Beverage; SB: Soymilk-Fruit Juice Beverage; TMP:
Transmembrane Potential

Introduction
Pulsed Electric Field (PEF) treatment is defined as the application of

short burst of high intensity electric field pulses in the range of 20-80
kV/cm for very short treatment time of micro to milliseconds to
pasteurize foods [1-4]. PEF processing usually applied at ambient or
little under or above ambient temperature and in addition to short
processing time, heat generation during PEF process is minimized, and
process remains non-thermal. After it is first practiced in 1930s, now it
is one of the most studied non-thermal emerging technologies to
process low viscosity high acidity food products especially fruit and
vegetable juices, milk with low amount of fat, soups, and sauces
[2,5-8].

PEF processing as a function of electric field strength, electrical
energy and treatment time does not cause detrimental changes on
physical, biochemical and sensory properties of food samples as well as
bioactive compounds. Moreover, PEF processing provides inactivation
of spoilage and foodborne pathogens as well as enzymes that cause
microbial spoilage and downgrading quality, respectively [2,9-12].
Studies with microbial reduction involve inactivation of Escherichia
coli, Escherichia coli O157:H7, Salmonella sp., Listeria
monocytogenes, Listeria innocua, Bacillus cereus, Pseudomonas
fluorescence and Saccharomyces cerevisiae, etc. [13-19], whereas
enzyme inactivation studies include inhibition of Pectin Methyl

Esterase (PME), lipoxygenase, polygalacturonase, Peroxidase (POD),
Polyphenoloxidase (PPO), and ß-glucosidase [20-31].

Killing of vegetative bacteria and yeasts by PEF processing is
probably not due to the products of electrolysis or temperature
increase alone, but rather by the applied electrical field strength and
the processing time [32-34]. There are a few theories on the
mechanisms involved in the disruption of the cell membrane when
subjected to electric fields. Two hypotheses, electrical breakdown and
osmotic disproportion, are widely approved and are supported on the
same principles [34]. The theory of electrical breakdown considers the
cell membrane as a condenser loaded with a dielectric medium [34,35].
Accumulation of free charges at the internal and outer surface of the
cell membrane forms a Transmembrane Potential (TMP) of
approximately 10 mV [34,36]. When an external electrical field is
applied; ions inside and outside of the cell move along with the electric
field until they are restrained and accumulated at the membrane
causing a rise in the TMP. The ions of opposite charge (+ and –) on
each side of the membrane are pulled to each other, squeeze the
membrane and cause a decrease in its thickness. Further application of
electric fields causes more stress on cell membrane and reduction in its
thickness ends up with pore formation when applied electric field
strength is above the critical electric field potential of the cell
membrane. If the application of electric field continues, the pores
become irreversible and cells cannot reseal themselves leaking of
intracellular materials, and thus, cell death occurs [34,37]. The
principle of osmotic irrationality, on the other hand, defines the
imbalance of cell membrane components through the formation of
hydrophilic pores in the membrane and the opening of the protein
channels. Applied electric field causes structural changes in the
conformation of phospholipids, ending up the rearrangement of the
membrane structure and constitution of hydrophilic pores [34,38].

Although inactivation mechanism of enzymes by PEF is not clear,
the scientific literature proposes that electrochemical effect of PEF
provides changes in the structure and conformation of enzymes that
cause inactivation [34,39]. Protein structures are preserved by a
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delicate balance of covalent peptide bonds and non-covalent
interactions of hydrogen bonds as well as hydrophobic, electrostatic,
and Van der Waals interactions. The electric field application may
influence the territorial electrostatic forces in proteins and break
electrostatic interactions of peptide chains giving rise to
conformational changes [23,24,40-48].

Studies with PEF pasteurization of foods mostly focused on
microbial inactivation, changes in physical, chemical and sensory
properties in addition to shelf life extension. With the increasing
demand on nutritional quality of foods, fate of bioactive compounds
after processing are being studied not only by heat but also PEF
processing. Effect of heat processing on bioactive compounds as well as
bioaccessibility and bioavailability are well established, but not enough
information is available about the effect of PEF on bioaccessibility and
bioavailability of foods. Thus, more attention needs to be given to
current studies exploring effect of PEF on bioaccessibility and
bioavailability of food components as well as future needs and trends
for the determination of the impact of PEF on bioactive food
compounds.

Bioaccessibility, Bioavailability and Bioactivity
Bioavailability is described as the rate of nutrients, bioactive

compounds or phytochemicals that are assimilated, absorbed and
metabolized through normal pathways [49,50]. Bioavailability term
has many descriptions regarding the research field. In point of the
nutritional view, bioavailability refers to ingested bioactive
composition that is available for utilizing in physiologic acts or to be
stock [51,52]. According to Benito and Miller [53] and Fernández-
García et al. [52]; bioavailability is defined as a quantity of a precise
nutrient in a certain food that the organism can actually utilize.
Bioavailability is an important term in terms of the nutritional impact
of the food [52,54]. The organism can use exclusively determined
amounts of all nutrients and bioactive ingredients in food. The
bioavailability term involves availability for absorption, metabolism,
bioactivity and tissue circulation. On the other hand, there are some
practical and ethical troubles to evaluate in point of the food
components’ bioactivity and circulation on particular organ sites.
Therefore, the fraction of an oral dose of a basic compound reaching
organism circulation can be described as bioavailability. Bioavailability
and bioaccessibility terms are nested but the dual terms can be used
indefinitely. Moreover, it must be known that bioavailability also
subcategorizes bioaccessibility [52,55].

According to Fernández-García et al. [52] and Benito and Miller
[53] bioaccessibility can be described as the part of a compound that is
left from its matrix in the gastrointestinal region and therefore,
becomes usable for digest absorption. Bioaccessibility is related with
digestive transformation of food that can be absorbed by the organism.
Bioaccessibility connotes both the absorption and dissimilation into
the cells of the gastrointestinal epithelium and calculated as in
Equation 1.Bioaccessibility (%) = 100× BCdigestedBCnondigested (1)

Where BCdigested refers to the bioactive compound concentration in
the digested food and BCnondigested refers to bioactive compound
concentration in non-digested food [56].

A term bioactivity first defined at the ESB consensus conference of
1987 as the “one which has been designed to induce specific biological

activity” [57-82]. After that, different approaches have been made to
define bioactive materials as bone bonding materials and it was more
specifically stated as “…the essential requirement for a material to
bond to living bone is the formation of bone-like apatite on its surface
when implanted in the living body”, and that “…this in vivo apatite
formation can be reproduced in a Simulated Body Fluid (SBF) with ion
concentrations nearly equal to those of human blood plasma” [81]. The
latest definition for bioactivity “a bioactive material is a material on
which bone-like hydroxyapatite will form selectively after it is
immersed in a serum-like solution” [81,83].

How the bioactive compounds are carried and transported to the
target tissue, interactions with biomolecules, undergoing metabolism
or transformation, biomarker generation, and caused physiologic
responses are the answer of bioactivity term. Bioactivity is relevant
with the interaction on biomolecules. At the same time bioactivity
includes bioactive compounds metabolism and transportation,
physiological reactions in tissues (Figure 1) [52].

Figure 1: Bioavailability definition including bioaccessibility and
bioactivity [52].

Availability rate of bioactive compounds is more important than
amount of bioactive compounds existed in food products.
Bioavailability of a certain compound is affected by different factors
such as processing technology, storage conditions or food matrix and
most importantly by heat processing as degradation, decomposition or
structural changes occurred by processing that can change the
bioavailability of a certain compound. Thus effects of non-thermal
technologies such as PEF and High Pressure Processing (HPP) are on
search as it is predicted that these technologies can positively affect or
develop the bioavailability of bioactive compounds [57,58].

Effects of PEF on bioactive properties and bioavailability
Healthy and nutritious products always are desired and preferred by

consumers. Improving new preservation techniques are also important
to maintain food freshness and guarantee stability of bioactive
compounds with minimum physical and chemical processes
[41,59,60-64]. Moreover, some researches demonstrated that bioactive
properties of fresh fruit juices are maintained better after PEF
application [41,59,60-64]. It has been reported that PEF causes less
modification in the content of vitamins when compared to
conventional heating processing treatments. Studies mostly conducted
with determination of the fate of the ascorbic acid (Vitamin C) due to
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its sensitive nature; and it was revealed that PEF usually provided
better preservation of vitamin C as it is compared to heat processing
[58]. Similar results were reported for vitamin A, other water soluble
vitamins, polyphenols, isoprenoid compounds, fatty acids and amino
acids [58]. However, researches are insufficient in terms of the effect of
PEF application on health benefits of fruits and vegetables.

Impact of PEF on bioavailability of vitamin C in a healthy human
population consumed PEF treated fruit and vegetable products were
also investigated [57,58,62,65]. Orange juice and a vegetable soup
“gazpacho” were the treated by PEF (35 kV/cm, bipolar 4 μs pulse
width at 800 Hz frequency, for 750 μs treatment time) and their
bioavailability were tested on healthy human subjects. It was reported
that vitamin C bioavailability in PEF-treated orange juice and
gazpacho remained significantly higher after 14 days of storage at 4°C,
compared to untreated samples. It is demonstrated that PEF provides
an increase in the extraction of vitamin C from fruits and vegetables
and, thereby, increase their health benefits [62]. Moreover, an
improved in vitro bioaccessibility of vitamin C and phenolic
compounds as well as the antioxidant capacity of PEF-treated (35
kV/cm, 1800 μs) fruit juice-based beverages compared to thermal
processing (90°C, 60 s) was also reported [56].

Assessment of the bioavailability of vitamin C from PEF–treated
orange juice in comparison with freshly squeezed and its impact on 8-
epiPGF2α concentrations (biomarker of lipid peroxidation) in a
healthy human was conducted with six subjects consumed 500 mL/day
of PEF–treated orange juice and six subjects consumed 500 mL/day of
freshly squeezed orange juice for 14 days, corresponding to an intake
of about 185 mg/day of ascorbic acid. On the first day of the study,
subjects drank the juice in one dose, and on days 2-14 they consumed
250 mL in the morning and 250 mL in the afternoon. Blood was
collected every hour for 6 h on the first day and again on days 7 and
14. A maximum increase in plasma vitamin C occurred 4 h post dose
in the dose-response study. Vitamin C remained significantly higher on
days 7 and 14 in both orange juice groups. Plasma 8-epiPGF2α
concentrations were lower at the end of the study in both groups and
plasma levels of vitamin C and 8-epiPGF2α were inversely correlated.
It was concluded that PEF–preservation of orange juice retains the
vitamin C bioavailability and antioxidant properties of fresh juice with
a longer shelf-life [65].

The study regarding the vitamin C bioavailability was carried out
into two steps, a dose-response test and a multiple-dose response. For
the dose-response measurement, the subjects consumed were asked to
consume a 500 mL of juice or gazpacho after a minimum of 12 h of
fasting, and blood samples were drawn before and every 60 min for 6
h. For the multiple dose response, the subjects were instructed to drink
the juice or gazpacho at home, in two doses, 250 mL in the morning
and 250 mL in the afternoon, for 2 consecutive weeks. Blood samples
were taken again during the intervention on 7th and 14th days of the
study. The maximum increase in plasma vitamin C occurred 3-4 h
post-dose in both the HPP and PEF-treated groups for both products.
Compared with the baseline, the vitamin C concentration was
significantly higher on day 7 and 14 of the intervention in both men
and women. It is also stated that, consuming PEF-treated orange juice
or gazpacho of daily caused an increase in plasma vitamin C, improved
the vitamin C bioavailability and provided a longer shelf-life of fresh
products in addition to decline in oxidative stress in healthy humans
[66].

Effect of food matrix on bioaccessibility
Effect of the food matrix (water-, milk- and soymilk- fruit juice

beverages) and processing (PEF, HPP and thermal treatment, TT) on
the in vitro bioaccessibility of vitamin C and phenolic compounds, as
well as on the hydrophilic antioxidant activity of beverages based on a
blend of fruit juices (orange, pineapple, kiwi and mango) was
investigated. It was reported that PEF and HPP improved or did not
change the bioaccessibility of vitamin C and certain phenolic
compounds in comparison with untreated beverages. In contrast, TT
diminished the bioaccessibility of most of the compounds that were
measured. Soymilk-fruit juice beverages (SB) showed the greatest
vitamin C bioaccessibility whereas water-fruit juice beverages (WB)
favored the bioaccessibility of phenolic compounds and HAA.
Bioaccessibility of these hydrophilic constituents reduced in milk-fruit
juice beverages (MB). Bioaccessibility of vitamin C and phenolic
compounds in fruit juice-based beverages was modulated by both food
matrix and processing. Moreover, PEF allowed obtaining beverages
with improved nutritional and functional quality [56]. In addition to
processing technologies, the food matrix had a significant influence on
the bioaccessibility of vitamin C. Soy-based products showed the
highest bioaccessibility of vitamin C followed by WB and MB. It was
also reported that the stability of vitamin C is influenced by several
factors, such as oxygen availability, temperature, light, pH, metal
catalyst, the presence of other antioxidants and reducing agents, as well
as possible presence of ascorbic acid oxidase [67].

Bioavailability and bioaccessibility of bound phenolic
compounds

Fruits and vegetables contain most of phytochemicals as free or
soluble forms. Total phenolic compounds exist of 24% on average in
food matrix as bound phenolic compounds [68-70]. Phenolic
compounds as bound forms can be released and absorbed by the
organism. For instance, after coffee drinking, the level of caffeic acid in
plasma rises because of the release and absorption of caffeic acid from
bound complexes [70,71].

Absorption pathways of bound phenolic compounds are somewhat
different in human as to intestinal system that some kind of
microorganism and enzymes manage the absorption and releasing
reactions. After the release of bound phenolic compounds in the
gastrointestinal lumen, they tend to be absorbable and metabolized;
and bound phenolic compounds become more useful for health [70].
Consumption of free or bound phenolic compounds provides
beneficial health effect. Intake of bound phenolic compounds protects
the organism against colon cancer. In addition, the intake of free or
soluble conjugated forms of bound phenolic compounds is more
effective in terms of the quick absorption in stomach and distribution
through the body. In point of ensuring health benefits such as
prevention the oxidation of LDL cholesterol and liposomes, both
intake and release of free and soluble conjugated forms of bound
phenolic compounds are important [70,72]. There are many ways to
enhance the releasing of bound phenolic compounds and PEF is an
effective way to assist hydrolysis reactions since PEF application of
plant tissues enhances the porosity of cells [70,72,73]. For example,
PEF application on red cabbage provided a substantial increase in the
content of anthocyanins in extracts [70,73,74].
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Bioavailability and Bioaccessibility of Vitamin C,
Phenolic Compounds and Hydrophilic Antioxidant

Both the amount and presence of vitamin C are important as it is
necessary for the biosynthesis of collagen and hormones by the
organisms in addition to alleviation of some kind of diseases such as
cancer and cardiovascular diseases [56,75]. Moreover, dietary intake
rich in phenolic compounds reduces neurodegenerative diseases and
cancer [56,75,76] and heat processing changes the food structure,
content or bioavailability of bioactive compounds. Eventually, these
structural changes affect the bioactive compounds during digestion in
the intestinal lumen regarding release, transformation and absorption
of some nutriments [56,75,77].

Bioaccessible fraction is more significant than the amount of these
ingredients to determine nutritional value of beverages. In addition,
impact of food matrix on the bioaccessibility of bioactive compounds
must be defined fully in beverages because of their complex structures
as well as interaction of bioactive compounds and other constituents’
with each other [56,78,79]. Therefore, composition of food matrix and
determination of the appropriate food processing method has a vital
importance to understand bioaccessibility of bioactive compounds and
interactions of food ingredients. Both in vitro and in vivo studies are
more valuable and useful to estimate stability and bioaccessibility of
bioactive compounds from food [56,80].

Whereas the vitamin C bioaccessibility is the highest in soymilk-
fruit juice beverage, the bioaccessibility of phenolic compounds and
HAA are better in water-fruit juice beverages (mix of 75% of the
blended orange, kiwi, pineapple and mango fruit juice with water).
Conversely, bioaccessibility of vitamin C and hydrophilic constituents
of phenolic compounds are not much better in milk-fruit juice
beverage [56]. That’s why food matrix and method of the processing is
important on the bioaccessibility of bioactive ingredients. As a result,
all conditions as food matrix, application and bioactive compounds
should be determined cleverly because bioavailability and
bioaccessibility may reduce of bioactive compounds [56].

Final Remarks
Recent trends from the food industry are to attract consumer’s

attention through functional foods and beverages with high nutritious
content with healthy concept as well as being easy to prepare and
consume. Current food processing technologies provide safer food
with longer shelf-life but often fail bioaccessibility and bioavailability
of food components. Thus, more and more attention has been given to
non-thermal technologies. It was shown by the limited number of in
vivo and in vitro studies that PEF processed juices have better
nutritional properties as well as superior in terms of bioaccessibility
and bioavailability. As known, while most of the studies concentrate on
the impact of PEF related to bioactive compounds properties and
changes in quantity of foods, researches are fairly limited pointing the
PEF effect on bioaccessibility and bioavailability in gastrointestinal
system. Therefore, future studies need to focus on PEF processing of
different fruit and vegetable juices with their impact on human health
in addition to their bioaccessibility and bioavailability.
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