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Introduction
Vaccination is unquestionably one of the greatest achievements 

of human civilisation. The WHO estimates that today immunizations 
prevent between 2 and 3 million deaths annually and protect many 
more people from illness and disability [1]. Current vaccines are one 
of several types: live attenuated microorganisms (Hepatitis A virus, 
Influenza virus, Japanese encephalitis virus, Measles virus, Mumps 
virus, Poliovirus, Rabies virus, Vaccinia virus, Varicella zoster 
virus, Yellow fever virus, M. tuberculosis, S. typhi), microorganisms 
inactivated or killed by heat or chemical treatment (Influenza virus, 
Japanese encephalitis virus, Mumps virus, Poliovirus, V. cholerae, 
B. pertussis, Y. pestis), subunit vaccines (proteins from Influenza 
virus and Hepatitis B virus, toxoids of B. pertussis, C. tetani and C. 
diphtheriae, conjugates of H. influenza type b, N. meningitis and S. 
pneumoniae), recombinant vaccines (Hepatitis B virus surface antigen 
and Human papillomavirus), or carbohydrate epitope-based vaccines 
(Pneumovax-23) [2].

The wide use of vaccines during the last 150 years has led to 
significant reduction (95-97%) in mortality from a wide range of 
previously deadly diseases, including diphtheria, tetanus, measles, 
mumps, rubella, pneumonia, hepatitis B and meningitis [3], as well 
as the total eradication of smallpox and the near eradication of polio. 
Yet, despite such tremendous success, a long list of deadly diseases still 
await efficient vaccines.

Vaccine development remains reliant on a gallimaufry of antiquated 
processes. The knowledge-based design of vaccines is still very much in 
an initial stage. Immunogenicity is the property of a molecule (protein, 
lipid or carbohydrate, or a combination thereof) or living organism 
(virus, bacterium, parasite or fungus) that induce humoral and/or 
cell- mediated response from the immune system. An immunogen 
triggering a protective immune response is a protective immunogen. 
Protective immunogens can make promising vaccine candidates.

Identification of protective immunogens among the proteome of 
a particular microorganism is the initial step in the process of vaccine 
design and development. This is the key step in what has come-
to-be-known as Reverse Vaccinology [3]. Use of in silico methods 
in this initial stage can direct and thus greatly shorten subsequent 
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experimental work [4-7]. Moreover, the proper use of in silico methods 
can replace, reduce and refine the use of time-consuming and often 
misleading animal experimentation [8].

Immunoinformatics is a branch of bioinformatics focusing on 
immunology and vaccinology [5]. It includes strategies for databases 
compilation, data mining and analyses, in silico methods and algorithms 
for immunogenicity prediction, including tools for the prediction of 
B-cell and T-cell epitopes. The current state of immunoinformatics has 
been reviewed recently [9,10].

VaxiJen (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.
html; or, alternatively, just type vaxijen into Google) was the first server 
for prediction of protective antigens, tumour antigens and subunit 
vaccines [11]. It is also the first alignment-free bioinformatics tool for 
in silico identification of immunogens. VaxiJen uses Wold’s z-scales 
[12] to describe the main physicochemical properties of the amino 
acids building the tested proteins, then converts the derived strings 
into uniform vectors by auto cross covariance (ACC) [13], selects the 
relevant variables by genetic algorithm (GA) [14] or stepwise regression 
and finally, classifies the proteins as protective antigens or non-antigens 
by partial least squares (PLS)-based discriminant analysis. Initially, the 
algorithm was trained to identify bacterial protective immunogens [15]. 
Later, models for viral and tumour immunogens were included [11] 
and VaxiJen was developed to give free access to the models. The last 
version of VaxiJen (VaxiJen 2.0) also includes models for identification 
of parasite and fungal immunogens [16].

Since its launch in 2007, VaxiJen has been widely used to identify 
candidate subunit vaccines among proteins of bacterial, viral, parasite, 
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The non-pathogenic, saprophytic Mycobacterium indicus pranii 
(MIP) provides protection against M. tuberculosis infection in mice 
[35,36]. It is used as an adjunct to chemotherapy in patients with type 
I and type II category tuberculosis [37]. VaxiJen identified proteins 
MIP0340, MIP5962 and MIP7697 as the most prominent putative 
antigens [38]. A comparative analysis of M. tuberculosis and MIP 
using VaxiJen highlighted the importance of the PE/PPE family in host 
immunomodulation, supporting further the likely potential of MIP as 
an effective vaccine against tuberculosis [39].

Strains of enterotoxigenic Escherichia coli (ETEC) are the most 
common cause of bacterial diarrhea in travelers to and children in 
developing countries [40]. ETECs adhere to the host small intestine by 
colonization factors (CFs) and produce enterotoxins [41]. ETEC secrete 
heat-stable enterotoxins (STs) and/or heat-labile enterotoxins (LTs). 
The design of subunit vaccines focus on CFs and toxins. A synthetic 
chimeric gene, encoding the colonization factors CFA/I, CS2 and 
CS3 and the B-subunit of LT was designed [42]. VaxiJen showed high 
antigenicity of the chimeric protein. However, there is no experimental 
validation of the immunogenicity of the chimeric protein. Similarly, a 
candidate subunit vaccine, composed of CFAB, CSSA, CSSB, and LTB, 
was designed, it’s immunogenicity predicted by VaxiJen, synthesized, 
and expressed successfully in a prokaryotic host but without subsequent 
experimental validation [40]. A recombinant protein containing CFAB, 
CFAE and LTB has been tested experimentally [41]. Mice have been 
immunized with this protein and the antibody titer and specificity of 
the sera analyzed by ELISA.

Mehla and Ramana applied another approach to identify novel 
immunogenic proteins from ETEC [43]. They identified proteins 
shared between virulent ETEC strains E24377A and H10407, but not 
by commensal E. coli. From this initial pool, human homologues were 
eliminated, the rest were predicted by VaxiJen, with only immunogenic 
proteins scrutinized for cellular location. Three novel probable 
immunogenic proteins were identified – putative membrane protein 
(uniprot ID: A7ZGR5), uncharacterized protein (uniprot ID: A7ZGK4) 
and O-antigen polymerase (uniprot ID: A7ZTH5) – and then analyzed 
for T- and B-cell epitopes.

The enterohemorrhagic E. coli (EHEC) strains are major human 
food-borne pathogens, responsible for bloody diarrhea and hemolytic-
uremic syndrome worldwide [44]. The genomes of EHEC strains 
EDL933 and Sakai have been screened to identify common EHEC 
antigens absent in nonpathogenic E. coli strains. The analysis revealed 
897 protein sequences. Applying immunoinformatics (including 
VaxiJen) their number was reduced to

65. Nine were tested for immunogenicity using a murine 
gastrointestinal infection model. Two vaccine candidates - Lom-
like protein and a putative pilin subunit - significantly induced Th2 
cytokines and production of sIgA, while the third (a fragment of the 
type III secretion structural protein EscC) reduced EHEC cecum 
colonization [44]. Chimeric proteins have been designed containing 
virulence factors of ETEC and EHEC [45] and ETEC, EHEC and 
Shigella [46].

Neisseria gonorrhoeae (N. gonorrhoeae), a Gram-negative 
diplococcus, causes one of the most common sexually transmitted 
diseases. It first adheres to the epithelium cells using pilli and opa 
proteins, then penetrates, multiplying on basement membranes, 
producing lipopolysaccharide endotoxins [47]. Four essential 
membrane proteins - D- alanine-D-alanine ligase (ddl), sulfate 
transport permease protein C (cysW), competence lipoprotein (comL), 

fungal and tumour origin. In the present review, we analyse the diverse 
applications of VaxiJen. Special attention is given to the experimentally 
validated predictions. We also take the opportunity to explore a few of 
the future directions that research into identifying immunogens might 
take.

Prediction of bacterial immunogens

Staphylococcus aureus (S. aureus) is one of the most important 
causes of nosocomial and community-acquired infections. Yet no 
vaccine against S. aureus exists. Fragments of the virulence proteins 
clumping factor A (ClfA), iron-regulated surface determinant 
(IsdB) and gamma hemolysin (Hlg) were selected and predicted as 
immunogenic by VaxiJen (scores 0.60, 0.47 and 0.58 at cutoff 0.4) [17]. 
A recombinant gene containing the three fragments and hydrophobic 
linkers between them was constructed and expressed in E. coli BL21 
[18]. Immunisation of BALB/c mice with the recombinant protein 
evoked antigen- specific antibodies and increased survival following 
the intraperitoneal challenge with pathogenic S. aureus.

S. aureus clumping factor B was also identified by VaxiJen as 
a protective antigen (score 1.09) of S. aureus [19]. Shahbazi et al. 
[20] proposed a hexavalent subunit vaccine containing fragments of 
agglutinin-like sequence 9 (Als9) (VaxiJen score 0.93), ClfA (score 
1.53), methicillin resistance determinant protein (FtmB) (score 1.15), 
immunoglobulin G-binding protein A (Spa) (score 1.55), serine-
aspartate repeat-containing protein E (SdrE) (score 1.34) and biofilm-
associated surface protein (Bap) (score 1.10). Hajighahramani et al. [21] 
constructed a multi-epitope peptide vaccine containing B- and T-cell 
epitopes from alpha-enolase (Eno1), ClfA and IsdB. VaxiJen scored this 
candidate- vaccine as a moderately antigenic (score 0.50) [21].

Streptococcus pneumoniae (S. pneumoniae, pneumococcus) is the 
major pathogen causing pneumonia, meningitis and sepsis. Currently, 
two vaccines for prevention from pneumonia caused by S. pneumoniae 
are licensed for adults: 23-vallent polysaccharide vaccine (PPV23) 
and 13-valent conjugate vaccine (PCV13) [22]. Both vaccines contain 
capsular polysaccharides eliciting weak immunogenicity in children, 
and are unable to induce effective immune memory [2]. The protein-
containing PCV13 is more effective in children than PPV23; the high 
manufacturing costs limit widespread use in developing countries 
[23]. S. pneumoniae serotype 19F is among the main pneumococcal 
serotypes that cause invasive pneumonia in children under 5. Using 
bioinformatics analysis (including VaxiJen) on surface proteins 
from S. pneumoniae serotype 19F, Tarahomjoo [24] identified four 
putative candidate-vaccines: cell wall surface anchor family protein, 
D-alanyl-D- alanyl-carboxy peptidase, surface protein PspC and 
choline binding protein D. VaxiJen was also used to identify B-cell 
epitope regions in three surface proteins: autolysin, zink binding 
lipoprotein and plasmid stabilization protein [25]. Additionally, 
two immunogenic conserved regions of choline binding protein A 
(CbpA) were predicted by Vaxijen [26].

Mycobacterium tuberculosis (M. tuberculosis) causes tuberculosis 
– the second leading cause of death worldwide [27]. BCG, the existing 
live attenuated vaccine against M. tuberculosis, protects newborns 
but does not prevent latent infection or reactivation of tuberculosis 
in adults [2]. VaxiJen was combined with other bioinformatics tools 
to identify several potential vaccine candidates: tyrosine phosphatase 
PtpA [28], proteins EsxL, PE26, PPE65, PE_PGRS49, PBP1 and Erp 
[29], Rv2031c protein [30], Rv3083 protein [31], hypothetical proteins 
Rv1904 and Rv2387 [32], Myt272-3 recombinant protein [33], and 
several methyltransferases [34].
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and type IV pilin protein (pilV) of N. gonorrhoeae virulent strain FA 
1090 - previously identified as vaccine candidates [48], were studied 
for antigenicity using VaxiJen and then used to identify epitopes for 
both B- and T-cell mediated immune responses [49,50]. Bhairamadgi 
and Katti [46] screened the proteome of N. gonorrhoeae strain FA 1090 
using immunoinformatic tools (including VaxiJen) and identified a 
novel immunogen - the hypothetical protein YP_208831.1 – as having 
the potential to induce both T- and B-cell mediated immunity. The 
proteomes of four N. gonorrhoeae strains FA 1090, TCDC_NG08107, 
NCCP11945 and MS11 were screened to identify probable secretory 
proteins [51]. From this initial pool, proteins with human homologues 
were removed, antigens selected by VaxiJen and B- and T-cell epitopes 
predicted. The final set consisted of 25 antigenic secretory proteins of 
N. gonorrhoeae which could be experimentally validated for vaccine 
development.

Helicobacter pylori (H. pylori) is a human gastric pathogen 
implicated as the major cause of peptic ulcer and second leading 
cause of gastric cancer around the world [52]. Based on the genome 
analysis of 39 H. pylori isolates, Ali et al. [52] selected 28 non-host 
homolog proteins as therapeutic targets. After selection by VaxiJen and 
epitope mapping, 3 highly conserved and 2 highly variable putative 
pathogenicity islands were revealed. Among them 5 potential vaccine 
candidates – vacA, babA, sabA, fecA and omp16 – were prioritized 
[53]. A chimeric gene containing four fragments of FliD, UreB, VacA 
and CagL with a high density of B- and T-cell epitopes was designed 
and optimized in terms of solubility, antigenicity (by VaxiJen) and 
surface accessibility [54] for expression in E. coli BL21.

Campylobacter is one of the four key global causes of diarrheal 
diseases [55] and a major global cause of human gastroenteritis. 
Campylobacter infections are generally mild, but can be fatal among 
very young children, the elderly, and the immunosuppressed. Mehla 
and Ramana [56] screened the genome of C. jejuni pathogenic 
strain NCTC11168 and found 66 proteins non-homologous to the 
human proteome, 34 of them were deemed to be “drugable”. As 
poultry constitutes the main animal reservoir, poultry vaccination 
is a promising way to reduce incidence of campylobacteriosis in 
humans [57]. Meunier et al. [57] screened the genome of the highly 
virulent Campylobacter jejuni subsp. jejuni 81-176 strain, selecting 
24 extracelular and outer membrane proteins. Two of them were the 
known antigens FlaA and FlaB, the rest were newly identified antigens. 
After VaxiJen ranking, B- cell epitope mapping, and BLAST searching 
for conserved regions between C. jejuni and C. coli, 14 proteins were 
identified as potential vaccine candidates. The whole proteome of 
C. jejuni has been investigated for antigenicity, allergenicity, MHC 
binding, conservancy, and population coverage [58] and several 
conserved T-cell epitopes have been selected covering more than 80% 
of the human population.

Acinetobacter baumannii (A. baumannii) causes a variety of 
nosocomial infections of the respiratory tract, bloodstream, skin and 
soft-tissue infections [59]. Because of its biofilm-forming ability, it 
is resistant to most antibiotics [60]. The biofilm associated protein 
(Bap) of A. baumannii was searched for a conserved antigenic region 
using VaxiJen [61], identifying it as an antigen, with the potential 
to be a diagnostic. A comparative genome analysis was done to 
identify conserved proteins among five A. baumannii strains [62]. 
Three outer membrane proteins (outer membrane receptor protein, 
putative penicillin binding protein and glutamate synthase large chain 
precursor) with high VaxiJen scores were selected and B- and T-cell 
epitopes predicted. The protein Baumannii acinetobactin (BauA) was 

investigated using bioinformatics tools (including VaxiJen) and two 
regions (26-191 of cork domain and 321-635 of barrel domain) selected 
as candidate vaccines [63]. Thirteen putative antigens were identified 
by a bioinformatic analysis of 30 A. baumannii strains [64]. The set 
included P pilus assembly protein, pili assembly chaperone, AdeK, 
PonA, OmpA, general secretion pathway protein D, FhuE receptor, 
Type VI secretion system OmpA/MotB, TonB dependent siderophore 
receptor, general secretion pathway protein D, outer membrane 
protein, peptidoglycan associated lipoprotein and peptidyl- prolyl 
cis-trans isomerase. The A. baumannii phospholipase D (plD) was 
analyzed for antigenicity by VaxiJen, followed by B- and T-cell epitope 
mapping [65]. 

Vibrio cholerae (V. cholerae) is a noninvasive gram-negative 
bacterium causing water borne disease cholera [66]. Despite extant 
vaccines - inactivated whole organism and B subunit of cholera toxin 
[2] - development of novel vaccines remains appealing. Barn et al. [66] 
selected three candidate vaccines (OmpU, UppP and YajC) from the 
V. cholerae strain O395 using bioinformatics tools (including VaxiJen) 
and searched them for B- and T-cell epitopes. Nezafat et al. [67] have 
analyzed 6 known V. cholerae protective antigens (OmpW, OmpU, 
TcpA, TcpF and CTB) to identify promiscuous epitopes, binding to 
various HLA class II alleles and B-cell epitopes. The identified epitopes 
were linked together and the fused protein was predicted by VaxiJen 
to be antigenic. Two B-cell epitopes from Omp containing T-cell 
epitopes covering HLA class I and class II alleles have been designed as 
candidate epitope vaccines [68].

Salmonella Typhi (S. typhi) is a Gram-negative bacterium causing 
human typhoid fever. Prabhavathy et al. [69] proposed S. typhi proteins 
OmpLA and LsrC as suitable vaccine candidates based on antigenicity 
predicted by VaxiJen, followed by prediction of B- and T-cell epitopes, 
and identification of common epitopes for multiple pathogens. Toobak 
et al. [70] identified three major outer membrane proteins OmpC, 
OmpF and OmpA, which were amplified, cloned and expressed. The 
antigenicity of Omps was predicted by VaxiJen and confirmed by 
ELISA. Control and all mice immunized with a single Omp gene died 
within 24 hours of challenge with S. typhi. Mice immunized with two 
Omps survived for 48-50 hours. Mice immunized with three Omps 
survived 75 h. Generally, despite the high immunogenicity of Omps, 
they did not induce long-lasting protection in mice. As mice are not the 
natural hosts, results in human may well be different [70].

Leptospirosis caused by the pathogen Leptospira is one of the 
most widespread zoonotic diseases in the world [71]. Victor et al. 
[72] examined the evolutionary relationships of the outer membrane 
lipoprotein LipL41 taking 87 sequences from various Leptospiral 
serovars and strains followed by B-cell epitope mapping of conserved 
regions; identifying 8 LipL41 B-cell epitopes with high VaxiJen score. 
A similar systemic protein selection, antigenicity prediction and B- 
and T-cell mapping was applied to Omps of Treponema pallidum [73], 
Shigella flexneri [74], Pseudomonas aeruginosa [75] and Clostridium 
botulinum [76].

Prediction of viral immunogens

Influenza viruses are of four types: A, B, C and D. Type A infects a 
wide range of avian and mammalian species. Type B almost exclusively 
infects humans. Type C infects humans, dogs and pigs and causes 
mild respiratory illness, while type D only infects cattle. Among the 
four types, type A is the most virulent human pathogen and the most 
variable. It is classified into subtypes according to the serological 
reactivity of its surface glycoprotein antigens, hamagglutinin (HA) 
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and neuramidase (NA) [77]. Gupta et al. [77] collected 86 H1N1 
HA protein sequences analyzing them for conservation. The analysis 
identified 15 conserved regions containing 13 HLA class I and 17 HLA 
class II epitopes. Their antigenicity was assessed by VaxiJen, with only 
4 class I and 9 class II epitopes were proposed as a novel candidate 
epitope-based vaccine. Moattari et al. [78] compared 10 viral sequences 
collected from Iranian patients between 2010 and 2013 with 3 vaccine 
isolates: (A(H1N1)California/2009, A(H1N1) California X-157/2009 
and A(H1N1)Brisbane/2007). This study detected several amino 
acids changes in HA which do not affect the epitope sites, antigenicity 
(predicted by VaxiJen), or secondary and tertiary structure of HA.

The Human immunodeficiency virus (HIV) causes acquired 
immunodeficiency syndrome (AIDS). HIV enters the host cell by 
forming a complex between the viral envelope glycoprotein (Env), 
the host receptor CD4, and chemokine co-receptors usually CCR5 or 
CXCR4 [79]. Antiretroviral peptides can inhibit the virus-coreceptor 
interaction by binding either virus envelope proteins or host proteins 
[80]. Rao et al. [80] compiled a dataset of 110 HIV antiviral peptides 
and analyzed them for conservancy, antigenicity by VaxiJen, 
hydrophobicity and antimicrobial activity. Fourteen peptides have 
been selected for promising AIDS treatment.

Hepatitis C virus (HCV) affects between 130 and 150 million 
people worldwide and cause chonic liver disease, liver cirrhosis and 
hepatocellular carcinoma [81]. In silico analyses and B- and T-cell 
epitope predictions have been made for the structural envelope 
glycoproteins 1 (E1) [82] and 2 (E2) [83,84] and the non-structural 
proteins NS3, NS4A, NS5A and NS5B [85]. All predicted epitopes are 
antigenic according to VaxiJen (VaxiJen score > 0.4).

Zika virus (ZIKV) is a mosquito-borne virus causing mild headache, 
cutaneous rash, fever, malaise, conjunctivitis and arthralgia [86]. It 
consists of 10 proteins: capsid, precursor of membrane, envelope and 
seven non-structural (NS) proteins [87]. The most investigated is the 
envelope glycoprotein protein. Several B- and T-cell epitopes have 
been identified by immunoinformatic tools (including VaxiJen) [88-
91], but have not been tested experimentally. Dar et al. [92] analyzed 
54 full length ZIKV polyprotein sequences identifying 23 HLA class I 
and 48 HLA class II binders. The most of them are localized in NS5, 
followed by envelope, NS1 and NS2.

Dengue virus (DENV) is a mosquito-borne virus causing life 
threatening hemorrhagic fever and shock syndrome [93]. There are 
four DENV serotypes and several genotypes [94]. The DENV genome 
encodes 3 structural (capsid C, precursor of membrane prM and 
envelope E) and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, 
NS4A, NS4B and NS5). The DENV nucleocapsid is covered by a lipid 
bilayer containing envelope glycoprotein and membrane proteins 
[95]. The extramembrane location of these proteins makes them good 
candidates for vaccine development. The proteins E, prM, NS1 and 
NS3 have been identified by VaxiJen as probable antigens [96], and 
several B- and T-cell epitopes have been predicted [96-98]. The non-
structural protein NS5 is the most conserved DENV protein making it 
a good vaccine target [99]. It has low intrinsic antigenicity but contains 
several potent and promiscuous T- and B-cell epitopes [98,99].

Ebola virus (EBOV) causes a fatal hemorrhagic fever with death 
rates up to 90% [100]. Fruit bats are the natural host, and disease 
transmission to human and other primates is mainly via bodily fluids 
(blood, secretions, semen) [101]. The EBOV proteome has been 
searched for antigenic proteins using VaxiJen: the L protein (UniprotKB 
ID: K4G1K7) was identified as the most antigenic (VaxiJen score 

0.7024) [102]. Further, a highly promiscuous B- and T-cell epitope was 
identified as a probable epitope-based vaccine [102]. The glycoprotein 
2 (GP2) and viral protein 24 (VP24) have also been analyzed for 
conservation, antigenicity using VaxiJen, and promiscuous B- and 
T-cell epitopes [103].

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne 
pathogen causing hemorrhagic fever with fatality rates between 15% 
and 70% [104]. A total of 80 envelope glycoproteins and 34 RNA-
dependent RNA polymerase-L molecules from different CCHFV 
variants were analyzed for conservation, identifying 4 conserved 
regions [105]. Two regions were antigenic according to VaxiJen, and 
one nonamer epitope had the potential to interact with 8 HLA class I 
and 27 HLA class II alleles [105]. T-cell epitopes were also identified 
from the proteins GP1 and GP2 [106].

Human coronaviruses (HCoVs) cause mild to severe respiratory 
tract infections, and are named for the crown-like spike proteins 
on their surface. 56 outer membrane spike protein sequences from 
different variants belonging to five types (229E, NL63, HKU1, EMC, and 
OC43) were retrieved from UniProtKB and assessed for antigenicity 
using VaxiJen [107]. The spike protein (UniprotKB id: B2KKT9) with 
the highest VaxiJen score was searched for B- and T-cell epitopes, 
identifying two peptide sequences as conserved and promiscuous. Shi 
et al. [108] analyzed nucleocapsid (N) and spike (S) proteins of Middle 
East respiratory syndrome coronavirus (MERS-CoV) selecting 10 B- 
and T-cell epitopes as MERS vaccine candidates.

Chikungunya virus (CHIKV) is a mosquito-borne virus causing 
fever and severe joint pain [109]. The CHIKV proteome was analyzed 
by VaxiJen, identifying envelope protein 2 as the most immunogenic 
[110]. Kori et al. [111] have searched the proteomes of three different 
CHIKV strains for conserved regions and five B- and T-cell epitopes 
have been predicted from both structural and non-structural proteins.

VaxiJen, followed by B- and T-cell epitope predictions, was used to 
design epitope- based vaccines against several other viruses: Saint Louis 
encephalitis virus (SLEV) [112], Nipah virus (NiV) [113], Hantaan virus 
(HNTV) [114], human cytomegalovirus (HCMV) [115], Lassa virus 
[116], human enterovirus D-68 (EV-D68) [117], Cardamon mosaic 
virus (CdMV) [118], Henipavirus [119], Hantavirus [120], human 
rotavirus A [121], Lymphocytic choriomeningitis virus (LCMV) [122], 
human adenovirus E (HAdV-E) [34], and human papillomavirus type 
16 (HPV) [123].

Prediction of parasite immunogens

Plasmodium falciparum (P. falciparum) causes malaria – the most 
important parasitic disease, killing one child under 5 year every 120 
seconds [124]. P. falciparum has a large genome encoding over 5300 
proteins, with stage-specific expression and variation within a single 
strain [125]. Singh et al. [126] used VaxiJen to identify 22 probable 
antigens, containing up to 15,000 predicted epitopes binding to HLA 
class I and II supertypes and covering 95% of the human population. 
The complete proteome of P. falciparum, after excluding human 
homologs, was subjected to subcellular localization prediction, with 
outer membrane proteins analyzed by VaxiJen [127]. Four membrane-
associated hypothetical proteins were identified, containing B- and 
T-cell epitopes. Singh et al. [128] screened 32 extracellular secretory 
proteins of P. falciparum using Vaxijen, predicting 31 as antigenic and 
containing many epitopes binding to HLA-A, -B and -DR.

Leishmaniases are a group of tropical diseases caused by protozoan 
parasites of genus Leishmania and transmitted to humans by 
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hematophagous sandflies [129]. The entire proteome of Leishmania 
major (L. major) comprising 8312 proteins was screened for signal 
peptides and GPI anchors [130]. A set of 151 proteins was selected 
and subjected to consensus antigenicity prediction using VaxiJen and 
ANTIGENpro [131], identifying 25 vaccine candidates. Toxoplasma 
gondii (T. gondii) is an obligate intracellular parasitic protozoan causing 
the disease toxoplasmosis [132]. The T. gondii major surface antigen, 
called SAG1 or p30, was screened for conservation and antigenicity 
using VaxiJen [133], identifying four conserved antigenic regions.

Prediction of fungal immunogens

Fusarium circinatum (F. circinatum) causes the economically 
important disease of pines pitch canker leading to devastating forestry 
industry losses [134]. The detection of the pathogen in plant growth 
media and in plant tissues during the early stages of infection is very 
important [135]. Maphosa et al. [135] conducted comparative genomic 
studies, identifying 24 unique antigenic proteins. The ORFs of 5 
variants were selected and tested by PCR analyses and hybridization 
assays. The results have showed that three of the selected genes are 
common and unique to F. circinatum and are thus good candidates for 
rapid, in-the-field diagnostic assays specific to F. circinatum.

Prediction of cancer immunogens

Cancer immunotherapy aims to stimulate immune responses of B- 
and T-lymphocytes and prevent immune system suppression by IL-10, 
PGE2 and COX2, secreted by tumor cells [136]. Nezafet et al. [137] 
designed a multi-epitope polypeptide cancer vaccine containing two 
tumor-associated antigens E6 and E7 from human papillomavirus as 
cytotoxic T-cell epitopes, tetanus toxin fragment c (TTfrC) and pan-
allelic DR epitope (PADRE) as helper T-cell epitopes, and the TLR4 
agonist heparin-binding hemagglutinin (HBHA) as an adjuvant, 
epitopes separated by proteasome-sensitive linkers. This construct 
was analyzed for immunogenicity by VaxiJen and ANTIGENpro, and 
B-cell epitopes identified on the protein surface.

The receptor tyrosine kinase like orphan receptor 1 (ROR1) is a 
transmembrane protein overexpressed in several cancers, including 
gastric carcinoma and breast cancer [138]. A chimeric protein 
consisting of the extracellular domain of ROR1 and the powerful T-cell 
activator staphylococcal enterotoxin have been constructed as a potent 
vaccine for breast cancer and analyzed for antigenicity, allergenicity 
and the presence of B- and T-cell epitopes [139]. A multi-epitope 
vaccine against breast cancer was designed to include cytolytic T-cell 
epitopes from human epidermal growth factor receptor (HER2), 
mucin 1 protein and heparanase as well as helper T-cell epitopes from 
survivin and Por B from Neisseria meningitis (TLR2 agonist) as an 
adjuvant [140].

Wilms’ tumor gene WT1 is a zing finger transcription factor 
overexpressed in leukemias and solid tumors [141]. Khalili et al. [142] 
identified 44 novel epitopes in WT1 protein and constructed a DNA 
vaccine containing the predicted epitopes with acceptable population 
coverage (>65%).

Prediction of immunogens for diagnostic tools

Leptospirosis is a global zoonotic disease affecting humans and 
causing severe icteric Weil’s disease, characterized by renal and liver 
failure [143]. It is caused by spirochetes of the genus Leptospira. The 
pathogenesis-associated leptospiral LigA protein expressed in vivo, has 
been evaluated as a diagnosis of the acute form of leptospirosis. The 
C-terminal sequence of LigA (LigA-C) was cloned into pET15b and 

expressed in E. coli [144]. Two B- cell-specific immunogenic epitopes 
have been predicted and synthesized as peptides for evaluation along 
with recombinant LigA-C. Selected B-cell epitopes showed increased 
sensitivity over recombinant LigA-C in single and combination assays 
for IgM antibody detection, and may be useful in early diagnosis of 
leptospirosis.

Hepatitis B virus (HBV) and human T lymphotropic virus type I 
(HTLV-I) are blood- borne viruses. Since HBV and HTLV-I infections 
are asymptomatic for a long time, people are typically unaware of 
infection [145,146]. Recombinant proteins from these viruses are 
used as capture antigens in ELISA blood screening tests [147,148]. A 
chimeric antigen comprising antigenic fragments of HBV core protein 
and proteins gp46 and p16 of HTLV-I was constructed, predicted by 
VaxiJen as antigenic, expressed in E. coli, purified and tested using 
serum from patients infected with HBV and/or HTLV-I [149]. The 
antibodies were detected successfully by the chimeric protein.

Shawky et al. [150] amplified the region encoding proteins E1 
and E2 (HCV-E) from hepatitis C virus (HCV) genotype 4a, cloned it 
into a plasmid, and used this to immunize mice. The DNA construct 
was immunogenic, as predicted by VaxiJen. This study also found 
that combining the HCV-E construct with extracts from Echinacea 
purpurea and Nigella sativa prior to immunizing mice significantly 
increased both humoral and cellular responses.

VaxiJen has also been used to predict the antigenicity of cystatin 
C developed as a diagnostic tool for accurate estimation of glomerular 
filtration rate (GFR) [151]. A stable fusion protein was constructed 
to include immunogenic fragments of several proteins (ApoB-100, 
hHSP60 and β-2-GPI) associated with atherosclerosis [152]. It could be 
used as a vaccine to prevent or modulate atherosclerosis. Bioinformatic 
tools (including VaxiJen) were used to locate a specific conserved 
region of ActA, a membrane protein from Listeria monocytogenes (L. 
monocytogenes) [153]. The region was used to design an antibody-
antigen based diagnostic test for L. monocytogenes.

Prediction of immunogens for veterinary medicine

Brucellosis is a zoonotic illness transmitted from domestic animals 
to humans. It is caused by Brucella spp. Although a live attenuated 
vaccine against ovine brucellosis exists, investigations focus on 
developing a safer subunit vaccine. Several chimeric DNA vaccines 
have been designed to encode proteins omp19, omp31 and urease [154], 
BP26, omp31 and TF [155], and GroEL [156]. Based on systematic 
screening of the exoproteome and secretome of B. melitensis, Vishnu 
et al. [157] identified eight proteins as potential vaccine candidates, 
including LPS-assembly protein LptD, a polysaccharide export 
protein, a cell surface protein, heme transporter BhuA, flagellin FliC, 
7-alpha-hydroxisteroid dehydrogenase, immunoglobulin-binding 
protein EIBE, and hemagglutinin. Several B- and T-cell epitopes were 
predicted, and also from the protein omp25 [158]. All these proteins 
were assessed to be antigenic by VaxiJen.

Histophilus somni (H. somni) is an opportunistic bacterial pathogen 
causing histophilosis in cattle and is associated with thrombotic 
meningoencephalitis and bovine respiratory disease [159]. The genome 
of 12 H. somni isolates were sequencing, protein coding regions 
predicted, and several programs (including VaxiJen) used to evaluate 
the antigenicity, surface exposure scores, and sequence conservation 
[160]. The first 20 ranked proteins have been analyzed in western blot 
with bovine serum, with 13 responding to bovine antibodies of H. 
somni.
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Pasteurella multocida (P. multocida) is an opportunistic bacterial 
pathogen causing fowl cholera in poultry, haemoragic septicaemia in 
cattle and buffalo, pneumonia in lambs and goats, respiratory atrophic 
rhinitis in swine, and purulent rhinitis in rabbits [161]. Ragavendhar et 
al. [161] characterized the outer membrane antigen 87 (oma87) of P. 
multocida from sheep. B- and T-cell epitopes were predicted and it was 
found that the peptide 638-652 might form a epitope-based vaccine. A 
comparative genome analysis of four pathogenic P. multocida strains 
with their respective hosts (fowl, goat and buffalo) identified several 
outer membrane proteins responsible for the pathogenicity [162]. 
Among them the lipopolysaccharide (LPS) assembly outer membrane 
complex protein contained the most B- and T-cell epitopes and is a 
suitable target for vaccine development against the two economic 
devastating diseases: fowl cholera and hemorrhagic septicemia.

Pajaroellobacter abortibovis (P. abortibovis) is a tick-transmitted 
infection causing late-term abortion in cattle or birth of weak calves 
[163]. As this bacterium cannot be grown in culture, DNA and RNA 
was extracted from spleen tissue collected from experimentally-infected 
mice [164]. In silico prediction of vaccine candidates was performed 
and the top 10 candidate proteins, as ranked by VaxiJen, were tested 
using serum from P. abortibovis immunized mice. This confirmed the 
antigenicity of seven of the nine proteins.

Leptospira interrogans (L. interrogans) causes leptospirosis in dogs 
and other animal species, including humans [165]. Natarajaseenivasan 
et al. [166] have compared the humoral immune responses to 4 
recombinant proteins (LipL32, LigA, LK73.5 and GroEL) and one 
lipopolysaccharide (LPS) of L. interrogans in dogs vaccinated by a 
commercial multivalent vaccine containing leptospiral whole cell 
lysates of two serovars. The proteins and the predicted B-cell epitopes 
have been assessed as antigenic by VaxiJen. Leptospiral whole cell 
lysates and LPS have elicited higher level of antibody response 
compared to the single proteins.

Bordetella bronchiseptica (B. bronchiseptica) causes acute and 
chronic respiratory infection in a variety of animals [167]. Currently, 
there is no vaccine to prevent these infections. Liu et al. [167] analyzed 
five B. bronchiseptica antigens, as defined by VaxiJen, including amino 
acid ATP-binding cassette transporter substrate-binding protein 
(ABC), lipoprotein (PL), outer membrane porin protein (PPP), leu/ile/
val-binding protein (BPP), and conserved hypothetical protein (CHP). 
The murine immune responses to individual recombinant proteins were 
measured, with each tested protein inducing high antibody titers. PPP 
and PL showed protection against challenges with B. bronchiseptica, 
while the protection by ABC, BPP, and CHP was not been significantly 
different from controls. PPP and PL have been identified as candidates 
for a diagnostic test or vaccine for B. bronchiseptica.

Anaplasma marginale (A. marginale) is a tick-borne bacterium 
causing anaplasmosis in cattle. The major surface protein 1a (MSP1a) 
has been analyzed as a vaccine candidate containing 4 B-cell epitopes 
[168]. Mycoplasma agalactiae (M. agalactiae) causes agalactia is small 
ruminants [169]. The most important surface antigen P40 has been 
analyzed [169]. Three B- and three T-cell epitopes were identified as 
appropriate and could find use in developing recombinant vaccines.

Corynebacterium pseudotuberculosis (C. pseudotuberculosis) causes 
caseous lymphadenitis in sheep and goats, and is responsible for 
significant economic losses [170]. The putative virulence proteins SpaC, 
SodC, NanH, and PknG have been analyzed using immunoinformatics 
(including VaxiJen). It was found that SpaC, PknG and NanH 
presented better vaccine potential than SodC. Aeromonas hydrophila 

(A. hydrophila) causes aeromoniasis in fish [171]. Rauta et al. [172] 
analyzed two antigenic outer membrane protein (Aha1) peptides 
as DNA vaccine candidates including them in a nanoparticle-based 
delivery system.

Bovine rotavirus and bovine coronavirus are the most important 
causes of diarrhea in newborn calves as well as pigs and sheep [173]. 
Rotavirus protein VP8 and coronavirus S2 spike glycoprotein are the 
major determinants of viral infectivity and neutralization. A chimeric 
VP8-S2 gene was designed computationally using VaxiJen [173], 
cloned and sub-cloned into vectors, and transferred into E. coli. The 
expressed protein was purified and used to immunize hens. The activity 
and specificity of the isolated and purified anti-VP8- S2 IgY was 
detected using several experimental assays. The specific anti-VP8-S2 
IgY was suggested as a candidate for passive immunization against 
bovine rotavirus and bovine coronavirus.

Fowl adenovirus serotype 4 (FAV-4) causes hydropericardium 
syndrome in domestic fowl. The hexon gene was isolated from 3 virus 
isolates and then cloned. The vectors were analyzed using online 
bioinformatics tools [174]. All were predicted to be antigens according 
VaxiJen and to contain B-cell epitopes.

Newcastle disease virus (NDV) causes Newcastle disease, 
an extremely infectious viral disease affecting most bird species. 
Motamedi et al. [175] used an in silico approach, assembling potential 
and conserved epitopic regions of hemagglutinin–neuraminidase 
(HN) and fusion (F) glycoproteins of NDV to induce multiepitopic 
responses against the virus. Epitope predictions have showed that the 
hypothetical synthetic construct could induce immature B and T cell 
epitopes. Most regions of the construct had a high antigenic propensity 
and surface accessibility.

The cattle tick, Rhipicephalus microplus, is an obligate 
hematophagous ectoparasite of cattle occurring in the tropical and 
subtropical regions of the world and is a vector of disease causing 
pathogens, such as Babesia bovis, Babesia bigemina and Anaplasma 
marginale [176]. A systematic approach using a combination of 
functional genomics (DNA microarrays) techniques and a pipeline of in 
silico predictions of subcellular localization and protective antigenicity 
using VaxiJen was used to identify novel anti-tick candidate vaccines 
[177]. 791 candidates were identified, of which 176 were membrane-
associated and 86 secreted soluble proteins. Five predicted membrane-
associated antigenic proteins were selected and synthetic peptides 
designed and then tested using polyclonal antisera from BALB/c mice 
immunized with a crude extract of tick midgut membrane proteins. 
Three showed antigenicity higher than that of Bm86 peptides. 
Moreover, 19 novel transmembrane proteins were identified using 
LS-MS/MS and suggested as putative tick targets [178]. Aguirre et al. 
[179] identified using immunoinformatics an antigenic peptide from 
ATAQ protein, a putative Bm86 homolog. The pure peptide and its 
conjugate with Keyhole Limpet Hemocyanin (KLH) were tested for 
immunogenicity in mice, rabbits and cattle. Between 35% and 47% of 
the animals developed a consistent immune response.

Dogs are the domestic reservoirs of the parasite Leishmania 
infantum (L. infantum) causing visceral leishmaniasis (VL) in humans 
and dogs [180]. The control of canine VL could reduce human infection 
rates. Agallou et al. [180] analyzed the total protein extract from late-
log phase L. infantum promastigotes using two-dimensional western 
blots and probing with sera from asymptomatic and symptomatic 
dogs. Fourty-two protein spots were found to react differentially with 
IgG from asymptomatic dogs. Of these, 21 were identified by mass 
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spectrometry and predicted with ANTIGENpro and VaxiJen for 
antigenicity. Six proteins were identified as novel candidate antigens 
able to be developed as vaccines or diagnostic tests.

Other methods for immunogenicity prediction

Following in the wake of VaxiJen, several groups have sort to 
emulate it’s success or to develop alternative approaches for the 
identification of whole protein antigens from microbial life. NERVE 
(New Enhanced Reverse Vaccinology Environment) was the first in 
silico pipeline for identification of the best vaccine candidates from 
whole proteomes of bacterial pathogens [181]. Reverse vaccinology is 
a method build on genome-based antigen discovery [182] and it has 
been successfully applied to the development of an innovative vaccine 
against N. meningitis serogroup B [183]. NERVE uses four filters for 
selection of immunogens: localization, topology, probability of being 
adhesin and similarity to human proteins. The threshold values have 
been tuned on 10 proteomes containing known immunogens. As a 
result, NERVE ranks the most probable vaccine candidates.

Vaxign is the first web-based vaccine design system that predicts 
vaccine targets based on genome sequences using the strategy of 
reverse vaccinology [184]. Vaxign predicts protein subcellular location, 
transmembrane helices, adhesion probability, conservation to human 
and/or mouse proteins, sequence exclusion from genome(s) of 
nonpathogenic strain(s), and epitope binding to MHC class I and class 
II. The precomputed Vaxign database contains prediction of vaccine 
targets for >70 genomes. Vaxign also performs dynamic vaccine target 
prediction based on input sequences.

ANTIGENpro is a two-stage architecture based on structural 
features as sequence length, molecular weight, absolute charge per 
residue, turn-forming residues fraction, hydropathy, etc. and support 
vector machine (SVM) classifier [131]. The algorithm has been trained 
on two datasets: (i) antigens that elicit a strong antibody response in 
protected individuals but not in unprotected individuals, using human 
immunoglobulin reactivity data obtained from protein microarray 
analyses; and (ii) known protective antigens from the literature. 
ANTIGENpro has correctly classified 82% of the known protective 
antigens when trained using only the protein microarray datasets. 
The accuracy on the combined dataset was 76% by cross-validation 
experiments. ANTIGENpro has performed well also on an external 
pathogen proteomes. 

Vaccine has been built around the concept of linked resources [185]. 
It consists of two parts: part A builds the proteome using gene predictors 
and similarity searches; and part B predicts protein characteristics such 
as localization, topology, number of transmembrane helices, binding 
to MHC class I and class II. The output is a list of vaccine candidates 
ranked according to the average probability of the classifiers used.

Jenner-Predict server has been developed for prediction of protein 
vaccine candidates (PVCs) from proteomes of bacterial pathogens 
[186]. The server targets host-pathogen interactions and pathogenesis 
by considering known functional domains from protein classes such as 
adhesin, virulence, invasin, porin, flagellin, colonization, toxin, choline-
binding, penicillin-binding, transferring-binding, fibronectin-binding 
and solute-binding. It predicts non-cytosolic proteins containing these 
domains as PVCs. It also provides vaccine potential of PVCs in terms 
of their possible immunogenicity by comparing with experimentally 
known IEDB epitopes, absence of autoimmunity and conservation 
in different strains. Predicted PVCs are prioritized so that only few 
prospective PVCs could be validated experimentally. The performance 
of web server has been evaluated against known protective antigens 
from diverse classes of bacteria.

iVAX is an integrated set of tools for triaging candidate antigens, 
selecting immunogenic and conserved T cell epitopes, eliminating 
regulatory T cell epitopes, and optimizing antigens for immunogenicity 
and protection against disease [187]. iVAX has been applied to vaccine 
development programs for emerging infectious diseases, cancer 
antigens and biodefense targets. Several iVAX vaccine design projects 
have had success in pre-clinical studies in animal models and are 
progressing toward clinical studies.

VacSol is a high throughput in silico pipeline for vaccine candidate 
prediction from bacterial pathogens [188]. It consists of known 
tools like BLAST [189], PSORT [190], HMMTOP [191], ABCPred 
[192], ProPred [193] and databases DEG 10 [194], VFDB [195] and 
UniProt [196], integrated to work consequently. It is freely available to 
download from https://sourceforge.net/projects/ vacsol/.

Protectome analysis is a bioinformatics tool for discovery of 
bacterial vaccine candidates based on “protective signatures” [197]. 
Authors have collected a database of all known protective antigens 
of 38 bacterial pathogens, have analysed them using BLAST [189], 
ClustalW [198], Smart [199] and Pfam [200] and have identified 
common structural features like function/biological role (toxins, 
iron-uptake systems, adhesins, etc.) and/or structural organization 
(multiple internal structural motifs). Support vector machine (SVM) 
classification has been applied to derive a model for discrimination 
between bacterial protective antigens and non-antigens [201]. Initially, 
the training set consisted of 136 antigens and 136 non-antigens (most 
of them taken from VaxiJen datasets), lately the training set was 
increased to 200 antigens and 200 non-antigens [202]. The validation 
data showed a better performance of the SVM model comparing to 
VaxiJen. The model is not accessible online.

Discussion
The role that immunoinformatics plays in vaccine design devolves 

in several ways: Helping to design transgenic whole-organism 
pathogens, which cannot grow or cause harm, through designing out 
one or more virulence factors and so rendering the organism effectively 
harmless or by inducing severely compromised reproductive capacity 
of a virus or other microorganism [203]; Helping to design epitope 
ensemble vaccines. Such efforts fall into two camps: un- validated 
prediction-only methods that predict supposedly high-binding and 
more modern approaches that use immunoinformatics to select rather 
than predict the best epitopes suitable for forming a vaccine [204,205]; 
Helping to identify immunogenic and potentially protective single 
proteins from the genome of a given pathogenic microorganism. Such 
methodologies come in two main guises: “pipelines” or networks of 
methods and algorithms that together are able to select appropriate 
proteins [206,207] and single methods that seek to predict immunogens. 
Vaxijen typifies such an approach. VaxiJen is now a decade old. 
While so-called pipelines for vaccine design abound, methods that 
address the more fundamental questions of immunogenicity and 
antigenicity do not. VaxiJen stands alone; almost. Why is this? The 
main answer lies with the difficulty of the task – were it easy to improve 
on extant result then solutions would abound, as they have in other 
areas of immunoinformatics and bioinformatics - and the complex 
perception of the accuracy and veracity of the outcome. While the 
research objective of VaxiJen is both obvious and profound, current 
implementation is certainly sub-optimal. We need to improve and to 
test VaxiJen rigorously.

More specifically, we at least need to address the following: First, we 
need much more “positive” data; that is, carefully curated and validated, 
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examples of protective antigens from pathogenic microorganisms and 
cancer. Databases of such do exist - AntigenDB [206] is, for example, 
a dedicated resource directly addressing this, while IEDB [206] also 
contains similar data, but as something of an afterthought, rather than 
being its focus. IEDB concentrates on epitopes and related information 
not antigens and protein immunogens. What we need is more and 
better data resources of this type upon which to draw upon. Thus 
there is a need for a concerted effort to enlarge, deepen, and broaden 
available data collations; much as has been done for epitopes [207].

At the same time, we also need much better and much more 
carefully constructed negative training sets and learning protocols. 
We need to balance the selection of negative test sets so that any signal 
present in the analysis reflects antigenicity and no other quality. We 
need to select similar protein lengths, similar origin species, similar 
subcellular locations, and similar functions: the list goes on. Imagine 
we wanted to separate a particular evolutionarily-conserved family of 
membrane protein, a fair test would be other membrane proteins of 
similar length from the same species; not soluble or fibrous proteins 
selected from a distant branch of the tree-of-life.

Better representations of the sequence data: currently VaxiJen 
employs Wold’s z-scales to characterise proteins using ACC transform. 
This works, but it is not clear that this is optimal. Other descriptors are 
available. Single descriptors characterising the whole sequence [208] 
and other multivariate descriptors of sequences. One could envisage 
a phase space of disjoint descriptor variables from which we could 
use variable selection protocols to select a compact and near-optimal 
choice of indicative variables.

Better algorithms: Artificial Intelligence or AI now is focused on 
the development of deep-learning protocols. Powerful machine learning 
toolkits, such as Weka [209], are already available, and these are more 
than capable of delivering robust and extensible methods provided the 
data and the data representation are adequate. Nonetheless, as new 
algorithms do appear we must be open and embrace them. Avoiding 
complacency must be our mantra.

More validation: better protocols for establishing the 
immunogenicity and recall of identified vaccines. This is the world 
of experimentalist, and here what is needed is a fast, straightforward 
methodology which can be used to give much more consistent and 
much more accurate estimates of individual proteins.

More generally, as with most computational studies of real world 
problems, there exists a pressing need for experimental validation. 
The publication of an ever increasing stockpile of papers relating to 
the in silico analyses of pathogen genomes and virtual proteomes, 
have generated many potential vaccine candidates. Such papers 
typically use methodology largely embodied in web-servers; operating 
such systems is facile, and the resulting analysis straightforward. 
We need to highlight the severe limitations of all such studies in the 
absence of proper experimental validation. Although many papers are 
technically sound, their utility is hard to quantify and their significance 
questionable. Likewise, more examples of experimentally validated 
Vaxijen predictions are needed. A majority of papers citing the use of 
Vaxijen do not contain any such verification. Publishing unverified 
papers ultimately becomes counterproductive. Other studies give 
credence to their computational results [18,41,44,149,150,160,164
,166,167,173,179] by combining vaccine design with experimental 
validation in animal models. Even in the days of AI hysteria, prediction 
without validation exerts little influence and convinces few.
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