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Abstract

The rate of opioid overdose continues to rise, necessitating improved treatment options. Current therapeutic
approaches rely on administration of either a blocking agent, such as naloxone, or chronic treatment with
replacement drugs, including methadone and/or buprenorphine. Recent findings suggest that males and females
respond to these treatments uniquely. In an effort to better understand this sex-specific variation in treatment
efficacy, we investigated the effects of acute opioid withdrawal in male and female rats using 18FDG and microPET.
These data demonstrate that acute opioid withdrawal produces metabolic alterations in brain regions associated
with reward and drug dependence, namely corpus striatum, thalamic nuclei, septum, and frontal cortex.
Furthermore, certain changes are unique to males. Specifically, males demonstrated increased metabolism in the
anterior cingulate cortex and the ventral hippocampus (CA3) following acute opioid withdrawal. If males and females
exhibit sex-specific changes in regional brain metabolism following acute opioid withdrawal, then perhaps it is not
surprising that they respond to treatment differently.

Keywords: Drug dependence; Opioid withdrawal; Brain metabolism

Introduction
The escalating use of prescription pain relievers has contributed to

the current opioid abuse epidemic in the United States. This has
resulted in a surge of acute intoxication related deaths [1-3]. Although
naloxone (Narcan®) expansion and administration has proven effective
as a short-term measure, saving countless lives, it fails to address the
underlying issue [4,5]. Unfortunately, the development of effective
treatment strategies targeting patients suffering from opioid abuse and
withdrawal has lagged behind its clinical necessity. In fact, current
options are limited to opioid replacement with methadone and
buprenorphine. While these medications represent first-line
treatments for opioid detoxification, their efficacy remains
controversial. Furthermore, these replacement therapies retain the
addictive liability and side effect profile associated with illicit opioids.

Interestingly, there is an understudied observation that males and
females respond to these treatments uniquely, consistent with
knowledge that both substance abuse and dependence rates vary
between males and females [6-11]. Two studies, a 25-year follow-up of
heroin-dependent patients treated with methadone and a seven-year
follow-up of patients prescribed buprenorphine both found that
women were significantly more likely than men to have stopped heroin
use [12,13]. This could be attributed to differences in analgesic
tolerance, which is known to vary between males and females [14-17].

In the current study, we investigated whether sex would influence
the metabolic representation of opioid withdrawal. Specifically, we
examined the effects of acute opioid withdrawal on drug-naïve
adolescent animals via micro positron emission tomography

(microPET). Using 18F-fluorodeoxyglucose (18FDG), we compared
the regional metabolic effects of acute opioid withdrawal between
sexes. We hypothesized that males and females would respond to
opioid withdrawal uniquely as evidenced by regional differences in
brain glucose metabolism.

Methods
Adolescent male (n=8) and female (n=8) Sprague-Dawley rats were

acquired from Taconic Farms. Animals arrived on postnatal day
(PND) 22. Animals were maintained on a 12-hour light-dark cycle and
received food and water ad libitum. Following an acclimation period,
all animals received baseline 18FDG microPET scans (PND 31, Scan
1). Injectable morphine sulfate (15 mg/mL, 20 mL/vial) was acquired
from Sigma Aldrich. Animals received morphine treatment for 5 days
at a dose of 10 mg/kg/day subcutaneously (PND 35-39). Following a
two-day withdrawal period (PND 40-41), animals received a second
18FDG scan (PND 42, Scan 2).

Prior to scanning, animals were fasted for 12 hours to ensure blood
glucose stability [18,19]. All images were acquired using a Siemens
Inveon microPET. Each animal received a single intraperitoneal
injection of 18FDG (1.8-2.0 mCi). After 18FDG administration,
animals were left undisturbed in their home cage for 40 minutes to
ensure radiotracer uptake. Animals were then transferred to a clear
acrylic chamber, where isoflurane/oxygen was used to induce
anesthesia. Five minutes post-induction, animals were transferred to
the imaging platform and were secured. Continuous isoflurane/oxygen
at 2.0-2.5% was administered via nasal cannula for the entire 10-
minute static scan. These imaging protocols have been shown to
effectively reflect brain glucose metabolism [20-22].
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All microPET images were corrected for attenuation and then
reconstructed using a Maximum a Posteriori (MAP) probability
estimate with 20 iterations as described previously [23,24]. Raw data
files were uploaded into Pixel-wise Modeling Tool software (PXMOD
version 3.3, PMOD Technologies LLC), and were aligned to a reference
template created using the Paxinos and Watson Sprague-Dawley rat
brain atlas. After placement in anatomical space, images were skull-
stripped to subtract extraneous metabolic activity, and then were
corrected for injected dose to ensure comparability of regional uptake
values [20,25]. Post-processing including realignment to an atlas,
normalization to a mean template, and smoothing was accomplished
using Statistical Parametric Mapping (SPM5, Welcome Trust Centre
for Neuroimaging). Between and within group comparisons were
carried out using paired and 2-sample T-tests, respectively. Post-
processed images were aligned to the Paxinos and Watson rat brain
atlas [26] and regions were identified using x, y, and z coordinates.
Increases and decreases in relative brain glucose metabolism were
visually represented using color mapping. Images were overlaid onto
an anatomical cryostat template with increases set as hot (red-yellow),
and metabolic decreases set as winter (blue-green). The color scale
used represents all T distributions achieving statistical significance
[27-29]. All corresponding brain areas are significant at a value of p ≤
0.001 (corrected) with a cluster-extent threshold of k=0 voxels.

Results
There were no regional differences in brain metabolism between

males and females at baseline (Figure 1A). However, acute opioid
withdrawal produced significant changes in both cortical and
subcortical brain metabolism (Figure 1B). When all animals were
grouped together and compared to baseline, subjects experiencing
acute morphine withdrawal demonstrated bilateral metabolic increases
in the corpus striatum and thalamic nuclei, as well as in prelimbic and
frontal cortices. Additionally, marked decreases were observed in the
septum, ventral striatum, and ventral hippocampus compared to
baseline (Figure 1B). When separated by sex, male and female groups
exhibited significant differences. Specifically, males demonstrated
increased metabolism in the anterior cingulate cortex and the dorsal
hippocampus (CA3) compared to females (Figure 1C). No significant
decreases in glucose metabolism were noted between males and
females.

All reported increases and decreases were significant at a strict p-
value threshold of p ≤ 0.001 (corrected) with a cluster-extent threshold
of k=0 voxels. These constraints were chosen based on previous studies
where liberal primary cluster extent thresholds were kept at a
minimum. These parameters ensure the statistical validity of reported
regions of interest by eliminating large activations in overlapping
anatomical areas [30].

Discussion
In the present study, no regional differences in brain metabolism

were observed between adolescent males and females at baseline.
However, following acute opioid withdrawal, brain metabolism was
altered both cortically and subcortically. Specifically, metabolic
increases were measured in the corpus striatum and the deep thalamic
nuclei, in addition to increases in both the prelimbic and frontal
cortices. Furthermore, metabolic decreases were noted in the septum,
ventral striatum and ventral hippocampus. These findings reflect
metabolic averages of male and female animals grouped together.
When images were disaggregated according to sex, males

demonstrated increased metabolism in the anterior cingulate and the
dorsal hippocampus (CA3) compared to females. There were no
metabolic decreases observed between sexes.

Before treatment with morphine, both males and females exhibited
similar patterns of brain glucose metabolism. However, following a
five-day challenge with morphine and subsequent acute spontaneous
withdrawal, males and females exhibited significantly different
metabolic profiles, notably increased metabolism in anterior cingulate
cortex among males. This is interesting given that disruption of the
cingulate cortex can lead to an imbalance in dopaminergic signaling.
This has been associated with impairment of executive function,
reward-directed behavior, and conditioning, all of which have been
implicated in impulsivity, compulsive drug use, and addiction [31-33].
More recently, Zakiniaeiz et al. demonstrated that the cingulate cortex
may be a key region in the disruption of functional connectivity during
cue-induced processing, while changes in its function may serve as a
marker of subsequent alcohol relapse [34].

As noted earlier, previous studies suggest that sex differences likely
affect the successful treatment of opioid abuse [12,13]. Here we
demonstrate that it also impacts the primary metabolic representation
of opioid withdrawal. The effects of opioids on the brain have been
studied extensively [35]. Our findings support previous data indicating
that opioids disrupt known reward pathways, notably in the corpus
striatum [36]. Additionally, opioid withdrawal produces increases in
thalamic cyclic AMP, which likely plays a role in the behavioral
physiology of withdrawal [37]. The septum is also an integral part of
the neurocircuitry underlying reward, pleasure, and drug seeking [38].
However, despite this knowledge, recent studies have shown that sex
likely influences these pathways, and may affect treatment outcomes
[17].

The morphine dose used in the present study was selected based on
data indicating that a dose of 10 mg/kg was adequate to achieve
conditioned place preference within this time period [39,40]. A single
dose of morphine (10 mg/kg) was able to elicit conditioned place
avoidance after a naloxone challenge [41]. Further, morphine, at this
dose for this same period of time, also produced analgesic tolerance
[42], and after only 4 days, produced withdrawal behaviors including
increased defecation, urination, salivation, jumping, and wet dog
shakes [43]. Finally, this dosing schedule activated glial cells and
enhanced proinflammatory cytokine expression in the spinal cord,
which has been implicated in morphine tolerance and withdrawal-
induced hyperalgesia [39].

The 18FDG doses used are consistent with those reported
previously using rats/mice and microPET [44-46]. This 18FDG dosing
was designed to produce count rates that do not exceed the dead time
correction capabilities of our scanner and images that could be
reconstructed using an iterative method (i.e., maximum a posteriori).
Relative to body weight, 18FDG is injected at significantly higher doses
in rodents than in humans. These higher doses are necessary to achieve
sufficient counting statistics and maximal spatial resolution in the
substantially smaller brains of rodents [47]. Additionally, published
reports have established that roughly the same amount of radiotracer
used in humans should be used in rodents, since higher doses are
necessary for equivalent image quality [48].
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Figure 1: 18FDG microPET images highlighting significant brain
regions. Coronal slices showing the (A) baseline brain metabolism
comparison of males and females, (B) changes in brain metabolism
of all animals following acute opioid withdrawal, and (C) increases
in male brain metabolism relative to female metabolism during
acute opioid withdrawal. Slice distance in millimetres from bregma
is noted in the lower left hand corner of each image. Significant
increases and decreases in regional brain glucose metabolism are
visually represented using hot (red-yellow) and winter (blue-green)
color maps, respectively. MAX and MIN refer to the degree of
regional radioisotope decay (percent injected dose per gram). The
color scale used represents all T distributions achieving statistical
significance. All corresponding brain areas are significant at a value
of p ≤ 0.001 (corrected) with a cluster-extent threshold of k=0
voxels.

To our knowledge, this is the first study to assess and demonstrate
sex-specific changes in regional brain metabolism following acute
opioid withdrawal in drug-naïve adolescent animals. These findings are
consistent with earlier reports suggesting that sex differences play an
important role in the clinical presentation of opioid use disorders,
specifically regarding drug craving and impairment of function [49].
Sex also appears to alter the expression of spontaneous withdrawal.
Males often experience more severe and prolonged withdrawal
compared to females [50]. However, while men often experience
higher rates of substance abuse, women generally experience more
adverse outcomes, significant impairment, and comorbid psychiatric
disturbances [51], thus requiring more individualized approaches to
treatment [52]. Future studies should examine both gender and sex

differences, and importantly similarities, to build a better profile of the
neurobiological, psychiatric, and sociocultural factors characterizing
male and female opioid dependent states [53,54]. Only then can we
begin to devise more effective, and perhaps sex-specific, treatment
strategies designed to address this urgent healthcare concern.
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