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Introduction
The term “fractal” was first mentioned by a mathematician [1] in 

1975. It is based on a Latin adjective “fractus” meaning “broken” or 
“fractured”. Geometry in fractal structure features the irregularity at all 
scales mathematically. In other words, if a small portion of the model is 
magnified, it shows the same complexity as the entire model. 

Fractals can further be classified into two categories, namely, 
monofractals and multifractals, which are characterized by fractal 
dimensions [2]. Fractal Dimension is the index which describes the 
complexity of fractal patterns between changes in details against scales. 
Monofractal systems possess scaling properties which stay the same 
across different regions. Multifractal systems consist of differently 
weighted fractals of different non-integer dimensions, which make 
themselves self-similar but in a complicated manner. They are the 
generalized versions of a fractal system having multiple scaling 
exponent to describe its dynamics. In this case, it exists a continuous 
spectrum of exponents, also named as singularity spectrum. The 
multifractal spectrum identifies the deviations in fractal structure that 
consists of large and small fluctuations within the time series.

In biomedical time series, fractal structures can often be revealed 
within a wide range of physiological phenomena. Detrended 
fluctuation analysis (DFA) has become a very useful method to extract 
the range correlations and determine the fractal scaling properties in 
time series of noisy and non-stationary characteristics. It has been 
widely applied to diverse fields, such as heart rate dynamics [3], human 
gait [4], neuron spiking [5], DNA sequences [6], economic time-series 
[7], earthquake signals [8], etc. DFA has the limitation in accounting 
for single scaling exponent, which corresponds to monofractal scaling 
behaviour. However, many geophysical and medical patterns do not 
exhibit only in monofractal structure. Different scaling exponents have 
to be extracted for different parts of the series [9] in order to reveal 
the proper details of the system structure. Multifractal analysis then 
comes in place. Multifractal detrended fluctuation analysis (MFDFA) 

is a way to estimate the multifractal structure within a time series. 
As a generalization of the standard DFA, it was first formulated 
by Kantelhardt et al [10]. It has been applied successfully to study 
multifractal scaling behaviour of various non-stationary time series 
[11-13].

What does the static spinal curvature movement have to do with 
fractals? During a static posture, the nervous system, including, brain 
and spinal cord, interprets the sensory information and commands 
the musculoskeletal systems to move different body parts. Postural 
control then comes in place attempting to maintain the body in a 
balanced state. In a static posture, the spinal curvature apparently stays 
in a definite position. However, when we look into it at microscopic 
level of movement, statistics show that there are variance and subtle 
fluctuation along the time.

A number of biomechanical researches have evaluated postural 
sway by descriptive statistics. In this way, the dynamic characteristics 
are ignored, for example, correlations between adjacent data in terms 
of magnitude and direction of displacements, temporal ordering of the 
data series, etc. Most of the postural control investigations for scientific 
and clinical purposes usually focus on analysing the variety of external 
perturbations and the corresponding responses by the human body 
[14]. Although these approaches on analysing the response enable the 
examination on the characteristics and relationship between the input 
and output of different closed-loop feedback systems, the stabilizing 
mechanism or the steady-state behaviour from the possible open-loop 
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Abstract

From previous biomechanical researches, postural sway has been generally evaluated by descriptive statistics 
for the purpose of scientific and clinical purposes in analysing the variety of external perturbations and the 
corresponding responses by the human body. Although these approaches on analysing the responses enable the 
examinations on the characteristics and relationships between the input and output of different feedback systems, 
the stabilizing mechanism or the steady-state behaviour from the possible control schemes of the human body is not 
explicitly considered. In this research study, the multifractality structure on postural sway is identified by the numerical 
method on multifractal detrended fluctuation analysis. An experimental set of 11 healthy subjects were investigated 
by optical motion capture system from the retroreflective optical marker data attached on skin surface along the 
spinal curvature. It is observed that random walk characteristics, hence, correlations between present and history of 
data, are present in the time series. Multifractal detrended fluctuation analysis is further applied to get into the details 
about the correlation of data along the time series. The study reveals the degree of multifractality extracted from the 
data, and compares to shuffled data to ascertain the multifractality in spinal curvature movement is predominantly 
due to long-range correlations instead of probability distributions. The application of this computational technique 
attempts to describe the multiple strategies utilized by the motor control in response to static, yet swaying, human 
body posture.
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control schemes of the human body under undistributed condition is 
not explicitly considered. 

In the present study, we attempt to characterise the dynamic 
properties of spinal curvature during static posture by adapting the 
multifractal detrended fluctuation analysis (MFDFA). The aim is 
to develop a framework to model, examine and interpret the data 
series of spinal curvature along the time dimension. This approach 
leads to better understanding on the strategies to maintain the 
equilibrium by multiple degrees of freedom and complex structure of 
the musculoskeletal system through utilizing postural control system 
during static posture.

Experiment
An experiment was setup inside the optical motion capture studio. 

A total of eleven healthy subjects were recruited to participate in the 
experiment. A seat with low back support was prepared to allow the 
participants to sit upright. First of all, the sitting posture was adjusted 
to allow an upright condition. The legs of seat could be adjusted to 
allow 90o flexion at the knee. The feet pointed forward and separated by 
shoulder width. The torso was upright with arms across in front of the 
chest. Data were captured in two sitting conditions: with and without 
low back support. Right before starting the capture, a reference point 
was placed about five feet in front of the participants at eye level. When 
this was set, the participants were asked to close the eyes. The capture 
was then started for a duration of 30 seconds. Two trials were captured 
with the same sitting condition. A randomized sequence based on the 
existence of low back support were assigned to each participant. It is to 
minimize the cross effect between the two sitting support conditions. 

A total of six retro reflective markers of size 2.5 mm radius were 
attached to skin surface at cervical spine section (Figure 1). In order to 
locate the cervical spine section, two markers were placed on C2 and 
C7 based on their anatomical features. In between the two markers, 4 
markers, named M3, M4, M5, and M6, were placed equal distance in 
between each other. The x, y and z coordinates were captured based 
on the optical motion capture system (Motion Analysis Corporation, 

Figure 1: Marker placement on cervical region of subject.

Figure 2:  Camera positions around the subject.

USA) with 7 cameras (Figure 2) of image resolution at 1280 x 1024. 
Data were acquired at 180 Hz using EVaRT software, a package came 
with the optical motion capture system.

The format of data captured was in TRC, which is a native data 
format recording the x, y and z coordinates per time frame based on the 
position of each marker according to the global coordination system 
with reference to the origin (0, 0, 0), the ground centre of the capture 
area. As each trial was captured for 30 seconds at 180 Hz, there were 
5400 data frames altogether in each data clip. 

The position data of the markers were then set to calculate the 
angles representing the curvature cervical spine. Angles were calculated 
based on every three adjacent markers. For a given marker mi having 
coordinates (xi , yi , zi), the angle was calculated as:
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This allows four angles to be calculated based on vertices at M3, 
M4, M5, and M6. Figure 3 shows an example of angle data calculated, 
in degrees, along temporal dimension from one subject based on vertex 
M6.

Based on the angles extracted from the four vertices along the 
cervical spine, descriptive statistics are summarized in Table 1. 

Method
In most biomedical time series, they usually consist of property 

similar to the increments of random walks. To convert the noise signal 
into a random walk like time series, the data are subtracted by the 
overall mean value and then integrated along the time series.
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where i = 1, … , N; Y(i) is the random walk signal at frame i of time 

series; Xk is the original data signal; and <x> is the overall mean value 

Vertex Mean Standard Deviation Minimum Maximum Range
M3 166.87 1.22 162.39 171.57 9.18
M4 172.98 0.76 170.57 175.78 5.22
M5 175.14 1.38 168.38 179.12 10.74
M6 166.30 1.56 162.42 172.17 9.75

Table 1: Descriptive statistics summary on the four cervical spine vertices.
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of time series, given by
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= ∑
After subtracting the angle data of cervical signal by its overall 

mean, and integrating along time series, a random walk like structure 
can be observed in Figure 4, as compared to the original signal in 
Figure 3. 

When comparing to the random walk structure to white noise, it 
is obvious that the plot of it (Figure 5) does not result in going up and 
down as observed from the plot above. The white noise is generated by 
random with variance of 0.01 and behave as Gaussian.

In the experimental time series, there are local fluctuations with 
both large and small magnitudes. The way to analyse this local structural 
variation is to divide the time series into segments and compute the 
local RMS corresponding to each segment. The process is to divide the 
time series into non-overlapping segments of equal size.

ints
NN
s

 =  
 

where Ns is the number of segment in a scale of s; N is the total 

number of frames; s is the length of equal-sized non-overlapping 
segment; and, int( ) is a function to get the floor value after the division. 
The experimental time series have a total of 5400 frames. For example, 
when the length of equal-sized non-overlapping segment is set to 600, 
it results in nine segments with nine local RMS values.

In biomedical time series, slow varying trends exist. Then, 
detrending the data is necessary in order to quantify the invariant 
structure in scale and reveal the variations around these trends. A 
polynomial fitting is applied to extract the trend of each segment. 
Linear, quadratic, cubic, or even higher order polynomials can be used 
in this fitting procedure. The local fluctuation can then be computed 
for the residual variation when compared to the fitting.
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where F2(s, v) is the square of the RMS based on the local trend; s 

is the segment length; v is the segment 1, … , Ns ; Y [ (v - 1) s + i ] is 
the time series signal at particularly frame [ (v – 1) s + i ]; and yv is the 
fitting polynomial in segment v.

The application of detrending process on the experimental time 
series is to distinguish the local fluctuations of the spinal movement 

Figure 3: Angles on cervical spine at vertex M6.

Figure 4: Random walk like structure of the vertex M6 at cervical spine time series.
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Figure 5: Random walk structure of white noise.
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within each divided segment. The regression lines are the trend lines 
which represent the local tendency of spinal movement. Using the 
RMS computation, it measures how much the local fluctuations are 
different from the local tendency on the movement.

The time series have both the fast and slow changing fluctuation 
characteristics. The overall RMS is influenced by choice on the length 
of segment. Fast changing fluctuation is influenced by segment with 
shorter sample length, where slow changing fluctuation is influenced 
by segment with longer sample length. The scaling function of the 
overall RMS should then be computed for multiple segment sizes. It 
features both the fast and slow changing fluctuations that influence the 
structure of the time series.

( ) ( )2
2
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1 ,
sN

vS

F s F s v
N =

= ∑
where F2(s) is the standard detrended fluctuation function at time 

scale s; s is the segment length; Ns is the number of segment in a scale of 
s; F2(s, v) is the square of the RMS based on the local trend; and v is the 
segment 1, … , Ns . In this case, the time scale is chosen with segment 
length [16, 32, 64, 128, 256, 512, 1024]. These segment lengths are 
chosen for the sake of the computation of log function later on. There 
are a total of seven scales that compose the overall scaling function.

Different segment lengths within the experimental time series 
represent how long the period of time is under investigation. Shorter 
the period reveals more the local fluctuation in spinal movement. 
Whereas the longer the period, it tries to compare the fluctuation to 
a relatively more stabilized posture. When the period is long, there is 
an averaging effect that averages out the large and small magnitudes of 

fluctuations, which eventually results in a stabilized posture.

The fitting polynomial is usually chosen with order between one 
and three [15]. Figure 6 illustrates the difference between the three 
orders. A high value of order might results in overfitting for time 
series. The RMS values are compared in Table 2. By comparing the 
RMS values and avoiding overfitting, first order polynomial fitting is 
chosen. DFA identifies the fractal structure as the power law relation 
among the RMS computed for multiple scales. The power law relation 
is represented by the slope of the regression line. Figure 7 illustrates the 
log-log plot of the local fluctuations and overall RMS versus multiple 
scales.

Hurst exponent (H) is defined as the slope of the regression line. 
It indicates the fractal structure of time series in single dimension. The 
value of it measures the local fluctuation by how fast the overall RMS 
grows with increasing segment sample size. From Figure 8, the overall 
RMS is growing alongside with the increase in segment sample size. 
The growth is faster in the experimental time series when compared to 
the white noise.

According to the previous log-log fluctuation function plot versus 
time scale, the white noise has the Hurst exponent close to 0.5, which 

Figure 6: Computation of local fluctuations by various orders of polynomial fitting.

Order
1 33.23 45.31 31.55 127.42 24.79 55.32 48.46 29.05 37.50
2 29.04 12.81 31.47 96.05 24.65 26.23 20.73 28.38 18.99
3 11.09 11.31 18.29 39.32 24.60 25.88 14.13 18.69 15.78

Table 2: RMS values of segments by various orders of polynomial fitting.
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means the time series tends to be an independent or short-range 
dependent structure. The Hurst exponent has value of 1.2 in the 
experimental time series, which indicates a random walk like structure 
with apparent slow evolving fluctuations.

The overall RMS variation can be seen increasing when the segment 
scale increases. That comes to the definition of H. However, within 
a time series that consists of multifractal structure, local fluctuations 
exists in both extreme small and large magnitudes. Since this is not 
present as a structure of normal distribution, in the case of monofractal 
time series, second order statistical moment, for example, variance, 
cannot be used alone. Consequently, multiple order statistical moment 
should be considered. Thus, the q-th order RMS is applied in order to 
extract the various magnitudes of large and small fluctuations in the 
case of multifractal DFA.

1q qt q H= ⋅ −

where Fq(s) is the q-th order fluctuation function at time scale s; 
s is the segment length; Ns is the number of segment in a scale of s; 
F2(s, v) is the square of the RMS based on the local trend; and v is the 
segment 1, … , Ns . With the q-th order varies from negative to positive 
q, it weights the influence of segment from small to large magnitude of 
fluctuations.

By the introduction of q-th order RMS, q-th order Hurst exponent 

can then be defined. It represents the slopes (Hq) of regression lines for 
each q-th order RMS. Figure 8 below illustrates the plot based on the 
experimental time series.

The q-order Hurst exponent Hq above is one of the several scaling 
exponents to reveal the multifractal structure of time series. There are 
other parameters derived from Hq to illustrate other aspects of the 
multifractal structure. The Hq is first converted to the q-order mass 
exponent, tq and is calculated by:

1q qt q H= ⋅ −
 

In monofractal time series, the long range correlation is characterized 
by tq by linearly dependent q-th order with a single Hq. 

Thereafter, the mass exponent (tq) is converted to the q-th order 
singularity exponent, hq by the equation:

q q qh H q H= + ⋅
where hq is the singularity strength and is the tangent slop of tq. The 

plot against q is illustrated as below.

The q-th order singularity dimension (Dq) is then defined by:

1
1 1

q q
q

t q h
D

q q
⋅ −

≡ =
− −

Dq is the generalized multifractal dimensions that are used together 
with tq in some research [2]. In both cases, they depend on q. When q = 
0, D0 = -t0 = -1. The plot of Dq against q is illustrated as below.

When plotting the singularity dimension (Dq) against singularity 
exponent (hq), it reduces the multifractal spectrum into a small 
arc for the time series of monofractal and white noise. In the case 
of multifractal time series, it results a large arc where the difference 
between the maximum and minimum of hq are called the multifractal 
spectrum width, W. Figure 9

The multifractal spectrum width (W) is about zero if the time series 
are monofractal or white noise. In the case of multifractal time series, 
W increases with the spectrum of multifractal structure.

The autocorrelation exponent (γ) can be estimated [10] from the 
equation below:

Figure 9: Multifractal spectrum as illustrated by Dq against hq.

Figure 7: Power law relation among RMS for multiple scales.

Figure 8: Regression lines for different q-th order RMS.
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( )2 2 2h qγ = − =
where h(q = 2) is the singularity exponent when q-th order equals 

to 2. For uncorrelated or short-range correlated data, h(2) is expected 
to have a value 0.5, while a value greater than 0.5 is expected for long-
range correlations. Therefore, for uncorrelated data, γ has a value 1. 
The lower value, the more correlated is the data.

Results
To ascertain the multifractality with the time series, it can be 

determined by analysing the randomly shuffled series from the same 
data set. The process of shuffling is to put the data into random order. 
The aim is to destroy all correlations. Then, the long-range correlations 
within the multifractal structure disappear and then become non-
fractal scaling. On the other hand, the time series are said to origin 
based on probability density, if the Hq is about the same as before and 
after the shuffle. If multifractal structure is present in both original and 
shuffled time series, the multifractaility will show as a weaker one in 
the shuffled series.

After the shuffling process, the random walk plot goes from the 

scale of absolute maximum value about 2000 (Figure 5) down to about 
150 (Figure 10). 

In order to find out the multifractality of the time series, the 
original and shuffled time series are compared and analysed. The 
variation of the values of Hq vs q, tq vs q, hq vs q, and Dq vs q are 
illustrated in Figure 11-14. The y-axis are the values corresponding to 
various fractal parameters. The x-axis represents the change in the q-th 
order. The bolded lines shows the boundary between the minimum and 
maximum range of particular time series, that is, original and shuffled. 
This boundary is based on all trials obtained from experiment. The 
lines in between the boundaries are equally spaced showing the change 
of magnitude in range.

It is obvious that the plot of original data is largely different 
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Figure 10: Random walk plot of the shuffled time series.
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Figure 11: Plot of minimum to maximum range on Hq against q based on all trials of original (upper) and shuffled (lower) time series.
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Figure 12: Plot of minimum to maximum range on tq against q based on all trials of original (steeper) and shuffled (flatter) time series.

hqmin hqmax W γ

Original data 0.90 ± 0.11 1.59 ± 0.10 0.69 ± 0.13 0.00 ± 0.20
Shuffled data 0.46 ± 0.04 0.55 ± 0.04 0.09 ± 0.05 1.01 ± 0.06

Table 3: Values of singularity exponent, multifractal width and autocorrelation 
coefficient between original and shuffled data.
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Figure 13: Plot of minimum to maximum range on hq against q based on all trials of original (upper) and shuffled (lower) time series.
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Figure 14: Plot of minimum to maximum range on Dq against q based on all trials of original (lower) and shuffled (upper) time series.

from that of shuffled data. In the Hq plot, the shuffled data fall into 
the range of white noise while the original data represent the random 
walk structure. In the tq plot, it illustrates another variation between 
the original and shuffled time series. As the original time series exhibit 
multifractal structure, it results in a larger variation in tq values. In the 
hq plot, the shuffled time series shows a similar behaviour near the 0.5 
value while compared to the original time series. In the Dq plot, it shows 
the difference in the variation on the dimension between the original 
and shuffled time series.

Further in Table 3, it shows the values of hqmin , hqmax, W and 
γ compared between the original and shuffled data. Values of γ of the 
shuffled data is quite close to 1, while that of the original data has a 
lower value. It is as expected since the correlations are destroyed in 
the shuffling process. This result demonstrates the fact that the 
multifractality in spinal curvature is predominantly due to long-range 
correlations.

Discussion
One might think that the variations within a static posture are 

simply the representation of uncorrelated white noise added together 
on static and stationary series of data. It assumes that these large and 
small fluctuations are noise. Another possible explanation is that there 
exists finite range correlations in space. In other words, the current 
data are influenced by the near and most recent data. However, 
the fluctuations are random in a long run. Along a similar scope of 
thinking, the fluctuations in the spinal curvature consist of long-range 
correlations. In this case, the spinal curvature data at any instant are 
influenced by relatively remote intervals, and the influence would 
decay in a scale-free fashion.

The H illustrates the fractal structures with different characteristics 
between random walk like and noise like time series [15]. When H falls 

in the range between 0 and 1, the time series are said to have noise like 
structure. If it is above 1, the time series consist of a random walk like 
structure. When H is in the range between 0 and 0.5 or between 0.5 
and 1, the time series are said to have long-range dependent structure. 
In the case of range between 0.5 and 1, the time series have correlated 
structure, whereas the range between 0 and 0.5 is said to have anti-
correlated structure. In particular when H equals to about 0.5, the 
time series are said to have an independent or short-range dependent 
structure. The other particular cases to note are the Hurst exponent 
having values of 1.0 and 1.5, which correspond to a pink noise and 
Brown noise respectively. The pink noise separates between noises H 
< 1 that have more apparent fast evolving fluctuations, and random 
walks H > 1 that have more apparent slow evolving fluctuations.

It shows that there is dependency between the slopes Hq of the 
regression lines and the q-th order in the case of experimental time 
series. When compared the small and large segment sizes, there is 
difference between qRMS for positive and negative q-th order. Local 
fluctuation with either large or small magnitude can be distinguished by 
using small segment sizes. The scale on magnitude of local fluctuation 
can be revealed by positive and negative q-th values corresponding to 
large and small magnitude respectively. In the case of large segment 
sizes, they go across several large and small magnitude of fluctuations. 
Therefore, the local fluctuations are averaged out by each other, hence 
appears to have convergence with large segment sizes.

Within the experimental time series, the large and small magnitudes 

M1 response 30 to 50 ms latency
M2 response 50 to 80 ms latency

Triggered reaction 80 to 120 ms latency
Reaction-time response (M3) 120 to 180 ms latency

Table 4: Four types of responses.
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of fluctuations represent the large and small spinal movements along 
the time. From the perspective of motor control system in a static 
posture, the human body tries to stabilize itself in every moment. The 
spinal movement is said to be the responsive action initiating to balance 
the human body. Previous research has found that human body has 
different types of response systems which results in different response 
time. The reaction can be very quick on some types of responses, while 
some may need longer period of time. With regard to postural sway 
and generally for the whole body, there are four types of response 
pathway and results in different latency time, as shown in Table 4 and 
Figure 15 below [16].

Given the various types of responses affecting the postural sway, 
hence the spinal movement, the large and small movements might then 
be said as the scale depends on how much the human body tends to 
stabilize itself. The Hurst exponent is then defining the correlation of 
movement with respect to various order and time distance. Through 
the conversion from mass exponent into singularity strength, it defines 
the width of the multifractal spectrum, while the singularity dimension 
defines the height of it. Altogether, the multifractal spectrum defines 
the variations on the correlated spinal movement on postural sway. 
From the previous physiological findings on various types of responses, 
the variations on the large and small fluctuations might then be the 
resultant movement accumulated from the various responses due to 
different time latencies. Further speaking, that reveals how unstable the 
human body is at that particular moment. Larger the movement would 
mean more unstable that particular instant is.

From the comparison of plots in Figure 11-14 and the statistical 
summary in Table 2, it is obvious that the plot of original data is largely 
different from that of shuffled data. As compared to the plots from 
previous section in illustrating the difference between the multifractal 
data and monfractal / noise, the figures show the similar differences 
in plots. It suggests the fact that the origin of multifractality is due to 
both probability distribution and long-range correlation. It illustrates 
that the original data correspond to the multifractal data, and the 
shuffled data correspond to the noise. However, long-range correlation 

Figure 15: Plot on latency time based on various responses.

is dominant as suggested by the large reduction in multifractal width. 
Values of γ of the shuffled data is close to 1, while that of the original 
data has a lower value. It is as expected since the correlations are 
destroyed in the shuffling process. This result demonstrates the fact 
that the multifractality in spinal curvature is predominantly due to 
long-range correlations.

At this moment, the experimental time series is said to have 
revealed the fractal structure and indicates that it contains multifractal 
dimensions. One can possibly said that there are multiple strategies 
utilized by the motor control in response to unstable human body 
posture.

Conclusion
Detrended fluctuation analysis was applied to analyse the 

postural sway time series obtained from positional skin surface data 
captured by retroreflective optical markers. The postural sway exhibits 
random walk characteristics in the analysis. Further analysis based 
on multifractal detrended fluctuation analysis was also applied. It 
reveals the multifractal properties that are found in healthy subjects. 
The degree of multifractuality gives a hint on the multiple strategies in 
motor control. It brings the human body into a stable static posture by 
counterbalancing the subtle unstable sway as a result of physiological 
features, e.g., inspiration, inside the body, along the time dimension. 
However, the correlation between the multifractal characteristics 
revealed and the multiple strategies in motor control has to be further 
validated with more data sets.
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