
Volume 4 • Issue 4 • 1000153
J Drug Metab Toxicol
ISSN: 2157-7609 JDMT, an open access journal

Research Article Open Access

Zhang et al., J Drug Metab Toxicol 2013, 4:4 
DOI: 10.4172/2157-7609.1000153

Review Article Open Access

*Corresponding author: Honglian Shi, Ph.D. Associate Professor, Department
of Pharmacology and Toxicology, University of Kansas, School of Pharmacy, 1251 
Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS 66045, USA, Tel: 1-785-864-
6193; Fax: 1-785-864-5219; E-mail: hshi@ku.edu

Received April 01, 2013; Accepted June 27, 2013; Published June 29, 2013

Citation: Zhang Z, Yan J, Shi H (2013) Hyperglycemia as a Risk Factor of Ischemic 
Stroke. J Drug Metab Toxicol 4: 153. doi:10.4172/2157-7609.1000153

Copyright: © 2013 Zhang Z, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Diabetes is considered a major risk factor for stroke and is associated with worsened stroke outcomes. Here, 

we discuss and summarize the mechanisms that have been associated with the increased risk of stroke due to the 
hyperglycemia in diabetes mellitus. In diabetic stroke models, hyperglycemia exaggerates the following damaging 
processes: acidosis, accumulation of reactive oxygen species/reactive nitrogen, inflammation and mitochondrial 
dysfunction. Understanding the mechanism of diabetes acting as a stroke risk factor will definitely assist to reveal 
issues related to drug metabolism and toxicity in diabetic stroke. In addition, it is suggested that future studies may 
focus on the mechanisms mediating blood-brain barrier and astrocytes dysfunction under hyperglycemic stroke.
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Introduction
According to the World Health Organization, over 15 million 

people, equating to one in every 400 people, suffer a stroke worldwide 
a year [1]. Stroke is a leading cause of mortality after heart disease, and 
is responsible for about 9% of total deaths each year. It is also the single 
most common cause of long-term disability, with up to 40% of stroke 
patients not expected to recover independence [2]. A stroke can be due 
to ischemia caused by thrombosis or embolism or due to a hemorrhage. 
Ischemic stroke accounts for approximately 80-85% of all cases and 
is characterized by the disruption of cerebral blood flow and lack of 
oxygen to the affected area [3].

There is a substantial amount of clinical and experimental data 
showing the relationship between diabetes and stroke [4-6]. Diabetes 
is considered a risk factor particularly for ischemic stroke. Patients 
with diabetes are at 1.5–3 times the risk of stroke compared with 
the general population [7]. Diabetes also doubles the risk of stroke 
recurrence [8]. Furthermore, stroke outcomes are significantly worse 
among diabetic patients with increased mortality and neurological 
and functional disabilities [9]. Diabetes is a complex disease that 
extends beyond dysfunctional glucose regulation. People with diabetes 
generally have additional stroke risk factors, including hypertension, 
dyslipidemia, obesity, and atrial fibrillation. This review aims to 
discuss and summarize the mechanisms that have been associated 
with the increased risk of stroke due to the hyperglycemia in diabetes 
mellitus. According to a variety of findings in the literature, four main 
pathways, including acidosis, reactive oxygen species/reactive nitrogen 
species, inflammation, and mitochondrial dysfunction are involved in 
hyperglycemia-aggravated stroke.

Acidosis
Acidosis is considered to be a major contributor to neuronal 

damage in cerebral ischemia. Glucose is the sole energy substrate in the 
brain during both aerobic and anaerobic conditions. During anaerobic 
conditions such as in cerebral ischemia, glycolysis is the only process 
capable of producing significant amounts of ATP and lactate is the 
main product of glycolysis [10]. Hyperglycemia can worsen ischemic 
outcomes through aggravating acidosis in ischemic brain tissues. In 
1977, Myers and Yamaguchi first reported that glucose administrated 
before cerebral ischemia significantly exacerbated the post-ischemic 
outcome [11]. Siesjo’s lab conducted a series of experiments and 
reached the conclusion that infusion with glucose pre-ischemia led to 
the excessive amount of lactic acid. The accumulation of lactate resulted 

in a decrease of pH which is responsible for the excess damage in brains 
[12]. The exacerbation of post-ischemic brain injury is associated with 
enhancement of excitatory amino acid release, toxic metabolism of 
NO, and hydroxyl radical formation due to the ischemia-acidosis [13].

Furthermore, neuroprotection provided by inhibiting glycolysis 
supports that acidosis plays important role in brain injury caused 
by ischemia and hyperglycemia. For example, pretreatment with 
2-Deoxy-D-glucose (2DG), which can inhibit glycolysis, reduced 
mortality and morbidity in hyperglycemic rats under the condition of 
four-vessel occlusion [14]. 2DG also exerted a cytoprotective effect by 
preventing ischemia-induced hippocampal neuron damage in a gerbil 
transient forebrain ischemia model. By using 1H NMR and MRI, Wei 
et al. concluded that inhibition of glucose metabolism by 2DG had a 
beneficial effect in reducing brain injury and minimizing the lactate 
production in brain during middle cerebral artery occlusion (MCAO)-
reperfusion in hyperglycemia rats [15].

However, it is still arguable whether lactate accumulation is directly 
detrimental to the ischemia brain. It has been reported that in an in vitro 
ischemia model, the combination of high glucose and acidosis, but not 
acidosis per se or the combination of lactate and acidosis exacerbated 
damage [16]. On the other hand, increased glucose concentrations 
also exacerbated ischemic injury in brain slices even when pH was 
tightly controlled [17]. Moreover, there is evidence demonstrating 
that pretreatment with high glucose (20mM) before hypoxia and mild 
acidosis has some protective effects against ischemia [10].

Reactive Oxygen Species (ROS)
During stroke, excessive production of ROS can lead to breakdown 

of the BBB and focal lesions. ROS is a group of natural by-products 
of oxygen metabolism including hydroxyl radical, superoxide and 
hydrogen peroxide. ROS have many detrimental effects, such as lipid 
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peroxidation, protein denaturation, inactivation of enzymes, nucleic 
acid and DNA damage, release of Ca2+ from intracellular store, damage 
to the cytoskeletal structure and chemotaxis. All of these can lead to cell 
death and tissue destruction [18].

Several studies have demonstrated that hyperglycemia enhances 
the generation of ROSduring ischemia-reperfusion process [19,20]. 
Superoxide anion radical (O2

-.), the primary ROS, has been implicated 
in four major pathways leading to hyperglycemic complications: 
glucose-induced activation of protein kinase C (PKC) isoforms, 
increased formation of advanced glycation endproducts, increased 
glucose metabolism by aldose reductase pathway, and increased flux 
through the hexosamine pathway. Increased glycolysis results 
in higher NADH production and increased electron transfer through 
the electron transport chain in the mitochondrion. This results in the 
accumulation of a number of intermediates, which can transfer an 
electron to molecular oxygen to form O2

-. In addition, PKC-
dependent activation of NADPH oxidase is also a significant source of 
O2

-. in diabetes [21].

In diabetic rats, interestingly, MCAO for 2h increased NADPH 
oxidase subunit expression to much higher levels than ischemia-
reperfusion (I/R) alone [22]. It was reported that activation of Rac and 
subsequently of the gp91 phox containing NADPH oxidase promoted 
cerebral ROS formation, which led to disruption of blood brain barrier 
[23]. Indeed, inhibition of NADPH oxidase was neuroprotective after 
I/R [24]. It was also reported that post-ischemic O2

-. production and cell 
death were prevented or reduced by decreased glucose metabolism or 
inactivation of NADPH oxidase both in vitro and in vivo, identifying 
glucose as a requisite  electron donor for reperfusion-induced neuronal 
O2

-. production [25]. By using a novel electrochemical O2
-. sensor, 

Tsuruta et al. demonstrated that following reperfusion from forebrain 
ischemia, hyperglycemia enhanced superoxide generation and lipid 
peroxidation in the brain [26].

ROS might play a central role in blood brain barrier (BBB) 
dysfunction during ischemia-reperfusion. They can change the vascular 
tone and therefore influence cerebral blood flow. Their vascular effects 
also include increasing platelet aggregability and endothelial cell 
permeability, altering reactivity to vasodilators, and leading to the 
formation of focal lesions in endothelial cell membranes [18]. Kamada 
et al. reported that hyperglycemia increased oxidative stress and matrix 
metalloproteinases-9 (MMP-9) activity, exacerbating BBB dysfunction 
after I/R [27]. Other studies showed that ROS induced degradation of 
the basement membrane and enhanced tyrosine phosphorylation of 
tight junctions by activating MMP-1,2,9 and decreasing tissue inhibitor 
of MMP (TIMP-1 and 2). Therefore, ROS production led to increased 
permeability and monocyte infiltration [28].

Reactive Nitrogen Species (RNS)
Reactive nitrogen species has also been reported to contribute to 

the exacerbated damage in stroke with diabetes [29,30]. Two important 
reactive nitrogen species are nitric oxide (NO) and peroxynitrite 
(ONOO-). NO first known as endothelium-derived relaxing factor, 
which is induced during ischemia to increase vascular blood perfusion 
through increased expression of nitric oxide synthase (NOS) [31,32]. 
Since ischemia also increases the production of superoxide, the 
excessive nitric oxide forms a large amount of peroxynitrite [30]. 
Peroxynitrite induces damage in brain cells by directly causing protein 
S-nitrosylation, DNA fragmentation, and lipid peroxidation [33]. 
Moreover, peroxynitrite disrupts blood-brain barrier structure and 
increases the permeability [34]. Excessive peroxynitrite is also formed 

2

in diabetic vasculature and plays an important role in diabetes-induced 
vascular damage, both in experimental models and in humans [35,36]. 
High glucose levels result in increased nitric oxide and superoxide 
production, leading to peroxynitrite formation [37-39]. Given both 
ischemia and hyperglycemia induces the formation of peroxynitrite, 
the peroxynitrite level in diabetic stroke was much higher than 
non-diabetic stroke [30]. The immunoreactivity of nitrotyrosine, 
products of proteins oxidation by peroxynitrite, is more prominent in 
hyperglycemic stroke [29]. Reducing the peroxynitrite formation in 
hyperglycemic MCAO rat brains with NOS inhibitor, L-nitroarginine 
methyl ester (L-NAME), could decrease the infracted region to the 
levels observed in normoglycemic rats [13]. In this way, peroxynitrite 
may serve as one of the mediators for the severe brain damage in 
diabetic stroke.

Inflammation
Accumulating evidence suggests that cerebral ischemia elicits 

inflammation. During ischemia, the circulating cells including 
neutrophils, monocytes/macrophages and resident cells including 
microglia, astrocytes, and endothelial cells secrete inflammatory 
cytokines in the damaged areas [40]. Inflammatory cytokines such 
as tumor necrosis factor-alpha (TNFα) and interleukin-1beta (IL-
1β) cause cellular adhesion molecule expression on endothelial cells 
which increases polymorphonuclear (PMN) leukocytes and other 
inflammatory cells to adhere to the endothelial cells [41]. These 
cell-bound leukocytes then release MMPs, which participate in the 
breakdown of neurovascular matrix with consequent BBB disruption 
and edema. Furthermore, adhesion of leukocytes induces burst of 
production of ROS that contribute to secondary injury of BBB [42].

Many studies have provided evidence for a linkage between 
diabetes and inflammation. Nuclear factor kappa B (NF-κB) controls 
the induction of many inflammatory genes. During hyperglycemia, 
NF-κB is rapidly and dramatically activated in vascular cells and results 
in a subsequent increase in leukocytes adhesion and transcription of 
pro-inflammatory cytokines [6]. Glucose intake also causes an increase 
in early growth response-1 (Egr-1) that modulates the transcription of 
tissue factor (TF). Aljada et al. reported that glucose-induced increase 
in TF worsened ischemic damage by promoting coagulation in local 
capillaries [43]. Kim et al. found that chronic high glucose exposure 
of leukocytes increased their binding to human aortic endothelial cells 
[44]. Panes et al. observed diabetic hyperglycemia was associated with 
exaggerated leukocytes-endothelial cell adhesion and albumin leakage 
in response to I/R, setting a stage for an increased inflammatory 
response [45].

There are several reports suggesting that inflammatory 
responses might mediate hyperglycemia-aggravated brain damage 
induce by I/R. At post-translational levels, IL-1β and COX-2 
expressions were significantly higher following hyperglycemic 
ischemia than hyperglycemic shams [46]. By using myeloperoxidase 
immunohistochemistry, Lin et al. demonstrated that hyperglycemia 
triggered early, massive deposition of neutrophils in the post-ischemic 
brain, which might exacerbate injury [47]. This increased adhesion 
of leukocytes to the endothelial cells was largely due to the increased 
expression of cell adhesion molecules on endothelial cells. It was 
reported that the number of intercellular adhesion molecule 1 (ICAM-
1)-stained microvessels in the cortex was markedly increased at 3 days 
following I/R in diabetic, but not non-diabetic rats. Western blott 
showed that IL-1β was increased after 3 days of reperfusion in diabetic 
rats, suggesting that IL-1β might mediate ICAM-1 expression in 
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diabetic animals [48]. Tsuruta et al. demonstrated that hyperglycemia 
enhanced the expression of high-mobility group box 1 (HMGB1) in 
the brain cytoplasm. HMGB1 is reported to be released early from 
neurons following ischemic injury. It acts as an upstream inflammatory 
signal by inducing other pro-inflammatory cytokines expression [26]. 
Therefore, the elevation of HMGB1 during hyperglycemic ischemia 
may contribute to inflammatory response.

Mitochondrial Dysfunction
Another mechanism involving worsened outcomes of stroke 

is diabetes-induced mitochondrial dysfunction. Moreira et al. 
demonstrated that mitochondria isolated from the brains of STZ-
induced diabetic rats possessed a lower content of antioxidant 
defenses (CoQ) and higher oxidative stress than control [49]. The 
activities of mitochondrial enzymes, NADH dehydrogenase, succinate 
dehydrogenase and cytochrome oxidase, were decreased in diabetic 
rat brains [50]. Increased cytochrome C and active caspase-3 levels 
were also observed in cytosol of diabetic rat brain cells [50]. The 
impaired mitochondrial functions by diabetes make the neurons more 
vulnerable to stroke because ischemia itself also induces mitochondrial 
dysfunction through oxidative stress and glutamate release [51,52], 
increases mitochondrial ROS production, reduces respiratory complex 
activities, and causes the release of cytochrome C, all of which serve as 
important pathways for stroke-induced neuron death [53,54]. It has 
been reported that severe neuron death in diabetic rats after MCAO was 
associated with mitochondrial dysfunction and increased cytochrome 
C release [55].

Besides neuronal cells, diabetes was reported to impair 
mitochondrial functions in brain endothelial cells [56]. In diabetes, 
endothelial cells apoptosis and dysfunction was induced by increased 
mitochondrial ROS generation, impaired mitochondrial energy 
production, and release of apoptotic factors [57-60]. It was suggested 
that vasculatures needed to respond quickly to increased blood 
perfusion and attenuate the inflammatory reactions to protect brain 
from ischemic damage [61]. Normally, endothelial cells secrete 
vasodilator molecules to modulate vascular tone and increase blood 
supply during ischemia [61,62]. Nitric oxide, one of the endothelial 
vasodilators, can suppress inflammatory reactions by preventing 
leukocyte adhesion and reducing the expression of pro-inflammatory 
factors [63]. Therefore, both endothelial cell death and dysfunction 
limit their capacity of responding to ischemic damage. However, 
more research is needed to understand the mechanisms of diabetes-
induced mitochondrial dysfunction-mediated vascular dysfunction 
and exacerbated outcomes of stroke.

Other Related Factors
There are other mediators which are not tightly related to the 

above mechanisms but regulate brain damage during hyperglycemic 
ischemia. Hypoxia inducible faction 1 (HIF-1) is a key factor in 
mediating a series of genes that induce erythropoiesis, apoptosis, anti-
apoptosis, necrosis, and angiogenesis during ischemic brain injury. In 
tissues from diabetic animals and patients, HIF-1α functional activity 
decreased due to impaired HIF-1α binding to the coactivator p300. In 
setting of hypoxia, vascular endothelial cell growth factor (VEGF) is 
directly controlled by HIF-1. VEGF production in response to hypoxia 
was decreased in diabetic tissues [64]. In acute hyperglycemia-induced 
hemorrhagic transformation in a rat model of focal cerebral ischemia, 
the inhibition of HIF-1α and its downstream genes attenuated 
hemorrhagic transformation (extravasation of blood cellular elements), 
reduced cerebral infarction and ameliorated neurological deficits [65].

Rho and Rho-associated kinase (ROCK) play pivotal roles in the 
pathogenesis in stroke. ROCK activation is considered to increase the 
risk of cerebral ischemia and worsen the ischemic tissue outcome and 
functional recovery. Rho/ROCK activity was increased systemically as 
well as in cerebral arteries in both Type 1 and Type 2 diabetic animal 
models [66]. As a result, Rho is considered to be involved in the 
increased risk of stroke in diabetes.

Future Direction
Many studies suggest that hyperglycemia worsens the outcome 

and increases the risk of ischemia. The process is complex. The possible 
mechanisms are interdependent, interactive, and possibly modulate 
each other. However, it seems that ROS play a central role in all the 
possible mechanisms modulating increased brain damage. For example, 
acidosis can enhance formation of free radicals. Hyperglycemia-
induced oxidative stress and generation of ROS is also responsible for 
the activation of many inflammatory cytokines while the subsequent 
inflammation response will in turn generate large amount of ROS.

Though many studies focused on diabetes-induced vascular 
complications, there are few studies specifically focused on the 
mechanisms of BBB dysfunction under hyperglycemic stroke. Further 
research can be focused on the mechanism of BBB’s damage.

It is known that during the development of diabetes a number of 
biochemical and mechanical factors converge on the endothelium, 
resulting in endothelial dysfunction and vascular inflammation. This 
provides a basis for the vascular disease seen in diabetes [67]. It is also 
reported that during inflammation, HIF-1 levels were upregulated in 
neutrophils and macrophage [68]. However, there is no research on 
HIF-1’s effects on cerebral vascular inflammation in diabetes. Besides, 
HIF-1 plays an important role in modulating BBB permeability during 
stroke. The increasing permeability of BBB in stroke can provide more 
oxygen and nutrients to neuronal cells, however, it can also cause 
brain edema due to leakage of blood components [69]. We postulate 
that diabetic inflammation may regulate activity of HIF-1 in brain 
endothelial cells, leading to aggravation of brain injury in stroke.

Astrocytes are glial cells that envelop >99% of the BBB endothelium. 
Interaction of astrocytes with endothelial cells greatly enhances 
endothelial cell tight junctions and maintains BBB tightness and function 
[70]. Hypoxic exposure induced a higher level of VEGF releasing from 
astrocytes, which provides protective effect to neighboring cells [71]. 
High glucose can potentiate the increase of hemichannel activity 
and impairment of gap junctional communication among astrocytes 
under hypoxia. Thus, hyperglycemia resulted in astrocytes dysfunction 
and death [72]. It is highly possible that in hyperglycemic stroke, 
dysfunction of astrocytes is a major factor resulting in BBB damage.

So far numerous neuroprotective drugs have been investigated in 
animal models of ischemic stroke, many of which have achieved general 
success in preclinical studies across disparate animal models [73]. 
However, of the more than 100 neuroprotective agents that reached 
randomized clinical trials in focal ischemic stroke, none has proven 
unequivocally efficacious, despite success seen in preceding animal 
studies [74]. The translational disappointment of neuroprotective 
agents likely arise from a combination of factors including poor choice 
of the agents and time of administration, the molecular mechanism 
targeted, and difference between animal models and human 
pathological conditions [75].

In summary, hyperglycemia may increase stroke occurrence and 
exacerbate stroke outcome through modulating acidosis, free radical 
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generation, mediators of inflammation, mitochondrial function and 
other factors such as HIF-1 (Scheme 1). All the factors may have impact 
on drug metabolism and toxicity in diabetic stroke.
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