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Introduction
The reinforcing effects of a moderate consumption of alcohol are a

consequence of the enhancement or interactions between several
neurotransmitter systems, including dopamine (DA), gamma-
aminobutyric acid (GABA), opioid, serotonin, endocannabinoid, and
glutamate signaling [1-5]. Alcohol activates the dopaminergic
mesocorticolimbic pathway, by increasing the main inhibitory
neurotransmitter, GABA and by inhibiting the major excitatory
neurotransmitter, glutamate, particularly at the N-methyl-D-aspartate
(NMDA) glutamate receptor. However, chronic excessive alcohol
consumption leads to alcohol use disorder (AUD), involving various
forms of short- and long-term plasticity and neuroadaptations in brain
regions involved in the etiology of addiction that are responsible for
reward, inhibitory control, motivation, memory and learning [3].

AUD, according to The Diagnostic and Statistical Manual of Mental
Disorders (5th edition, DSM-5) for AUD criteria, reflects a single,
continuous disorder, including alcohol abuse and alcohol dependence
[6]. AUD is a chronic relapsing brain disease characterized by an
impaired ability to stop or control alcohol use despite adverse social,
occupational, or health consequences, affecting 15.1 million American
adults (according to the Results from the 2015 US National Survey on
Drug Use and Health). Recovery from alcohol dependence remains
challenging with high rates of relapse (80% within the first year)
despite available therapies [7]. Only a minority of social drinkers will
ever transit from a controlled drinking pattern to AUD and therefore
understanding the factors that underlie the vulnerability to alcohol
dependence has become central to alcohol research. Over the last two
decades, the currently approved pharmacotherapeutic interventions
developed for the treatment of AUD include naltrexone, acamprosate,
and disulfiram. Although these drugs reduce severity of withdrawal
symptoms during alcohol detoxification, reduce craving and support
abstinence [8-11], there are no available drugs that can successfully
antagonize the adverse effects of excessive drinking (for a recent review
on drug development), see [12].

To improve treatment outcome, understanding the neurobiological
mechanisms that mediate successful recovery and identifying suitable
biomarkers that may predict vulnerability, relapse and/or guide
therapeutic intervention is still a crucial issue in alcohol research.

Neuroimaging holds particular promise in that field because of its
capacity to link both molecular processes and in vivo observations. In
the last decades, neuroimaging studies have brought major insights
into the neural correlates of addiction and how these relate to addictive
behaviour [13-15]. In particular positron emission tomography (PET)
has been an effective noninvasive imaging technique in vivo that can
directly probe molecular underpinning in the brain by its unique
ability to visualize and quantify neurochemical processes involved in
addiction with high selectivity and specificity. The use of PET to study
the effects of acute and chronic alcohol on the human brain has
enhanced our understanding of the mechanisms underlying the
rewarding effects of alcohol, the neuroadaptations from chronic
exposure that contribute to tolerance and withdrawal, and the changes
in fronto-striatal-limbic circuits that lead to loss of control and
enhanced motivation to drink that characterize AUD. In the last
decades, PET imaging has been extensively used to investigate various
key components of the DAergic synapse, both presynaptically
including DA transporters (DAT) (with [11C]MP or [11C]PE2I as
radioligands) and DA synthesis capacity (with [18F]DOPA), and
postsynaptically including DA D2/3 receptors (with [11C]raclopride,
[18F]fallypride, or [11C]PHNO). Nevertheless, an interplay of different
neurotransmitter systems has been implicated in the development and
maintenance of alcohol dependence.

In this short narrative review we focus on human PET
neuroimaging studies on the effects of acute and chronic alcohol
consumption on the most prominent neurotransmitter systems,
including DA, GABA, glutamate, endocannabinoid and opioid
signaling.

PET and the Acute Effects of Alcohol on
Neurotransmitter Systems

Converging preclinical evidence has shown that acute alcohol
administration selectively increases DA release in the shell of the
nucleus accumbens (NAc) [16,17]. Thus far, alcohol-induced changes
in DA levels and their link to rewarding responses have been
investigated in humans almost exclusively with the DA D2/3 receptor
antagonist [11C]raclopride, allowing striatal areas assessment only, and
yielded inconsistent findings [18-22]. For example, Aalto et al. reported
a significant reduction in [11C]raclopride binding potential in the
ventral striatum/NAc after an intravenous alcohol administration [18]
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(Figure 1A), whereas Yoder et al. did not find any DA increases among
social drinkers [21].

Likewise, a recent PET study using [11C]-(+)-PHNO, a novel DA D3
receptor-preferring radioligand, did not find any striatal DA release
upon alcohol administration in social drinkers [23]. These
inconsistencies are likely to reflect differences in both alcohol route of
administration, type of radioligand, in approaches to quantification
and differences in histories of alcohol consumption among subjects.
Recently, using the high-affinity DA D2/3 receptor ligand

[18F]fallypride, a couple of clinical studies explored the effects of acute
alcohol on DA levels in extrastriatal brain regions, such as the
prefrontal cortex (PFC) [24,25]. In the study performed by Leurquin-
Sterk et al., alcohol induced significant [18F]fallypride displacement
(hence DA release) in the PFC, temporal and parietal cortices, and
thalamus (Figure 1B), and DA release in the anterior cingulate cortex
and orbitofrontal and ventromedial PFCs were correlated with
subjective 'liking' and 'wanting' effects [24].

Figure 1: A) Parametric map of T value of the analysis testing the decrease in [11C]raclopride binding potential during alcohol intervention in
comparison to the baseline (Figure adapted from Aalto et al.). B) Average parametric t map showing alcohol-induced DA release using
[18F]fallypride in relation to subjective “wanting” effects (Figure adapted from [24]).

Besides the dopaminergic signaling, the reinforcing effects of
alcohol are in part mediated by endogenous opioids interacting with
the µ-opioid receptor (MOR) agonist which binds β-endorphins and
enkephalins which, in turn, increases DA in NAc [26]. Preclinical
studies suggest that release of endogenous opioids by ethanol act to
promote further consumption [27,28]. A human [11C]carfentanil PET
study showed that drinking alcohol significantly increased opioid
release in the NAc and orbitofrontal cortex, areas of the brain
implicated in reward valuation [29]. Moreover, changes in

orbitofrontal cortex [11C]carfentanil binding correlated significantly
with the subjective high in heavy drinkers [29].

The type 1 cannabinoid receptor (CB1R) and its endogenous
agonists also play an important role in the pharmacological action of
alcohol [30,31]. A [18F]MK-9470 PET study found that controlled
acute alcohol administration resulted in a significant increased CB1R
availability in healthy social drinkers (Figure 2A), which was
modulated by routine alcohol consumption (Figure 2B) [31].

Figure 2 : A) Statistical parametric mapping results showing increased CB1R availability after acute alcohol in social drinkers compared with
the baseline condition. B) Negative correlation between the percentage change of the global CB1R availability between alcohol and baseline
condition in relation to the number of alcoholic consumptions per week. (Figure adapted from [32]).

PET and the Chronic Effects of Alcohol on
Neurotransmitter Systems

Although preclinical models of AUD reveal neuroadaptation in
multiple neurotransmitter systems, nowadays the majority of the PET
neuroimaging studies investigating neurotransmitter changes in AUD
has been focused on the DAergic system [14]. An overview of

hypothesized longitudinal changes at the GABA, glutamate, and DA
receptor system function during alcohol dependence and withdrawal
has been summarized in detail in other reviews [2,3,33].

Overall, PET studies found downregulated DAT during early
alcohol withdrawal [34], but with prolonged withdrawal, there were no
differences in DATs between alcohol-dependent patients and controls
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[35-37]. Meanwhile, elevated striatal DAT availability in non-smoking
alcohol-dependent participants was observed compared to both
healthy controls and smoking alcohol-dependent participants at 1 to 5
days abstinence, further highlighting an influence of comorbid tobacco
smoking on DA function during alcohol withdrawal [38].

PET studies measuring DA synthesis capacity with the PET
radioligand [18F]DOPA in detoxified alcoholics have reported
inconsistent findings [39-41], mainly due in part to small sample sizes
limiting the power to identify relevant differences among alcoholics
and controls. On the other hand, there is a vast body of literature
reporting a consistent reduction in striatal DA D2/3 receptor
availability in alcoholics [39,42-46], compared to controls (Figure 3).
This reduction in DA D2/3 receptor availability has also been found in
extrastriatal regions such as thalamus, hippocampus, and insular and
temporal cortex in recently abstinent alcohol-dependent patients
[47,48].

Figure 3 : Comparison of baseline mean V3´´ maps (calculates as
activity (voxel) / mean activity (cerebellum)-1) within alcohol-
dependent patients (ALC) (top row) and control subjects (CON)
(bottom row), as a quantification of DA D2/3 receptor availability.
(Figure adapted from [44]).

Until now, only two longitudinal PET DA studies evaluated the
effects of detoxification on the recovery of striatal D2/D3R. Volkow et
al. showed persistent reductions in striatal D2/3 receptors after 4
months of abstinence [49,50] while Rominger et al. reported significant
D2/3 receptors increases in the subgroup of alcohol-dependent
subjects who remained abstinent for 1 year [47]. Further DA PET
studies are needed to determine whether DA D2/3 receptor can
recover as a function of individual alcohol detoxification trajectories
and/or whether it could be predict any type of clinical outcome. Lastly,
similarly to cocaine and methamphetamine addiction, alcohol-
dependent subjects reported a strong blunted DA response to
amphetamine in the NAc [44,46]. Insofar as DA in the NAc is thought
to serve as a behavioral switching device, this deficit in DA release may
represent an impaired ability of alcohol-dependent individuals to shift
from the compulsive, maladaptive patterns of behavior that are
indicative of addiction.

Other PET studies focusing on the effects of alcohol effects on
neurotransmitter systems have found that chronic alcohol
consumption alters the activities of GABA, the brain’s principal
inhibitory neurotransmitter. The majority of the PET studies
measuring GABA-benzodiazepine receptor availability in AUD using
the PET radiotracers [11C]flumazenil, [123I]iomazenil and

[11C]Ro154513, have found a reduced signaling through GABAA
receptors in several cortical regions, cerebellum, thalamus,
hippocampus and NAc of alcohol-dependent subjects [51-55].

PET studies investigating the opioid system in AUD have found
increased MOR availability in abstinent alcohol-dependent subjects
using the MOR ligand [11C]carfentanil [26,39]. In a recent combined
MOR PET and post-mortem brain analysis, a significant interaction of
opioid receptor µ 1 OPRM1 genotype, [11C]carfentanil binding in the
ventral striatum, and relapse risk was found [56].

The EC system has been shown to modulate ethanol-motivated
behavior, and it has also been demonstrated that
chronic ethanol exposure can have potentially long-lasting effects on
the EC system [30,31]. In the last decades, several PET radioligands
have been developed to visualize the CB1R [57,58]. Most small-animal
studies have indicated that chronic ethanol treatment caused decreased
CB1R protein expression and G protein coupling [31,59-63]. Brain PET
studies in alcohol-dependent subjects, have reported decreases in
CB1R binding [32,64], compared to controls, that persists during
abstinence for at least one month (Figure 4).

Figure 4 : CB1R decreases in alcoholic patients (ALC) after chronic
heavy drinking (Chronic ALC) and abstinence (Abstinence ALC),
compared to control condition (Figure adapted from[32]).

According to the glutamate homeostasis hypothesis of addiction
proposed by Kalivas [65,66], impaired metabotropic glutamate subtype
5 receptor (mGluR5)-dependent signaling is hypothesized to represent
a key component for compulsive drug-seeking that drives AUD. The
role of mGluR5 signaling on alcohol addiction has been recently
reviewed [67]. In clinical setting, besides regional mGluR5 decreases in
both nicotine and cocaine dependent subjects [68,69], mGluR5 PET
has recently showed a lower limbic mGluR5 availability in mainly
limbic regions of recently abstinent alcohol-dependent subjects [24]
(Figure 5). However, after at least a 25-day abstinence, mGluR5 levels
have reported a reversible neuroadaptation [70,71].

Future Pathways for PET Neuroimaging in Alcoholism
PET neuroimaging allows us to visualize and quantify in living

human beings what a binge drinking episode might cause to the brain
and what damage results from chronic excessive alcohol consumption
on different neurotransmitter systems. Currently, PET brain imaging
has been mainly focused on changes in DAergic system, and to a lesser
extent also the glutamatergic, GABA, opioid and EC system. In
summary, consistent long-lasting DAergic and EC signaling changes, a
reversible decreased metabotropic glutamatergic receptor system and
reduced GABA signaling has been found in alcohol-dependent
subjects. However, the full potential of this imaging technique has not
yet been realized. Indeed, instead of descriptive pathophysiological
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brain studies, PET could be used to a greater extent if neurotransmitter
changes could predict vulnerability and clinical outcome, and they
could be used to evaluate proof-of-principle targets or novel
pharmacological therapeutics. As an ultimate goal, molecular imaging
measures might be used as clinical biomarkers for prognosis, and for
supporting and guiding treatment interventions.

Figure 5: Lower mGluR5 availability ([18F]FPEB VT) in recently
abstinent alcohol-dependent subjects (ALC) than in healthy
controls (HC). (Figure adapted from [72]).
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