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INTRODUCTION

Dyes are widely used in the dying process of textiles, papermaking, 
pharmaceuticals, food, and other fields [1,2]. A large amount of 
the wastewater containing organics, which are often toxic, stable 
in aqueous solution, and difficult for natural degradation, are 
inevitably produced during the process of dyeing [3,4]. Methylene 
Blue (MB) is a cationic dye widely used for testing of waste water 
treatment. At the same time, MB has a huge negative impact on the 
human body, such as meningitis, neuronal cell apoptosis, nausea, 
and vomiting [5]. Many methods have already been applied in 
solving wastewater, such as membrane filtration, flocculation, 
co-precipitation, chemical redox, and biological treatment [6-
9]. However, these methods have some restricting factors in 

their application, such as high cost, unfavorable recycling, and 
secondary pollution. 

Adsorption is a common method to sequester organic dyes from 
wastewater [10]. Compared with other methods, the adsorption 
shows low cost, high efficiency, easy recovery, and high selectivity 
[11]. Some traditional adsorbents have been widely discussed. 
Mahdi Hasanzadeh developed an activated carbon/metal-
organic framework composite material to obtain extremely 
high adsorption capacity in the removal of anionic dyes, and 
the adsorption process performs the Langmuir model, which 
indicates chemical adsorption [12]. Lamia Dali Youcef studied 
the performance of a zeolite in adsorbing cationic dyes. Studies 
have shown that an excellent dye removal rate can be obtained at 
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a lower dye concentration [13]. Zhihui Huang studied modified 
bentonite to adsorb Rhodamine B and Acid Red 1. It was 
found that the maximum adsorption capacity of Rhodamine B 
and Acid Red 1 were 173.5 mg/g and 157.4 mg/g, respectively 
[14]. Although these traditional adsorbents are popular, they 
have poor regeneration ability and are toxic to many organisms. 
Meanwhile, these adsorbents, based on chemical adsorption 
during the adsorption process, are hardly reused [15]. Based on the 
requirements of environment-friendly adsorption, biosorbents 
have received extensive attention. Among them, cellulose and 
Polyvinyl Alcohol (PVA) are widely used as biosorbents due to 
outstanding characteristics such as low cost, solubility, good 
mechanical strength, stability, biocompatibility, and non-toxicity 
[16]. Expanded Graphite (EG) is a common carbon material. 
Compared with graphene, carbon nanotube and graphene oxide 
have many advantages, such as huge porosity, excellent chemical 
properties, thermal stability and good mechanical stability, which 
have significant superiority in adsorption [17,18]. 

As porous materials have been developed rapidly in recent 
decades, related research is focused on aerogels and hydrogels. 3D 
network materials with open porous and microporous structures 
show great potential in wastewater adsorption [19]. Sheng Tang 
developed an amphiphilic graphene aerogel for the adsorption 
of dyes and found the best effect on the adsorption of malachite 
green [20]. Shu Wang prepared a silk fibroin-modified graphene 
oxide-based aerogel, which showed excellent adsorption capacity 
in MB [21]. However, some problems of studied porous materials 
include expensive raw materials, costly manufacturing, and 
complicated drying process [22,23]. 

Foam materials also have an open porous structure, convenient 
preparation process, and extremely low production cost for 
wider use [24]. The trimethylammonium grafted cellulose foam 
prepared by Chuting Feng can selectively adsorb anionic dyes and 
obtain better adsorption performance [25]. Hong Ma developed 
flexible cellulose foam to obtain high adsorption capacity (116 
mg/g) [26].

In this work, we prepared the cellulose/PVA/EG 3D porous 
foam by developing a simple and feasible strategy for the removal 
of methylene blue. After simple foaming and solidification, the 
prepared foam has a stable 3D and open porous structure, which 
can efficiently and cyclically remove methylene blue and has 
broad application in dye wastewater treatment.

METHODOLOGY

Materials

Microcrystalline Cellulose (MCC, 98%, 20 μm), PVA (molecular 
weight 72000), Sodium Dodecyl Sulfate (SDS, 99%), Sodium 
Hydroxide (NaOH), Polyethylene Glycol 4000 (PEG), MB, and 
Ethanol were supplied by Sigma Aldrich (ST. Louis, USA). EG 
was provided by the Technical University of Liberec. All the 
solutions used distilled water with 18 MΩ cm electrical resistivity.

Preparation of cellulose solution in PEG + NaOH system

The procedure of cellulose solution was carried out according to 
the method reported by Yan and Cernencu [27,28]. At first, 2 wt% 
PEG and 9 wt% NaOH were dissolved in 40 ml of distilled water. 
Then, 2 wt% MCC was added to this solution, continuously 
stirring for 3 hours. Finally, the suspension was frozen at –20°C 
for 12 hours and then thawed at room temperature. This step was 
repeated three times.

Preparation of 3D porous foam material

At first, 10 wt% PVA and 5 wt% EG were added into the 
suspension with stirring at 600 rpm and 85°C for 3 hours. Then 
2 wt% SDS was added with stirring for 30 minutes to emulsify 
and foam the suspension. At last, the suspension was frozen for 
solidification at –20°C for 72 hours. After thawing, the porous 
foam material was obtained (Figure 1). Herein, samples were 
named according to the composition of the added chemicals, 
such as PVA+SDS (PS), MCC+PVA (CP), MCC+PVA+SDS 
(CPS), and MCC+PVA+SDS+EG (CPSG).

Figure 1: The preparation process of porous foam material.
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Morphology test of different composites

The surface morphology of porous foam material was observed 
by Scanning Electron Microscope (SEM) (VEGA TESCAN Inc., 
USA) [29].

Adsorption experiment of MB

For the adsorption experiment, MB was chosen as a model dye 
to check the adsorption property of porous foam materials. In 
short, different concentration solutions of MB were prepared 
by dilution for construction of the calibration curve (Figure 2). 
Then, we put 0.06 g sample into 30 ml different concentration 
solution of MB (25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 200 
mg/L, 250 mg/L). UV-spectrophotometer (7415, Cole-Parmer 
Ltd.) was utilized to determine the concentration of residual MB 
dye in the solution after adsorption at 665 nm wavelength. The 
dye removal efficiency and adsorption capacity were calculated 
according to equation 1 and 2 [30].

   ( )   % 100% ..........(1)−
= ×o t

o

c cRemoval percentage R
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   ( ) ( )  100%..........(2)
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Where oc , tc  (mg/L) are the concentrations of MB at zero time 
and time t, respectively.  v  is the MB solution volume (L) and  
m (g) is the mass of the sample.

Recycling test

The sample containing adsorbed MB was placed into absolute 
ethanol solution for 72 hours at room temperature. Then, the 
adsorption experiment was repeated after most MB was desorbed 
from samples.

RESULTS AND DISCUSSION

Surface morphology of different structures

As we can see from Figure 3, it can be clearly observed that CPS 
and CPSG have a 3D porous structure. In contrast, PS only forms 
a 2D film, and CP forms a 3D structure without porous structure. 
At first, as a water-soluble, soft, and long-chain polymer, PVA has 
widely been applied in the preparation of permeable membrane, 
aerogel, and hydrogel due to its excellent film-forming and 
excellent chemical properties [31]. However, even if we added any 
foaming agent in this research, there was still no porous structure. 

This may be because we utilized freezing instead of freeze-drying 
in this experiment. So, in the subsequent thaw process, its 3D 
structure collapsed. In addition, bubbles generated by the foaming 
agent could not form porous structure in the final solidification 
due to the collapse of the overall structure.

In contrast to CP, CPS and CPSG formed a good 3D structure. 
The main reason is the addition of cellulose. It is well-known 
that cellulose consists of a well-organized crystallinity region that 
contributes to the strength, high stiffness, and amorphous region, 
which makes fiber more flexible [32,33]. Cellulose is added to 
the system as reinforcing component filler, forming a uniform 
network and stable 3D structure in the mixed solution with PVA 
through hydrogen bonding and supramolecular interaction. Song 
prepared a cellulose-PVA hydrogel material. They found that 
after adding cellulose, the mechanical strength of the composite 
material was significantly enhanced, and the structural stability of 
the material was improved [34]. 

Foam molding technology has developed quickly in the past few 
decades. As an anionic surfactant, SDS has been widely used to 
foam cellulosic suspensions [35-37]. Lee successfully prepared 
porous 3D cellulose foam using 3D printing and foaming 
technology, with good mechanical properties and interesting 
structure [38]. In this research, cellulose/PVA/EG 3D porous 
foam was physically cross-linked. Then the PEG and SDS were 
washed away in the subsequent washing process (Figure 4) and 

Figure 2: Calibration curve of MB solution.

Figure 3: Surface morphology. (a: PS; b: CP; c: CPS; d: CPSG; e: 
front side of CPSG; f: cross-section of CPSG; g: schematic diagram).
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Influence of different factors on adsorption performance

Adsorption is a surface phenomenon in which the solid surface 
of the adsorbent is bonded by adsorptive molecules (gas/liquid/
solid phase). The whole adsorption process is mainly divided into 
three steps: (1) Film diffusion is also called external diffusion, 
in which the adsorbate is transported to the external surface of 
the adsorbent in the space; (2) Intraparticle Diffusion (IPD), 
means that the adsorbate diffuses from the external surface of 
the adsorbent into the pores; (3) Surface reaction, means that 
the adsorbate is adsorbed on the inner surface of the adsorbent 
[43,44]. In this case, the mass transfer effect needs to be 
considered. In the adsorption process, the first two steps are mass 
transfer, and the last step is the reaction step. The adsorption 
efficiency is determined by the adsorption resistance. Any step 
of the adsorption resistance in the above steps will have a huge 
impact on the total adsorption efficiency [45].

At first, transmission resistance is affected by many factors, 
including the type and structure of the adsorbent. We investigated 
the adsorption performance of different samples at relatively 
lower dye concentrations (25 mg/L). As seen in Figure 5A, CPSG 
has the highest removal rate of dye (96.21%) and adsorption 
capacity (12.03 mg/g) compared to CP (16.51%, 2.06 mg/g) 
and CPS (65.02%, 8.13 mg/g). This is mainly due to the porous 
structure of CPSG, and MB molecules easily diffuse from the 
external surface to the internal surface. Moreover, EG provides 
more active sites and significantly improves the adsorption 
performance.

In addition, the effect of different initial dye concentrations 
(25 mg/L–250 mg/L) on the adsorption performance was 
investigated. It can be seen from Figure 5B that as the initial 
dye concentration increases, the adsorption capacity increases 
significantly from 12.03 mg/g to 110.81 mg/g, which is 
possibly caused by concentration polarization. At higher dye 
concentration, concentration polarization accelerates the 
diffusion rate of MB molecules on the surface of the adsorbent, 
and more dye molecules are adsorbed [46].

The pH value is also one of the important factors influencing 
adsorption performance. The research results show that the 
removal rate and adsorption capacity of MB increases with 
the increase of pH value, which is consistent with the relative 
researches (Figure 5C) [30,46,47]. At low pH, due to protonation, 
the positive charge on the surface of the material increases, which 
causes repulsion between cationic dyes and positively composite, 
resulting in low adsorption efficiency [48]. 

Moreover, the influence of different temperatures on the 
adsorption performance was investigated. It can be seen from 
Figure 5D that as the temperature increases the dye removal rate 
and adsorption capacity of the adsorbent decrease significantly, 
indicating that temperature is also an important influencing 
factor of the adsorption performance. As the temperature 
increases, the thermal mobility of dye molecules increases, which 
may accelerate their transport to the surface of the adsorbent. 
However, at the same time, it may also accelerate the desorption 
of dye molecules from the surface of the adsorbent [49].

initially utilized SDS as a foaming agent and surfactant to prepare 
foam material. Compared with CPS and CPSG, SDS is the key 
to porous forming. Foam is a complex gas/liquid dispersion 
system. In the effect of high shear force, massive bubbles are 
generated and accumulated in a trace amount of surfactant 
solution to form liquid foam slurry [39]. As shown in Figure 3, 
those irregular bubbles fix the cellulose and EG particles between 
the gas and liquid phases [40]. In addition, the liquid foam can 
be prepared by rearranging SDS molecules at the surface of air 
bubbles entrapped in a suspension [41]. The hydrophobic area 
of SDS extends out of the bubble surface, and the hydrophilic 
area combines with water to form a surfactant layer. The negative 
charge of cellulose and EG caused electrostatic repulsion with 
SDS. So, they are repelled between the bubbles to form a water 
layer containing cellulose and EG. Although it has the same 
charge as cellulose and EG, they still adsorb to hydrophobic sites 
to form aggregates as SDS is a strong surfactant [42].

Figure 4: Results of FTIR and Raman test. (A: FTIR test; B: Raman 
test for PEG; C: Raman test for CPSG).
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However, some research has reported that the kinetic data near 
equilibrium may have serious deviations if a Pseudo-2nd order 
kinetic model is applied [52]. Therefore, other models are needed 
for further study on the adsorption rate.

The IPD model is used to determine the rate-limiting steps of 
the entire adsorption process. As shown in Figure 6 and Table 
2, 2  1 3− − −> >stage si i tag eie stagk k k  indicates changes in diffusion rate, 
revealing that the adsorption process mainly follows three steps: 
(1) The first stage is the diffusion of MB molecules from the body 
to the external surface of the adsorbent; (2) Then, MB molecules 
diffuse through the pores and diffuse into the internal surface; 
(3) The last stage is near equilibrium stage. In this stage, the 
balance of adsorption and desorption is reached.

Adsorption isotherm of adsorbent in MB

The adsorption isotherm is to study the relationship between 
the concentration of adsorbate in the liquid phase and the 
adsorbent at a specific temperature at equilibrium. Modeling the 
equilibrium adsorption data can help us study the adsorption 
mechanism, the interaction between the adsorbate and the 
adsorbent, the maximum adsorption capacity, and so on [53]. In 
this study, several models were selected to analyze the adsorption 
mechanism (Table 3).

Adsorption kinetic of adsorbent in MB

There are two possible interactions between adsorbate and 
adsorbent, namely chemical and physical interaction. Among 
them, chemical interaction is also called chemical adsorption 
in that there are chemical or covalent bonds between adsorbate 
and adsorbent by sharing or transferring electrons. On the other 
hand, the main force that dominates physical adsorption is van 
der Waals forces mainly [50]. 

It is very important to figure out whether an adsorption 
phenomenon is a chemical or physical adsorption, which can 
help us understand its adsorption mechanism. Adsorption 
kinetics reveals the relationship between adsorption efficiency 
and time and is a good tool to analyze the adsorption rate. This 
research chooses the three most commonly used kinetic models 
to study the adsorption rate, as shown in Table 1.

Batch adsorption experiments were performed with different 
concentrations of dye solutions at 25°C, and the samples were 
tested every 30 minutes. The adsorption kinetics curves and 
parameters are shown in Figure 6 and Table 2. It is obvious that 
the Pseudo-2nd order is more suitable than the Pseudo-1st order. 
It reveals that the adsorption process depends on the number of 
active sites [51]. 

Figure 5: (A) The influence of CP, CPS, and CPSG on adsorption, (B) The effect of different initial concentrations of dyes on adsorption, (C) 
The influence of different pH values on adsorption, (D) The effect of temperature on adsorption.
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Table 1: Adsorption kinetic model used in this study.

Kinetic models Linearized form

Pseudo-1st order ( ) 1ln ln− = −e t eq q q k t

Pseudo-2nd order 2
2

1
= +

t e e

t t
q k q q

IPD model
0.5= +t iq k t C

Note: Where eq   (mg/g) and  tq  (mg/g) are the adsorption capacity at equilibrium and  time, respectively.  tq  (h) is the time,  tq , tq  and  tq  are 
Pseudo-1st order, Pseudo-2nd order, and IPD rate constant, respectively.  C  is a constant related to the thickness of the boundary layer.

Figure 6: Adsorption kinetic models. A: Pseudo-1st order; B: Pseudo-2nd order; C: IPD model.
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Table 2: Parameters of adsorption kinetic.

Models Parameters 25 mg/L 50 mg/L 100 mg/L 150 mg/L 200 mg/L 250 mg/L

Pseudo-1st order

qe,exp (mg/L) 12.03 24.91 48.94 73.49 90.9 110.81
qe,cal (mg/L) 4.49 5.55 12.4 15.92 42.84 98.5

k1 (min-1) -0.8963 -0.8271 -0.4998 -0.4887 -0.5565 -1.083
R2 0.902 0.741 0.688 0.629 0.888 0.944

Pseudo-2nd order

qe,exp (mg/L) 12.03 24.91 48.94 73.49 90.9 110.81
qe,cal (mg/L) 12.56 25.06 48.19 72.2 92.17 123.03

k2(min-1) 0.424 0.613 0.221 0.2014 0.037 0.0161
R2 0.999 0.999 0.999 0.999 0.998 0.998

IPD 1 Stage
ki 1.86 3.64 10.07 13.97 17 63.95
C 20.77 6.84 33.72 53.03 54.24 16.26
R2 0.998 0.976 0.872 0.911 0.768 0.992

IPD 2 Stage
ki 0.85 1.16 3.53 3.26 14.08 25.81
C 22.95 9.76 40.59 64.94 57.4 60.64
R2 0.715 0.939 0.915 0.912 0.797 0.649

IPD 3 Stage

ki 0.72 1.02 1.36 2.61 13.33 8.17
C 23.01 9.89 44.31 65.49 58.29 93.19

R2 0.986 0.882 0.984 0.878 0.941 0.999

Table 3: Adsorption isotherm model used in this study.

Isotherm models Linearized form

Langmuir
1e e

e m m

C C
q bq q

= +

Freundlich
1ln ln lne f eq k C
n

= −

Temkin 1 1ln lne eq B A B C= +

Note: Where mq  is the maximum adsorption capacity, eC  (mg/L) is the equilibrium concentration of dye solution, b  is the Langmuir constant, fk  
and n  are Freundlich constants, 1B  (Jmol-1) and A  (L/mg) are the Temkin constant and the equilibrium bond constant.

     
 ....................(4)= e

c
e

qK
c

                              

                              

     ...................ln .(5)∆ ∆
= −c

S HK
R T

Where ∆G (kJ/mol) is Gibbs free energy, R and T are gas constant 
(8.314 J/mol/K) and absolute temperature (K), Kc (L/mol) is the 
equilibrium constant of adsorption, ∆S and ∆H are entropy and 
enthalpy, respectively.

As shown in Table 5, the free energy ∆G is negative, indicating 
that the porous material adsorbs MB as a spontaneous process. 
As the temperature increases, the absolute value of ∆G decreases, 
indicating that the spontaneous tendency of adsorption decreases, 
which is not conducive to adsorption? The negative value of the 
adsorption enthalpy ∆H reveals that the adsorption process is 
an exothermic reaction. The negative value of the adsorption 
entropy ∆S indicates that the adsorption reduces the degree of 
freedom of the adsorbate molecules.

Reusability of the adsorbent

For industrial applications, the regeneration and recycling of 
adsorbents are very important. In this study, the adsorbent after 
adsorption was immersed in an ethanol solution to regenerate 
it. The experimental result shows that after five cycles, the MB 
dye removal rate of the composite material drops from 97.98% 

It can be seen from Figure 7 and Table 4 that the Freundlich 
model (R2=0.954, 0.991, 0.979) is more suitable than Langmuir 
(R2=0.983, 0.863, 0.771) and Temkin model (R2=0.935, 0.871, 
0.919) for describing the adsorption of MB molecules on cellulose/
PVA/EG porous materials. It reveals the multilayer adsorption of 
MB on heterogeneous surfaces. Multilayer adsorption is due to 
mutual attraction between molecules, and additional molecules 
are superimposed on the first adsorption layer to form multilayer 
adsorption. In addition, n represents the adsorption strength 
of the adsorbent. When n>1, it indicates that the adsorption 
behavior is favorable [47]. At the same time, porous adsorbent 
has greater adsorption strength at 25°C as the lowest temperature 
in the test, indicating that high temperature is unfavorable for the 
adsorption behavior.

Thermodynamic of adsorption

Adsorption thermodynamic is used to survey the trend, degree, 
and driving force of the adsorption process and plays an important 
role in explaining the characteristics, laws, and mechanism of 
adsorption. The changes of parameters of thermodynamic of the 
adsorption process are generally calculated by equations of Gibbs 
equation and Vant’ Hoffs equation 3, 4 and 5 [54]:

      ...............(3ln )∆ = − cG RT K                               
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to 71.93%, possibly for a combination of chemistry and physics 
adsorption of cellulose/PVA/EG foam. As is known to all, 
chemical adsorption is irreversible, but physical adsorption 
is reversible. Therefore, the adsorption process was mainly led 
by physical adsorption in the subsequent cycle. To sum up, the 
removal rate of adsorbents after regeneration remains high, which 
is appropriate for the treatment of MB waste water (Figure 8).

Adsorption mechanism of cellulose/PVA/EG foam in MB

The adsorption mechanism of the adsorbate on the adsorbent 

is affected by many factors, such as the size and structure of 
the adsorbent. Based on the above experimental results, the 
adsorption mechanism scheme is listed in Figure 9. According 
to analyzing adsorption kinetics and isotherm, the adsorption 
process is mainly physical adsorption affected by the number of 
active sites and adsorbent structure. So, the possible interactions 
that determine the effect of MB adsorption are electrostatic 
adsorption, hydrogen bonding, and van der Waals force.

Figure 7: Adsorption isotherm models. (A) Langmuir model; (B) Freundlich model; (C) Temkin model.
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Table 4: Key parameters of adsorption isotherm model.

Parameters
Langmuir Freundlich Temkin

 qm (mg/g) b (L/mg) R2  kf (L/mg) n R2 B1 (Jmol-1) A (L/mg) R2

25°C 112.38 0.5161 0.983 43.1121 3.516 0.954 16.12 21.4108 0.935

50°C 30.3 0.0113 0.863 13.2766 2.1404 0.991 18.06 1.5371 0.871

75°C 70.72 0.0048 0.771 9.8355 2.4114 0.979 13.19 1.0879 0.919

Table 5: Parameters of the thermodynamic model.

 Parameters ∆G (kJ/mol) ∆H (kJ/mol)  ∆S (kJ/mol/K)

25°C -7.9121 -55.7537 -0.1622

50°C -2.0405   

75°C -0.0663   

Figure 8: Reusability of porous foam composites in MB adsorption.

Figure 9: Possible interaction mechanism between cellulose-based porous foam material and MB molecule.
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Table 6: Adsorption performance of different adsorbents on MB molecules.

Adsorbent Concentration of MB Removal percentage (%) qe (mg/g) Reference

Cellulose based porous foam 
composites

250 mg/L 90.9 110.8 This research

Maghemite/alginate/
functionalized multiwalled 

carbon nanotubes
230 mg/L - 905.5 [55]

CMC/GOCOOH 
composite microbeads

250 mg/L 72.09 180.32 [56]

CMC-Alg/GO hydrogel 
beads

15 mg/L 96.2 78.5 [57]

Salecan-g-PAI 500 mg/L 22.1 107.1 [58]

Magnetic chitosan/clay 
beads

100 mg/L - 82 [59]

Activated carbon/cellulose 
biocomposite films

100 mg/L - 103.66 [60]
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