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ABSTRACT

Global cases and deaths showed that COVID-19 and 1918 influenza were not normal pandemics, but superpandemics. 
Was there a common mechanism to push pandemics into superpandemics? This common ground was explored 
here from a new perspective and approach using the Greatest Common Divisor (GCD). The results showed that 
superpandemic viruses played tricks like superbugs. One subtlety was that SARS-CoV-2 fighted antibodies, just as 
superbugs fighted antibiotics. The SARS-CoV-2 spike and ORF8 proteins recognized the “Achilles heel” of secretory 
antibodies, namely J-chains and secretory components, and hijacked them respectively. Another subtlety was that 
SARS-CoV-2 expanded ORF8 protein as a superpandemic catalyst, just as drug-resistant enzyme facilitated the 
spread of superbugs. The SARS-CoV-2 ORF8 protein corresponded to the 1918 H1N1 virus neuraminidase. Both 
functioned as glycosylated-modification enzyme and RNA base-modification enzyme. Tampering with the enzymes 
was not found in SARS-CoV and pandemic (H1N1) 2009 virus. The synergy of spike and ORF8 proteins acted 
as the ignition for SARS-CoV-2 superpandemic. Through GCD analysis of clinical and experimental results of 
different coronaviruses, it was proposed to comprehend the epidemiological traceability and evolutionary from virus 
sequence up to virus GCD. We sincerely recommend the GCD platform to WHO for early warning.
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INTRODUCTION

The number is life. So far, more than 6.6 million deaths of 
COVID-19 have been confirmed worldwide. The number of 
deaths was similar to that of the 1918 flu [1]. While the two 
genomes were markedly different, SARS-CoV-2 was as devastating 
a pandemic as the 1918 flu virus [1,2]. The prevalence indicated 
that neither COVID-19 nor the 1918 flu were normal pandemics, 
but superpandemics. It was known that the transformation of 
antigen from drift to shift turned virus epidemic into pandemic, 
so what was the molecular basis for the virus to go further from 
the pandemic to a superpandemic? At present, viral metagenomics, 
protein structure and genetic manipulation were the three 
fundamental approaches for our understanding of viral biology 
[3]. However, the key issue was the complex relationship between 
protein structure and function. Although more than 200 million 
protein structure predictions were available in the AlphaFold 
database, structure similarity did not necessarily equal function 
similarity. In particular, the structural and functional information 
of intrinsically disordered protein extended the traditional 
structure-function pattern of protein. Some new strategies were 
needed to decode SARS-CoV-2. In the vast universe, number 
law showed up in everything, such as from the redshift of cosmic 

microwave background radiation to the number of C. elegans cells, 
from the quantum number of particle physics to the life cycle of 
periodic cicadas [4,5]. These studies revealed that number theory 
could bridge the three fields of mathematics, physics and biology 
[6,7]. Since the process of finding the Greatest Common Divisor 
(GCD) was the process of finding common ground, the protein@
integer GCD platform was created here to uncover the common 
mysteries of superpandemic viruses. Our research showed that 
superpandemic viruses differed from pandemic viruses in that they 
expanded a self-modification multifunctional enzyme, which acted 
as a catalyst for virus superpandemic, just as enzyme contributed 
to the spread of superbugs. Through combined computational 
analysis with clinical epidemiological experimental research, the 
superpandemic mechanism is proposed, and the greatest common 
divisor is raised from the original mathematical term to the 
epidemiological concept. The GCD platform was not only used 
to crack the superpandemic mechanism, but also used to capture 
superpandemic strains of different coronaviruses.

MATERIALS AND METHODS

Integer theory was proposed to study the structure and function of 
proteins. Based on the standard amino acids mass and the common 
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characteristics, protein was encoded into a vigesimal system. The 
cardinal number of the vigesimal system corresponds to the number 
of standard amino acids. The protein sequences were encoded into 
digital sequences, and performed ab initio calculations using the 
vigesimal system. Protein integers were large integers. Then, the 
protein functions were decoded by integer theory, such as large 
integer factorization or Greatest Common Divisor (GCD). The 
GCD was originally a common mathematical term, and referred 
to the largest of the common divisors of two or more integers. 
Here, extending to the field of molecular biology, protein GCD 
referred to the common function between two or more different 
proteins, which reflected the corresponding function or functional 
synergy between different proteins. It could be understood from 
two perspectives: one was to find the GCD from the perspective 
of a single proteome, that is, to find corresponding function or 
functional synergy of different proteins from the proteome; The 
other was to find the GCD from the perspective of multiple 
proteomes, that is, to find the domination or driving function of 
different interactome from multiple proteomes. Here based on 
the theorem of GCD, a protein GCD platform was constructed 
and further applied it to the pathogenesis analysis of different 
pathogens. Protein GCD platform was divided into three steps: the 
first step was to encode the protein as an integer, namely protein@
integer; the second step was to calculate the protein GCD from 
protein@integer databank; the third step is to analyze pathogenic 
mechanisms from protein GCD database. The GCD value greater 
than radix 20 was a significant criterion for protein GCD analysis. 
Understanding the global properties and functions of proteins 
through integer factorization and GCD provided a bridge between 
molecular biology and number theory (Figure 1).

Data availability

Virus proteome were obtained from NCBI and GISAID database. 
All data supporting the findings of this study are available in the 
text and supplementary information. 

Note: SARS-CoV-2 (NC_045512.2); SARS-CoV (NC_004718.3); 
A/Brevig Mission/1/1918(H1N1); A/California/07/2009(H1N1); 
S. aureus (RBAU01000015.1 and CP010944.1); S. pneumoniae 
(AE007317.1).

Code availability

1. protein@integer software 

2. protein@integer test and demo 

RESULTS AND DISCUSSION

The GCD decoded virus superpandemic

We sought to determine whether different superpandemic 
pathogens shared an identical or similar mechanism. In order to 
find the common mechanism, we developed the GCD platform 
to search for the molecular basis from different pandemic viruses 
and superbugs (Figure 3a). The key to the molecular basis was to 
identify the common function of different antigens. Through GCD 
analysis of the SARS-CoV-2 proteome versus pandemic influenza 
virus and superbug antigens, we identified the S and ORF8 
proteins as key antigens causing the SARS-CoV-2 superpandemic 
(Supplementary Tables 1 and 2). The GCD results showed that the 
key antigens of SARS-CoV-2 had the dual properties of immune 
and enzyme. On the one hand, the SARS-CoV-2 S protein shared 

the GCD with the clumping factor A (ClfA) of Methicillin-Resistant 
Staphylococcus aureus (MRSA) and hijacked the SIg J chain (SIg-JC); 
the SARS-CoV-2 ORF8 protein shared the GCD with the SpsA 
or PspA of Methicillin-Resistant Streptococcus pneumoniae (MRSP) 
and hijacked the SIg secretory component (SIg-SC) (Figure 3b and 
Supplementary Tables 1 and 3). On the other hand, the ORF8 
protein of SARS-CoV-2 corresponded to the neuraminidase of the 
1918 H1N1 virus (Supplementary Table 1). The ORF8 protein 
and the neuraminidase shared the GCD not only with the human 
glycosylation-modified enzymes GlcNAcase and HexNAcase, but 
also with the human RNA editing enzymes ADAR1 and ADAR2. 
Both might function as glycosylation-modified enzymes and RNA 
base-modified enzymes. In contrast, tampering with the enzymes 
was not found in SARS-CoV and the pandemic 2009 H1N1 virus 
(Supplementary Table 4). These GCD results explained why SARS-
CoV-2 possessed the superpandemic characteristcs of the 1918 flu 
virus. 

Next, we further investigated how SARS-CoV-2 exerted a synergistic 
effect of immunohijacking and enzyme modification. The key to 
synergy was to identify common molecular pathways. We used the 
GCD to detect whether there was a common molecular pathway 
between SIg/ SC hijacking and enzyme modification, and found 
that SARS-CoV-2 worked together to destroy CD4 cells through 
two different pathways, namely ORF8-SIg/SC-CD4 and ORF8-
ADAR1-CD4. Since ADAR was also RNA base-modified enzyme, 
we used the GCD to analyze SARS-CoV-2 accessory proteins and 
nonstructural proteins. The GCD results showed that the accessory 
protein ORF8 shared the GCD with the nonstructural proteins 
nsp1, 11,13 (Supplementary Tables 5 and 6). This result indicated 
that the synergistic interaction of modification enzyme ORF8 and 
helicase nsp13. The SARS-CoV-2 ORF8-based synergistic effects 
told us that although superpandemic viruses still lacked protein 
translation system, they had evolved a unified mechanism of 
replication, immunity, and modification through the expansion of 
single-functional enzymes to multifunctional enzymes.

Finally, we used the unified mechanism to decode the emergence 
of SARS-CoV-2 variants of concern. Why was Omicron, the 
SARS CoV-2 variant, so subtle? In Supplementary Tables 7 and 8, 

Figure 1: Protein@integer. (a) Protein encoded integer and integer 
decoded protein; (b) Protein vigesimal system
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Omicron, such as OQ151515, showed that it had special properties 
similar to the original strain but distinct from the other variants. 
Omicron S and ORF8 proteins had synergistic immune and 
modification effects.

The GCD capturing superpandemic virus

Table 1 took SARS-CoV-2 and the 1918 H1N1 virus as standard 
superpandemic viruses and compared them with human, bat 
and synthetic coronaviruses. The S and ORF8 proteins of SARS-
CoV-2 or the hemagglutinin and neuraminidase of the 1918 H1N1 
virus were used as reference antigens. In human coronaviruses, 
the GCD results showed that HCoV-OC43 and SARS-CoV-2 S 
protein had the GCD, indicating that HCoV-OC43 and SARS-
CoV-2 S protein had similar functions. In bat coronaviruses, the 
BtCoV-HKU3-1 ORF8 protein and SARS-CoV-2 ORF8 protein 
had the GCD, indicating that the BtCoV-HKU3-1 ORF8 protein 

and SARS-CoV-2 ORF8 protein had similar functions. The S and 
ORF8 proteins of both RaTG13 (MN996532.2) and RpYN06 
(MZ081381.1) did not have significant GCD with the SARS-CoV-2 
S and ORF8 proteins or the 1918 H1N1 viral hemagglutinin and 
neuraminidase. However, the synthetic CoV (Bat-SRBD) S protein 
and ORF8 protein possessed the GCD with SARS-CoV-2 S protein 
and ORF8 protein, respectively. Therefore, although RaTG13 and 
RpYN06 are closer to SARS-CoV-2 than Bat-SRBD in sequence 
similarity, Bat-SRBD is more likely to become a superpandemic 
strain than RaTG13 and RpYN06 due to the function similarity 
(Table 1).

protein@integer it is a new model for studying proteins. By 
upgrading protein sequences to protein integers, we strove to 
decode virus superpandemic and capture superpandemic virus 
from a new perspective-GCD, unveiling the epidemic evolutionary 
mechanism (Figures 2 and 3).

Table 1: The GCD capturing super pandemic virus.

GCD

SARS-CoV-2 1918 H1N1 Virus

S ORF8 H N

Human CoV

NL63  S 1 1 1 1

229E  S 1 1 1 1

OC43  S 285 2 2 2

HKU1  S 5 2 2 2

MERS  S 5 1 1 1

SARS  S 15 1 1 1

Bat CoV

RaTG13  S 5 1 1 1

ORF8 1 8 8 4

RpYN06  S 5 1 1 7

ORF8 1 8 8 4

HKU3-1  S 15 1 1 1

ORF8 1 1768 8 68

Synthetic CoV

Bat-SRBD S 95 17 1 17

ORF8 1 1768 8 68

Note: 1. Bat-SRBD is more likely to be a superpandemic virus; 2. The recombinant bat HKU3-1 CoV (human OC43 CoV S protein instead of bat HKU3-
1 CoV S protein) will become a new superpandemic virus.
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Figure 2: Epidemic evolutionary mechanism.

Figure 3: Protein@Integer GCD. (a) Protein@Integer GCD platform. The GCD analyzed superpandemic virus and superbug bacteria; (b) SIg-JC/
SC-hijacked pathway.
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epidemic principle. Although RaTG13 and RpYN06 are closer 
to SARS-CoV-2 than Bat-SRBD in sequence similarity, the GCD 
results support that Bat-SRBD is more likely to be a superpandemic 
virus than RaTG13 and RpYN06. Previous experiments had also 
shown that Bat-SRBD was infectious in cultured cells and in mice 
[21]. According to the GCD analysis in Table 1, among human 
CoVs, the results showed that human OC43 CoV S protein and 
SARS-CoV-2 S protein have significant GCD. Although human 
OC43 CoV and SARS-CoV-2 S proteins share 29% sequence 
similarity, the GCD effect reflects the common function of human 
OC43 CoV and SARS-CoV-2 S proteins [22]. Similarly, bat HKU3-
1 CoV ORF8 and SARS-CoV-2 ORF8 proteins have significant 
GCD, reflecting the common function of bat HKU3-1 CoV and 
SARS-CoV-2 ORF8 proteins. These GCD results, on the one hand, 
were supported by existing experimental studies, and on the other 
hand, further indicated that recombinant bat HKU3-1 CoV (OC43 
CoV S protein+HKU3-1 CoV) or recombinant human OC43 CoV 
(OC43 CoV+SARS-CoV-2 ORF8 protein) would become a new 
superpandemic virus.

CONCLUSION

In summary, it is necessary to establish the Superpandemic Elements 
Database (SPED) for in-depth research. We would like WHO to 
organize the WHO@GCD terrace to capture superpandemic 
strains from different kinds of pathogens, including synthetic and 
semi-synthetic ones. It is conducive to faster and earlier response to 
global emerging infectious diseases. May the suffering end and the 
world usher in light.
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