
1J Phys Chem Biophys, Vol.11 Iss.7 No:1000315

OPEN ACCESS Freely available online

Research Article

Correspondence to: Mohsen Darvishnezhad, Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran, E-mail: 

mohsendarvishnezhad@gmail.com

Received: November 25, 2021, Accepted: December 09, 2021, Published: December 16, 2021

Citation: Darvishnezhad M (2021) Graph-Based Feature Reduction for Three-Dimensional Gabor Filter in PolSAR Image Classification. J Phys Chem 

Biophys. 11:315.

Copyright: © 2021 Darvishnezhad M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Journal of Physical Chemistry & 
Biophysics

Graph-Based Feature Reduction for Three-Dimensional Gabor Filter in
PolSAR Image Classification
Mohsen Darvishnezhad*

Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran

ABSTRACT

Polarimetric Synthetic Aperture Radar (PolSAR) image classification is one of the most important 
applications in remote sensing. In this paper, the goal is PolSAR image classification and also to 
introduce a method to obtain the best result for PolSAR image classification and recognition. In 
this article, we present the 3D-Gabor filters as a way in order to feature extraction of PolSAR images 
and get the best result with high accuracy for PolSAR image classification. Also, we prove that the 
3D-Gabor filter approach can get higher accuracy than traditional methods for PolSAR images 
classification, but one of the most important challenges of 3D-Gabor filters is the number of features 
that are extracted from them. Therefore, by using 3D-Gabor filter we can't reach the optimal result 
because of the curse of dimensionality. So, to achieve the best results we propose a method to reduce 
the features that are extracted from 3D-Gabor filters. By using our proposed method, the features will 
be mapped to a new space with smaller dimensions. In the end, the experimental results indicate the 
superiority of the proposed method.
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INTRODUCTION

Polarimetric Synthetic Aperture Radar (PolSAR) 
image classification is one of the most important 
applications in the remote sensing [1]. PolSAR images that 
are obtained by airborne and satellite sensors have a huge 
amount of rich information of the Earth’s surface. All of 
these tools need the quiet interpretation of PolSAR 
images [2]. Therefore, interpretation of PolSAR images is 
one of the most significant tools in remote sensing. During 
the past decade, land use classification of PolSAR images 
are one of the most important and challengeable researches 
because of PolSAR images include wealthy informatio of each 
target [3]. The Land Cover and Land Use (LCLU) classification 
can classify each kind of target to the different kinds of classes 
according to the definite rules. The usual targets in the 
PolSAR images contain buildings, urban areas, bridges, 
water, sand, road, vegetation, and so on. In PolSAR 
image classification, the features of each pixel should be 
extracted accurately in order to classify them accurately 

[4]. By developing the PolSAR image classification during the 
past decades, a large group of feature extraction methods has 
been introduced based on physical scattering mechanisms 
[5]. For example in [6] Tirandaz presented a PolSAR image 
segmentation based on feature extraction and data compression 
using weighted neighborhood filter bank and hidden Markov 
random field-expectation to extract PolSAR features. Also, in 
[7] B. Ren introduced a PolSAR feature extraction via tensor
embedding framework for land cover classification to increase
the accuracy of PolSAR image classification. In this article, by
an iterative optimization process, the vector-based algorithms
are gone from the tensor space in order to get the projection
matrices in each mode, into a unified framework and based on
the pair of matrices. In [8] Z.Wang presented a Semi-supervised
tensorial locally linear embedding for feature extraction using
PolSAR data for PolSAR feature extraction. In this paper, a
feature extraction method is proposed to finding an optimal
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direction that can map features from the high-dimensional space 
into lower-dimensional. On the other hand, in [9] Han proposed 
an unsupervised classification for PolSAR images based on multi-
level feature extraction to get the optimal result for PolSAR 
image classification. Their algorithm firstly starts with multi-level 
feature extraction to obtain an initial classification map. Then by 
using the Wishart classifier and they refine the initial 
classification map iteratively. Also, in [10] Zhao proposed a 
PolSAR image classification via D-KSVD and NSCT-domain 
features extraction in order to feature extraction of PolSAR 
images and obtain the high accuracy for PolSAR image 
classification.

In this paper, we propose a method in order to reduce the feature’s 
dimention that are extracted from 3D-Gabor filters [11]. So, at 
first, we use the PolSAR features that are extracted from scattering 
matrix of PolSAR images as the input of the 3D-Gabor filter and 
then we decrease the features that are obtained from 3D-Gabor 
filters in order to increase the accuracy of the PolSAR image 
classification. In our proposed method, we use a graph-based 
model to reduce the 3D-Gabor features. The experimental results 
on the real PolSAR data indicate that the classification accuracy 
of our proposed method is higher than other traditional methods.

The paper is formed as follows: In Section II we introduce PolSAR 
features extraction. In Section III the 3D-Gabor filter is presented. 
In Section IV, the proposed method named graph-based feature 
reduction is given. The experimental result is presented in Section 
V and also the conclusion of the paper is presented in Section VI 
(Table 1).

Traditional polsar feature extraction

Polarimetric radars often measure the complex scattering matrix 
(S) produced by a target under study with the objective to infer
its physical properties. Assuming linear horizontal and vertical
polarizations for transmitting and receiving, S can be expressed as:

hh hv

vh vv

S S
S

S S
 

=  
 

             (1)

Polarimetric features of PolSAR image [1] can generally be 
divided into two categories: one is the features extracted directly 
from the polarimetric SAR data and its different transforms 
(the S Matrix) that is named raw features [12] and also the other 
is the features based on polarimetric Target Decomposition 
(TD) that is named TD features [13]. In order to separating and 
identifying contributions from different types of scatterers in 
PolSAR data, target decomposition techniques were proposed, 
which are separating target scattering matrix into independent 
components related to the respective scattering mechanism. Several 
decomposition techniques have been proposed. These techniques 
are based on two principal approaches known as coherent and non-

coherent methods. These techniques split the scattering matrix 
into the sum of elementary scattering matrices, each one defining a 
deterministic scattering mechanism. These methods are: Huynen, 
Barnes, Cloude, Holm, Van Zyl, Cloude-Pottier, Freeman-Durden, 
Yamaguchi, Tozi and Krogager [13]. In this article, we use the 
extracted polarimetric features in order to evaluate our proposed 
method. As shown in Table 1, our extracted polarimetric feature 
is a 13-D vector representation of PolSAR data. The raw features 
are all extracted from the second-order 3 × 3 complex coherency 
polarimetric matrix or T and complex covariance polarimetric 
matrix or C, which is based on the Pauli basis of scattering matrix 
of PolSAR [1,14] (Table 1).

3D-gabor filter

A Gabor filter is obtained through modulating a normal (Gaussian) 
envelope by a sinusoidal function. For example, an illustration of 
a 3D Gabor filter in the radiance domain and a filter bank in the 
frequency domain are shown in Figure 1. A 3D Gabor filter in the 
spectral-spatial feature space is defined by:

, , (x, y, ) ( , , ) E( , , )fG N x y x yϕ θ λ λ λ=  		  (2)
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composes the Gaussian envelope component, and

Table 1: Traditional PolSAR features.

Title  of   feature Describe Symbol
Number 
of feature

Raw features

Scattering  matrix 
elements

S 3

Coherency  matrix 
elements

T 9

Covariance  matrix 
elements

C 9

Target Decomposition 
Features (TD)

Krogager Krog 9

Huynen H 9

Barnes B 9

Cloude C_1 9

Holm Hol 9

Van Zyl V 3

Coulde-Pottier H/A/α 19

Free man Fd 3

Yamaguchi Y 4

Tozi Toz 4

Figure 1: A single 3D Gabor filter viewed with orientation (1, 0, 0) and two dimensions in the radiance domain (left) and 13 filters in  three dimensions 
for a single scale in the frequency domain (right) [14].
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indicates the sinusoidal component. The pair (x,y) and λ are used 
as spatial and wavelength variables, respectively. The width of 
the Gaussian envelope and also the filter scale is determined by 
parameter σ. The frequency of component E(x, y, λ), i.e. (f

x
, f

y
, fλ),

determines the central frequency of the 3D Gabor filter where it 
makes the orientation of the filter [15]:

2 2 2( , , )
( , , ) ;x y

x y x y

f f f
f f f f

f
λ

λ λσ σ σ = = + +         (5)

The Gabor filter in radiance domain can be related to the one in 
the frequency domain according to the following geometry (Figure 2):

sin cos , sin sin , cosx yf f f f f fλϕ θ ϕ θ ϕ= = =            (6)

To have a sufficient characterization of the background and 
anomalous targets, a 3D Gabor filter bank containing I×J×K 
orientations and frequencies should be designed through a set of 
Gabor filters as follows [14]:

, , ( , , ); ; ;
2i j k

m
f i j ki

f j kG x y f
j kϕ θ
π πλ ϕ θ= = =                  (7)

0,..., I 1; j 0,..., j 1;k 0,..., k 1i = − = − = − (8)

Where 
if is the amplitude, ,j kϕ θ makes the orientation of the

central frequency, and mf indicates the highest value of variable f.

The half-peak orientation (B
0) and radial (Br) bandwidths are 

defined by:
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By having f and B
0, the value of σ is calculated by (Figures 1 and 2):

02 ln 2 tan( )
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=               (11)

According to previous experiments [14], to provide a sufficient 

polarimetric-spatial characterization of PolSAR images, the 
parameters of 3D Gabor filter are selected as:

0 45 ; 4; 0.5mB I J K fο= = = = =   (12)

[0.5,0.25,0.125,0.0625]f =   (13)

, [0, 45 ,90 ,135 ]ο ο οϕ θ =                (14)

For each scale, 13 orientations are considered. Therefore, for 4 
scales, a total of 4 × 13=52 Gabor filters are provided. Generally it 
is assumed that the 3D Gabor filter is designed for applying to a R 
× C × B cube with R=C=B. But, in practice, for a PolSAR image, 
a region of PolSAR cube with R rows and C columns (R=C) has B 
polarimetric bands where B≫R, C. Thus, the Gabor filter should 

be modified by substituting * Kλ λ= ; K B
R

= in equations 1-3

to provide stretching Gabor filters by the factor k along direction
λ . The output of each Gabor filter is a cube with the same size of
PolSAR image [14].

METHODOLOGY
The goal of this paper is to reduce the polarimetric-spatial of 
PolSAR features that are extracted from 3D-Gabor Filters. In order 
to reduce features, we use a Graph-Based (GB) method that will 
be introduced in the following [15]. As we said in the previous 
section, 3D-Gabor Filter is one the most important methods 
that can extract features of PolSAR images more accurately than 
traditional methods such as [16,17]. But one of the most important 
and difficult challenges of these kinds of filters is the number of 
extracted features. The number of features that are extracted from 
3D-Gabor filters is much more than traditional methods. On 
the other hand, if we use all of these extracted features to classify 
targets, it cannot obtain us the best result because of the curse of 
dimensionality phenomena [18]. So, in this article, we introduce 
a graph-based method in order to decrease the features that are 
extracted from 3D-Gabor filters. In the following, we present our 
dimension reduction method with details.

Proposed dimension reduction method

In this section, we introduce a Graph-Based (GB) method (Figure 3) 
to reduce the features that are obtained from 3D-Gabor filters. We 

can suppose that 3 3
1{ }D Gabor D Gabor N

i iX x− −
== indicates 3D-Gabor 

features after normalizing their values to the same interval ([0, 1]), 
where 3D Gabor BX R− ∈  with B the number of features and also
N is the total number of pixels in a SAR image. So, the aim of 

this article is to obtain a transformation matrix B dW R ×∈  that
can decrease the 3D-Gabor features (to d-dimensions) by the below 
equation:

3

.
D GaborT

i iz W x
−

=  (15)

In (15) 
3D Gabor

ix
−

is a 3D-Gabor feature of each pixel of SAR images 
Figure 2: Illustration of θ and φ angles for 3D Gabor filter representation [14].

Figure 3: Proposed method.

E(x, y, ) e= xp(2λ π j( f x  fx y y+ + fλλ ))       
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and 1
N

iiz =  is the feature in a lower dimensional space with 
d

iz R∈
that d ≤ (B). On the other hand, not only the transformation matrix 
W has to reduce different features in a lower-dimensional space 
but also it has to protect the local neighbourhood information. 
A suitable method to find the transformation matrix W can be 
obtained as below (you can find the detail of this way in [19]):

3 3 2 (D B) d
,

, 1
arg min( || . . || . ) |

D Gabor D Gabor
N

T T
i i i j

i j
W x W x A W R

− − + ×

=

− ∈∑   (16)

In equation 16 the matrix A denotes the edges of an undirected 
graph G=(X, A). Therefore, it is s so important to design the matrix 
A as well as it is possible. In this paper, we propose a method to 
design the matrix A. The adjacency relation between each node of 
the graph such as xi and xj is represented by binary edge weights

. {0.1}i jA ∈ . In our proposed method, the two data points x
i
 and 

xj are connected with each other in graph nodes if they are “close” 
to each other in terms of some distance. So, 1ijA =  if x

i
 and x

j
 are

“close” to each other and 0ijA =  if xi and xj are “far apart” to each
other. In this article, the graph will be designed by the proposed 
method. So, in the following, we present our method to design the 
graph accurately. First of all, the features that are extracted from 
3D-Gabor will be classified by a classification method, and next a 
classification map for PolSAR images will be obtained that is named 
initial class-map. Then, for each pixel, a graph will be designed by 
the initial class map accurately. In our designed graph (Figure 4), 
each pixel has a connection with other pixels if and only if both of 
them are in a specific class. So, if both pixels are classmates with each 
other a connection between them will be made in our proposed 

graph. The matrix ( )N NA R ×∈  denotes the adjacency relation of
all pixels in the PolSAR images (e.g., full edge) that are made on 

the 3D-Gabor features 3 3 3( ( , ))D Gabor D Gabor D GaborG X A− − −= .

By utilizing [20] for solving the equation 16, we have:
3 3 3. . .( ) . 1T D Gabor D Gabor D Gabor TW X D X W− − − =            (17)

In equation 17 3D GaborD −  is a diagonal matrix with
3 3

1

ND Gabor D Gabor
ii ijj

D A− −
=

=∑  and also I is the identity matrix.

So, by using the transformation matrix:

1( ,..., )rW w w=            (18)

We can get r eigenvectors with the least r eigenvalues from equation 

17: 1 2 ... rλ λ λ≤ ≤ ≤  by use the generalized eigenvalue problem:

3 3 3 3 3 3. .( ) . . . .( ) .D Gabor D Gabor D Gabor T D Gabor D Gabor D Gabor TX L X W X D X Wγ− − − − − −=   (19)

where in equation 19

3 3 3D Gabor D Gabor D GaborL D A− − −= −              (20)

specific class that graph edges are created between them. White 
colour means un-label pixels.

That 3D GaborL −  is the fusion Laplacian matrix which is proposed
in [19]. In the end, the new features can be obtained from the 

high dimensional 3D-Gabor features 
3 ( )( )D Gabor B

ix R− ∈  into a

lower and new dimensional space that is named d
iz R∈  by the

equation 15. So by using 15, the new features (Z) in the lower and 
new dimensional subspace can be extracted. Therefore, we can use 
Z as an input in order to classify PolSAR images. The details in can 
be fined in [19].

Experimental results

In this section, the data that is used in the article, the simulation, 
and experimental results will be presented.

Experimental data: Figure 5 shows the employed experimental 
PolSAR images. The image is for the Flevoland area in The 
Netherlands, which was acquired by NASA/JPL AIRSAR on 
August 16, 1989. The size of the image is 750 × 1024. The Pauli 
RGB image of Flevoland area data is shown in Figure 5a and the 
ground-truth class labels and the corresponding color codes are 
shown in Figure 5b. There are 11 different classes in the image, 
including: water, peas, stem bean, beet, forest, bare soil, grass, 
rapeseed, Lucerne, wheat, potato that is introduced. Also, Table 2 
shows the names and total samples of each class for the Flevoland 
dataset.

Experimental setup: In all of the experiments 3D-Gabor filters 
parameters will be chosen from Table 3. Also, we selected 21 
as a filter size of the 3D-Gabor filters. On the other hand, SVM 
classifier will be used as the classifier in order to simulate our 
method. The classification results are compared by measuring the 
Overall Accuracy (OA) [21] and the kappa coefficient (κ) [22]. In 
addition, the analyses were computed on 64-bit, 1.40 GHz Intel i7-
9300 K (10 core) CPU computer with 32 GB memory.

RESULTS
In order to simulate the proposed method, we use the support 
vector machine (SVM) that is implemented by LIBSVM [23], for 
the classification of PolSAR datasets. The second-order polynomial 

Figure 4: The graph that is designed by the proposed method. Each colour 
represents a specific class that graph edges are created between them. 
White colour means un-label pixels.

J Phys Chem Biophys, Vol.11 Iss.7 No:1000315

Figure 5: (a) Pauli RGB image of Flevoland area. (b) Ground-truth class 
labels of Flevoland area (GTM) [24].
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kernel is utilized for SVM. In all of the simulations, we use the 
PolSAR features that are described in section II. Also, at first we use 
scattering matrix features (S Matrix) as the input of the 3D-Gabor 
filter in order to extract 3D-Gabor features. As it mentioned in 
section III, 3D-Gabor filters are one of the most important and 
newest methods in order to extract polarimetric-spatial features 
from images. By using these filters we can obtain a lot of high level 
features with a huge amount of details from PolSAR images, but it 
has a significant challenge as we presented in the previous section 
[24]. Therefore, in order to solve this issue, we proposed a Graph 
Base (GB) method to decrease the 3D-Gabor features and increase 
the accuracy of the PolSAR image classification and recognition. 
In all of the experiments, 5% of the samples of each class were 
selected randomly as the training samples and also the other 95% 
were utilized as the test samples. Also, to get the best result and 
validate all of the results, all experiments will be displayed in 
Tables 4 and 5 after 10 times of run and averaging of them. In 
these tables N

f 
expresses the number of features. Also, you can see 

all the PolSAR features that are used in experiments in Table 1. 
In addition, the abbreviation S, T, C in all these tables denotes 
full scattering, coherence, and covariance matrix parameters which 
are obtained from SAR [25-27]. Finally, the overall accuracy and 
kappa coefficient for the proposed method and other methods 
will be expressed in Table 4. In order to illustrate the superiority 
of the proposed method, in Table 4, we compared our proposed 
method with the 3D-Gabor method and other traditional method 
that are described in section II. It can be seen from Table 4 that 
the proposed method with an accuracy of 97.2 has higher accuracy 
than the 3D-Gabor method with an accuracy of 95.8. Also, the 
kappa coefficient of the proposed method has superiority over the 
3D-Gabor method. As mentioned, using the 3D-Gabor method 
has led to increasing the classification accuracy because by using 
this method we can get appropriate features from PolSAR images, 
but because of the curse of dimensionality that is mentioned in 
the past section, it cannot get us the best result [28,29]. So, we got 
the best result of the classification of PolSAR images, by reducing 
these features with the proposed method. In addition, as you can 
see in Table 4, the rank of these methods from a classification 
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accuracy point of view as follows: S>T>C, if we utilize T, C or S 
individually, but the overall accuracy of 3D-Gabor is higher than 
them. Also, if we use TD features individually, the rank of these 
methods from a classification accuracy point of view as follows: 
Hol>C1>H+a+α>B>Krog>Toz>Y>Fd>V but, the overall accuracy 
of Stack TD is higher than TD features method. On the other 
hand, it is higher than for "stack" compared to "Stack TD or Stack 
Raw" features. Also, as can be shown, our proposed method is 
superior to other methods in both kappa coefficient and overall 
accuracy [30]. Also, Figure 6 shows the classification accuracy for 
different Classes by the proposed method. This figure illustrates 
that the classification accuracy for all of the classes is more than 
96% except for of the stream bean class that the accuracy of this 
class is 95.14%. Also, the highest accuracy is 98.15% for the water 
class. The average accuracy is 97.2% that is more than 3D-Gabor 
method and other traditional methods as it can be seen in Table 
4. On the other hand, Figure 7 denotes the kappa coefficient for
different classes by the proposed method. As it can be seen in
Figure 7 the lowest coefficient is for the steam bean class and the
highest coefficient is for the water class. The highest coefficient is
0.9805 and also the lowest is 0.9534. Also, the coefficient for all of
the classes is more than 0.96 except for the steam bean class.

In addition, Figure 8 illustrates the average accuracy of the proposed 
method compared with other methods. As you can see in this 
Figure 9, the average accuracy of the proposed method is higher 
than other methods. On the other hand, to assess whether the 
differences between classification results are statistically significant 
or not, the McNemars test is done and the results are reported 
in Table 5 for both datasets. As seen, the proposed method is 
preferred with respect to others with a significant difference. After 
the proposed method, 3D-Gabor method and Stack method can be 
good candidates for PolSAR image classification [31-33].

No Name of class

1 Beet

2 Lucerne

3 Soil

4 Rapeseed

5 Steam bean

6 Potato

7 Water

8 Grass

9 Peas

10 Wheat

11 Forest

Table 3: Parameters for 3D-gabor.

Parameters Values

Ɵ 0 45 90 135

ɸ 0 45 90 135

F 0.5 0.25 0.125 0.625

Features Method N
f

Overall 
accuracy

Kappa 
coefficient

Raw

T 9 84.15 0.856

C 9 83.56 0.846

S 3 86.49 0.85

Stack raw T+C+S 21 87.15 0.881

TD

Krog 9 88.15 0.886

h 9 87.54 0.889

B 9 89.48 0.894

C1 9 89.59 0.909

Hol 9 89.78 0.901

V 3 80.78 0.813

H+a+α 19 89.49 0.889

Fd 3 83.14 0.84

Y 4 84.92 0.835

Toz 4 87.69 0.89

Stack TD
Krog+h+B+C1+Hol+V+H+

a+α+Fd+Y+Toz
78 90.18 0.902

Stack
T+C+S+ Krog+h+B+C1+H
ol+V+H+a+α+Fd+Y+Toz

99 93.31 0.941

3D-gabor 
Filters

3D-Gabor features 156 95.8 0.957

Proposed Proposed method 40 97.23 0.971

Table 4: Simulation results using SVM classifier.Table 2: The names and total samples of each class for the Flevoland 
dataset.

Darvishnezhad M
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Figure 6: The classification accuracy for different classes of the 
proposed method.

Figure 7: The Kappa coefficient for different classes of the 
proposed method.

Figure 8: The average accuracy for the proposed method compared 
with others.

Methods Proposed 3D-Gabor S Stack raw T C

Proposed 0 19.65 90.12 63.1 118.74 158

3D-gabor -19.65 0 57.99 48.79 59.92 80.58

Stack -32.21 -35.39 48.52 39.31 50.44 71.11

Stack TD -54.62 -46.72 34.66 25.45 36.58 57.25

S -90.12 -57.99 0 9.52 20.65 41.32

Stack raw -63.1 -48.79 -9.52 0 3.39 12.46

T -118.74 -59.92 -20.65 -3.39 0 9.09

C -158 -80.58 -41.32 -12.46 -9.09 0

 Table 5: The result of McNemars test.

Figure 10: Classification maps for the proposed method and others. 

Figure 9: Overall accuracy for different methods.
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We also make a visual comparison between different classification 
methods in the form of classification maps, as shown in Figure 10. 
In general, traditional classification methods (e.g., raw features and 
TD features) result in salt and pepper noise in the classification 
maps. As expected, the proposed methods obtain smoother 
and more detailed maps in comparison with other competitors, 
mainly due to the effective combination of different features that 
further enhance the PolSAR representation ability. Finally, the 
classification map of the proposed method and other methods in 
can be seen in Figure 10.

DISSCUSSION AND CONCLUSION
The aim of this paper is PolSAR image classification and also presents 
a method to reach the best result for PolSAR image classification 
and recognition. In this paper, we introduced 3D-Gabor filters as 
a method for feature extraction of PolSAR images. As can be seen 
in the table, by using 3D-Gabor filters we can reach high accuracy 
for PolSAR images classification compare to traditional methods, 
but because of the curse of dimensionality we cannot reach the 
best result by using these filters. So, we introduced a graph-based 
method to reduce the 3D-Gabor features and get the best accuracy 
of them in order to PolSAR image classification. Therefore, by 
using the proposed method the extracted features from 3D-Gabor 
filters were mapped to a new space with smaller dimensions. In 
the end, the simulation and experimental results for the proposed 
graph-based method indicate its advantages in both the kappa 
coefficient and overall accuracy in competition with the 3D-Gabor 
filters and traditional methods.
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