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ABSTRACT
Graph network science is becoming increasingly popular, notably in big-data perspective where understanding 

individual entities for individual functional roles is complex and time consuming. It is likely when a set of genes are 

regulated by a set of genetic variants, the genes set is recruited for a common or related functional purpose. Grouping 

and extracting communities from network of associations becomes critical to understand system complexity, thus 

prioritizing genes for disease and functional associations. Workload is reduced when studying entities one at a time. 

For this, we present GraphBreak, a suite of tools for community detection application, such as for gene co-

expression, protein interaction, regulation network, etc. Although developed for use case of eQTLs regulatory 

genomic net-work community, study-results shown with our analysis with sample eQTL data-GraphBreak can be 

deployed for other studies if input data has been fed in requisite format, including but not limited to gene co-

expression networks, protein-protein interaction network, signaling pathway and metabolic network. GraphBreak 

showed critical use case value in its downstream analysis for disease association of communities detected. If all 

independent steps of community detection and analysis are a step-by-step sub-part of the algorithm. GraphBreak can 

be considered a new algorithm for community based functional characterization. Combination of various algorithmic 

implementation modules into a single script for this purpose illustrates GraphBreak’s novelty. Compared to other 

similar tools, with GraphBreak we can better detect communities with over representation of its member genes for 

statistical association with diseases, therefore target genes which can be prioritized for drug-positioning or drug-

repositioning as the case be.

Keywords: eQTL–expression quantitative trait loci; SNP–Single Nucleotide Polymorphism; LD–Linkage 

Disequilibrium

INTRODUCTION
By signaling pathway networks, bio-based chemical molecular
networks-such as protein–protein interaction networks, gene co-
expression networks, gene regulatory networks, metabolic
networks- provide a graphical representation of cellular and
tissue systems. A bioarXiv preprint of this paper was published
in early 2021 [1] and the abstract was published in the book of
abstract of BIOCOMP 2020 [2]. To guide biological

experiments, networks must be analyzed by means of community 
detections, if every gene transcript, gene product, protein, 
genotypic variants, such as SNPs, were to be characterized 
individually they could be very difficult to perform. To increase 
understanding of network phenomena, network scientists deploy 
models. For this, we introduce GraphBreak, a network analysis 
tool to understand variant based regulation of expression of 
genes as a community. It conducts community analysis of 
overrepresentation association with disease and other function
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parallel script in place, we should be ready in the future for high 
volume of data. NetworKit is a Python Application Programming 
Interface (API) that approaches community detection from the 
perspective of modularity maximization and engineer parallel 
heuristics, which deliver a good balance between solution quality 
and running time. NetworKit API has been previously used for 
solving biological network problems such as Protein-Protein 
Interaction (PPI) network [9], therefore reassuring this API’s 
deployment for biochemical application. PLP algorithm 
implements community detection by extracting communities 
from a labeling of the node set, or label propagation [10]. 
Community detection with Louvain method [7] can be classified 
as a locally greedy, bottom-up multilevel algorithm. NetworKit 
authors recommend, PLM algorithm with optional refinement 
step as the default choice for modularity-driven community 
detection in large networks. PLP delivers a better time to solution 
for very large network in the range of billions of edges, but with a 
qualitatively different solution and worse modularity. Therefore 
Girvan-Newman and Louvain algorithm for community detection 
using Networkx [11] module in Python and the parallel version of 
Louvain algorithm (PLM) using the NetworKit module in Python 
was implemented, as we felt it was illogical to use PLP to save 
time but compromise modularity solutions obtained, as for the 
time being our data sizes are not in the order of terabytes that 
would require us to see the problem from a really ‘Big Data’ 
perspective.

NetworkX has functionalities to help convert the graph data from 
one format to another. NetworkX [11], a de-facto standard for the 
analysis of small to medium networks in a Python environment, 
is not suitable for massive networks due to its pure Python 
implementations. Even though our data size was not of the 
category very ‘Big Data’, it was large enough to be classified as 
‘Big Data’, so using algorithmic implementations in NetworkX 
for community detection was clearly time and resource 
demanding. Girvan-Newman and Louvain algorithm were 
implemented with the help of NetworkX Python module for 
small and medium size data, we strongly emphasize use of 
GraphBreak by parallel implementation of Louvain’s algorithm 
(PLM) for large-scale data, which we developed using NetworKit 
Python module. Data sizes are currently not extremely large, for 
practical purposes, so the choice of deploying Louvain 
algorithm or Girvan-Newman will not have a detrimental effect 
on execution time.

GraphBreak pseudocode and workflow

Flowchart for GraphBreak workflow, followed by pseudocode is 
shown below
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phenotypes, along with linkage association of SNP variants for 
causative prioritization. This network-based community detection 
has been examined in detail from genomic variants, such as 
SNPs with expression of genes, but GraphBreak can be used for 
any network analysis, such as those discussed above. For 
example, WGCNA [3] has been widely used for gene co-
expression analysis. Compared to WGCNA, where a weight is 
assigned for any connections between two genes, GraphBreak 
assumes a weight of 1 for every connection. Condor, a similar 
tool for community detection in gene regulation context 
Platig et al., [4] is used for the purpose that models’ network 
assume it to be a bipartite graph.

Motivation for developing a new community
detection tool

GraphBreak was inspired by Condor [4], which implements 
modularity detection in bipartite network [5]. Regulatory 
connections between genomic variants and associated gene 
expressed is bipartite by de-fault, given that there were no 
connections between any two genomic variants (such as SNPs), 
nor any connections between any two genes expressed. As simple 
community detection in a connected graph is performant in 
obtaining the communities, there was no need to classify 
community detection problem as a bipartite graph if data itself is 
arranged in such a way. For this, our approach was to find an 
implementation module for various community detection 
algorithms with preferably parallel computing capability, which 
can then be used for our own purpose, such as for regulatory 
genomic network analysis.

Existing algorithms for community detection
influencing GraphBreak development

Sets of nodes are partitioned by a class of network analysis 
methods into sub-sets depending on graph structure. For 
instance, all nodes in a connected component are reachable from 
each other. Using breadth-first search, a network’s connected 
components can be computed in linear time. Community 
detection is the task of identifying groups of nodes in the 
network that are significantly more densely connected among 
another than to the rest of nodes. Various definitions of the 
structure to be discovered community is a data mining problem. 
NP-hard optimization problem defines this task by community 
quality measures-first and foremost modularity [6]. The goal of 
GraphBreak was for end users to choose from popular 
community detection algorithms, such as Louvain’s algorithm [7] 
and Girvan-Newman algorithm [6].

NetworKit [8] was chosen for community detection because with 
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GTEx V8 as a test case given the significance of this tissue in 
coronary artery disease. GraphBreak and Condor were executed 
to detect communities and see the efficacy by downstream 
analysis of genes in each of communities for their statistical 
significance with disease. The computing facility from 
‘Bioinformatics Centre at University of Eastern Finland’, 
Kuopio campus was used.

Execution of GraphBreak and Condor for
community detection

GraphBreak was used to plot connections between variants and 
genes. Figure 1 below shows a sample GraphBreak plot for 3 
genes as an example.

Connections between genomic variants and genes were plotted 
using Condor as in Figure 2.

Community detection methods were called once connections 
were plotted into memory of data structures. Correspondences 
with Condor authors lead to them developing community plots 
and 16 communities were detected by Condor as shown in 
Figures 3 and 4.
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3

MATERIALS AND METHODS
GTEx [12] V7 data was used for analysis, cis-eQTLs of which was 
generated by FastQTL [13] by GTEx consortium as the following 
downloadable file GTEx_Analysis_v7_eQTL.tar.gz and 
GTEx_Analysis_v8_eQTL.tar.gz. We took only sample data from 
artery – aorta from GTEx V7 and artery-coronary tissue from 
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Flow chart for workflow of GraphBreak.
Figure 2: Condor association connections plot of sample 3 
genes with the genomic variants.

Figure 1: GraphBreak association plot for 3 genes with the 
genomic variants.



Figure 3: Condor communities for sample tissue data 
Artery-Aorta GTEx V7.

GraphBreak obtained about 56 communities comprising of 
expressed genes and associated genomic variants for each, 
GraphBreak plots for 5 communities with only gnes, shown in 
Figure 5.

Figure 6: Bar plot of sum of genes in each of the 
communities obtained by Condor. Note: (       ) Nodes.

Each community obtained by Condor and GraphBreak had 
genomic variants, such as SNPs with them, which can be plotted 
in a similar way. For our current illustration purpose, we focus 
only on set of genes derived for each of the communities as 
downstream analysis.

Downstream analysis methods

Over-representation analysis of genes obtained for each of the 
communities: Set of genes obtained from communities by Condor 
or GraphBreak can be tested for their significance of association 
for functionalities and diseases by means of over-representation 
analysis as detailed in the following paper Drǎghici et al., [14], 
high performance implementation of which was published here 
Fabregat et al., [15]  are based on collection of knowledge bases 
from experimental findings. Reacfoam [15] improvised the 
graphical representation that uses ‘Voronoid Diagram’ to depict 
statistically significant associations for over-representation analysis 
with functionalities and diseases and uses open source knowledge 
of biochemical pathways. Figure 8 shows statistically significant 
results for one community’s (1061) set of genes being significantly 
associated with diseases, metabolism of proteins, immune system, 
metabolism, and cell cycle.

Singh AN

Plotting 57 communities, using GraphBreak would have made 
the plot non-aesthetic, so a few were plotted to ensure that we 
received expected result. Sum of the number of genes in each of 
the communities obtained from Condor and GraphBreak were 
plotted. Condor does not use Louvain algorithm, but igraph, for 
the purpose of finding the communities Barber [5], another 
method which implements modularity detection in bipartite 
network. Figures 6 and 7 show the sum of the genes in 
each community obtained from Condor and GraphBreak, 
respectively.

J Proteomics Bioinform, Vol.16 Iss.1 No:1000625
4

Figure 4: Condor communities for sample tissue data Artery-
Coronary GTEx V8.

Figure 5: GraphBreak (also named as ReGen-for regulatory 
genomic work) communities plot for 5 of the communities.

Figure 7: Bar plot for sum of genes in each 
of the communities obtained from GraphBreak. Note: 
(  ) Nodes.



LD Prioritization analysis of genomic variants obtained for 
each of the communities: Using existing database for variant 
classifications, such as RegulomeDB [16], which classifies 
genomic variants based on already known properties, known as 
an eQTL, or having transcription factor binding site, DNase 
peak, etc., genomic variants grouped in each community can 
then be annotated for functionalities. Next, variants can be 
evaluated for LD amongst each other to reduce possible 
causative variants from those shortlisted in step one. Figure 9 
below shows a simple LD association plot obtained by LDMatrix 
web-applicationt part of LDlink package [17].

focus on visual network exploration, is geared towards network 
science but differs in important aspects from NetworKit. Pajek 
[21], a proprietary GUI application for Windows operating 
systemoffers visualization features with analysis capabilities like 
NetworKit. Pajek XXL, a variant, uses less memory and focuses 
on large datasets. SNAP [22] net-work analysis package has 
recently adopted the hybrid approach of C++ core and Python 
interface.

Related efforts from algorithm engineering community are KDT
[23] (algebraic built, distributed parallel backend), GraphCT [24]
(focused on massive multithreading architectures like Cray
XMT), STINGER (a dynamic graph data structure with some
analysis capabilities) [25] and Ligra [26] (a recent shared memory
parallel library). These offer high performance through native,
parallel implementations of certain kernels. For NetworKit to
characterize a complex network, it would need a substantial set
of analytics, which frameworks currently do not provide. These
tools can be further studied for their usability in current
regulatory genomic network perspective if efficiency was
improved. NetworKit module was preferred in the creation of
GraphBreak as it already offers parallel implementations of
various community detection algorithms and based on its
benchmark performance analysis with closest alternative tools,
such as igraph and graph tool.

As GraphBreak uses NetworKit [8] and NetworkX [11] Python 
modules, its benchmarking and comparative benchmarking 
depends on benchmarking of these modules, which were done by 
the authors of these tools (cited in the references). NetworKit 
outperformed igraph and graph-tool in a comparative 
benchmarking, making it the preference for our ‘Big Data’ eQTL 
biological information. Previously, Kanter et al., [27] used igraph 
for community detection. Algorithms used for these tools would 
be similar, but the optimized implementation differs, as that has 
an effect on the computational resource utilization, parallel 
compute capability, and other performance metrics, apart from 
the fact that an easy to use programming interface is also needed.

Another scalability factor is memory footprint of the graph data 
structure. NetworKit, with 260 M edges of the uk-2002 web 
graph occupies 9 GB with a lean implementation, compared to 
igraph (93 GB) and graph-tool (14 GB), benchmarked by the 
authors NetworKit increasing our confidence in deploying this 
module in Python for developing GraphBreak.

Because of NetworKit’s competitive disk I/O, the parser is 
significantly faster for non-attributed graphs. NetworkX was used 
to load the data to memory for initial calculations and graph 
plotting then a feature was used to convert to NetworKit format. 
Although this used additional time for conversion, it was 
convenient while developing GraphBreak. Comparing NetworKit 
and the various algorithms implemented by these tools, Figure 
10, shows that it outperforms others for community detection- 
making it our preference as a Python module.

Singh AN
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Benchmarking

Igraph [18] and graph-tool’s [19] functionality and target use 
cases are similar to NetworKit, confirmed by authors of 
NetworKit. Packaged as Python modules, they provide a broad 
feature set for network analysis workflows and active user 
communities. They address scalability issues by implementing 
core data structures and algorithms in C or C++; graph-tool 
builds on Boost Graph Library and parallelizes some kernels 
using Open MP.

Gephi [20], a GUI application for Java platform with a strong 
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Figure 8: GraphBreak Community 1061 genes ’Voronoi 
Diagram’ Reacfoam p-value association.

Figure 9: Classifying variants based on their LD associations.



NetworKit, igraph and graph-tool rely on hybrid architecture of 
C/C++ implementations with a Python interface. Igraph uses 
non-parallel C code while graph-tool features parallelism. Graph-
tool’s approach to community detection is different; hence the 
comparison is between igraph and NetworKitfor this 
functionality, which is used in GraphBreak. NetworKit’s authors 
performed the benchmark [8]. GraphBreak would deploy 
corresponding Python modules to igraph or another community 
detection tool if drastics improvements were made. NetworKit 
was the only option for community detection, as closest 
alternatives, i.e, igraph and graph-tool; require a significantly 
higher amount of memory and computational time.

I/O should be taken in account for real workflows, as getting a 
large graph from hard disk to memory often takes longer than 
actual analysis. For benchmark, authors of NetworKit chose 
GML graph file format for input files because it is supported by 
all three frameworks. They observed that NetworKit parser is 
significantly faster for these non-attributed graphs in Figure 11.

Figure 12: Parallel performance of GraphBreak (in this 
case regulatory network analysis so also called ReGen) is 
not greatly benefitted when the bipartite graph also needs to 
be plotted. X-axis number of computing cores, Y-axis time 
in minutes. (Data tested: Artery-Coronary tissue eQTL 
GTEx V8.).

Broad level comparison of two-regulation based community 
detection tools, Figure 12, shows GraphBreak can detect a 
greater number of communities that are over-represented for 
disease.

Parallel mode choice and performance: Speedup would be 
negatively affected by substantial initial section of the algorithm 
that is serial in nature. Additionally, speedup would also depend 
on how well parallelism has been exploited for PLM algorithm. 
We tested GraphBreak’s performance for following system:

Linux 3.10.0-957.12.2.el7.x86_64#1 SMP Tue May 14 
21:24:32 UTC 2019 x86_64 x86_64x86_64 GNU/Linux

Singh AN

This feature can be considered for future improvements in 
GraphBreak. Graph data is currently read using NetworkX 
Python module for initial computation work, such as graph 
plotting, and uses a converter for NetworKit format for 
community detection.

GraphBreak was compared to CONDOR [4], results in 
comparison chart in Figures 12 and 13.
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Figure 11: I/O rates of reading a graph from a GML file: 
NetworKit in comparison to igraph and graph-tool. Note: 
(      ) networkit, (      ) igraph, (       ) graph-tool.

Figure 13: Execution time for GraphBreak (in this 
case regulatory network analysis so also called ReGen), Y-
axis (in seconds), is far less when community detection is 
done without bipartite plotting. X-axis is number of cores 
used for computing. (Data tested: Artery-Coronary tissue 
eQTL GTEx V8.).

Figure 10: Processing rates of typical analytics tasks: 
NetworKit in comparison with igraph and graph-tool. Note: 
(      ) networkit,(      ) igraph, (       ) graph-tool.



Scalability with fast parallel algorithms is limited by size of 
shared memory: A standard multicore workstation with 256 GB 
RAM can process up to 1010 edge graphs or functional 
associations between a genomic variant; this value is large 
enough even if the p-value for associations between the genomic 
variant and gene expression is kept high as a threshold. In the 
future, it could assign different weights per edge connections, 
such as weight being auto-assigned based on p-value of the 
associations.

This article shows GraphBreak’s application for targeting genes 
by overexpression analysis and ability to find the corresponding 
associated genomic regulatory variants. GraphBreak suite could 
incorporate other community detection algorithms. Although it 
takes more time than Condor, in its current state GraphBreak 
performs well for detecting communities. Difference in 
algorithms used for Condor and GraphBreak impacts 
community size and members making it unfair to compare the 
performances of these tools. GraphBreak’s actual performance 
should be benchmarked with its dependency of NetworkX and 
NetworKit their authors already showed superior performances 
in their papers. Newer algorithms could be developed given the 
NP-hard nature of community detection algorithms, which 
would be useful in improvising GraphBreak suite to 
incorporate more algorithmic implementation and options.

From the medical biological perspective, statistical association of 
community members to any known disease would be valuable. 
From test data taken for analysis, GraphBreak is better than 
Condor for this. Many of communities derived from 
GraphBreak leveraged the importance of community 
detection for statistically significant disease associations for 
Artery-Aorta tissue analyzed for GTEx V7, compared to none 
by Condor; while 2 communities came up with disease 
association for Artery-Coronary tissue analyzed for GTEx V8 
data compared to 8 by GraphBreak. Both can be applied for 
other relevant tissues for detecting common set of 
communities having a set of genomic variants regulating a 
set of gene expression from medical-biological perspective. 
This paper showed how genes from each community can be 
analyzed downstream for their statistical associations with 
disease.

Changing community detection algorithm from Louvain and 
Girvan-Newman to Leiden algorithm, which may be better than 
Louvain algorithm as recently published Traag VA et. al., could 
lead to future improvements. As NetworkX module 
functionality, independent of community detection task, 
performs graph plotting for bipartite nature of connections, it 
creates an opportunity of parallelism that can be exploited in 
future improvisation of GraphBreak code. Future work of 
GraphBreak would also make a comparison of Girvan-Newman 
and Leiden algorithm implementation as well for benchmarking 
purpose. Future development can also see automated 
downstream analysis of the individual genomic variants such as 
SNPs in each community with respect to their linkage 
disequilibrium such as those in cis relation, and also automation 
to classify the SNPs based on database of pre-existing regulatory 
information known.

Another possibility of future work would be to use the concept 
of shingling and hashing as proposed by Gibson, to generate
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For data Artery Coronary significant association in GTEx: 
rwxrwxr--. 1 domain users 90M Oct 16 17:10 
Artery_Coronary.v8.signif_variant_gene_pairs.txt*

For varying number of compute cores (Parallel Louvain 
Algorithm) with bipartite plots (Note: This should be done 
when data is small since bipartite graph plot-ting takes 
substantial amount of time, and more importantly, the graph 
plotted would be uninformative and unaesthetic for large 
amount of data).

For varying number of compute cores (Parallel Louvain 
Algorithm) without bi-partite plots we see a significant reduction 
in execution time.

RESULTS AND DISCUSSION
17 of 56 communities detected using GraphBreak for given 
dataset of Artery-Aorta eQTL associations for GTEx V7 were 
able to significantly associate its set of genes with disease; for 
given dataset, 0 of 16 communities detected using Condor 
showed any statistically significant association. While Condor 
could predict 2 Artery-Aorta eQTL associations for GTEx V8, 
GraphBreak was able to predict 8 communities with significant 
disease association. This illustrates that community detection by 
different algorithmic approaches lead to different set of results 
and can have a different impact on downstream analysis. Despite 
the algorithm being at the disposal of the computer science 
world, we find GraphBreak novel role in the field of regulation 
of gene expressions in this gap in research. The data on hand 
dictates the results of communities. With another dataset, the 
results from GraphBreak show significant association with 
diseases and other pathway functionalities while Condor’s 
results underperform.

Many genomic variants were classified based on their regulation 
information in prior knowledge and could prioritize those 
which are already known to be an eQTL by some other study for 
functional validation. They were also investigated for LD. New 
eQTLs could be found. This paper is software and methods 
paper, rather than a scientific results paper, so reporting those 
genes and variants would defeat the purpose. Detailed biological 
and biomedical significance of results obtained using 
GraphBreak and Condor for artery-aorta and other relevant 
tissues for our research interest in coronary artery disease would 
need to be presented in a separate publication. GraphBreak 
could aid other scientists with their research interests in other 
tissues and samples of their interests for GTEx or any other 
datasets [28,29].

CONCLUSION
GraphBreak lies at the intersection of network, regulatory 
genomic science and other analysis such as gene-coexpression. 
State-of-the-art algorithms for network analysis tasks were 
incorporated into Python modules, and then coding 
implementation was done as read-to-use software. This produced 
a tool suite of network analytics based, community generators 
and utility software to explore and characterize regulatory 
networks, such as that of eQTLs network data sets on typical 
multicore processor.
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graph networks where for each of the nodes the values it
contains could be a set of expressed genes, SNPs, known disease,
tissue observed, etc., in order to get a consensus of set of genes,
SNPs, tissues affected in a disease or trait of interest.
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