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Introduction
In this study, we examine statistical methods used to perform 

genome wide association studies (GWAS). GWAS usually apply 
univariate statistical tests to each gene marker or single nucleotide 
polymorphism (SNP) as an initial step. This SNP based test is 
statistically straightforward and the testing is done with standard 
methods (e.g. χ2 tests, regression) that have been studied outside 
of the GWAS context. A recent paper by Kuo and Feingold (2010) 
described the most commonly used methods, and the authors note 
that a compound procedure which combined two or more statistical 
tests is used.

The literature contains a number of papers that make statistical 
power comparisons among subsets of these methods, including 
Sasieni (1997) and Freidlin et al. (2002), but the question of which 
method is best suited to univariate scanning in a GWAS remains an 
open issue. The choice of method depends on the match between 
the true genetic model underpinning the association and the type of 
model assumed by the method. 

We used a multiple test procedure that combines the most 
promising of the methods identified in the literature and apply them 
to a set of synthetic marker data with known properties. Our goal is 
to identify marker properties that can be linked to optimal methods 
(with reference to statistical power) for predicting associations in 
GWAS. We know from prior studies that the statistical procedure 
a researcher chooses influences GWAS prediction accuracy, and 
that there are specific properties of the underlying markers that 
determine the optimization of the procedure choice, see Kuo and 
Feingold (2010). We included the important properties that influence 
the association prediction accuracy into our synthetic marker data 
via a Monte Carlo simulation process, and we link the properties 
to the influencing marker to study their individual and collective 
contributions to association prediction. A synthetic marker dataset 
allows us to assess the performance of different statistical methods 
in a GWAS context. We apply a number of statistical methods to the 

simulated data and use their statistical power profiles to evaluate 
the performance of the methods. We also quantify the relationships 
between locus traits and prediction accuracy. 

Our study identifies a number of these properties and quantifies 
the loss in power if non-optimal methods are used. Similar results 
have been reported in earlier studies by Sasieni (1997) and Freidlin et 
al. (2002).  These studies reinforce the view that the major influence 
on prediction accuracy is the gene model of the locus associated with 
the diagnosis. 

We are particularly interested in assessing the consequences 
of applying a statistical method that assumes an inherent additive 
mode of inheritance (MOI) property to SNP data that is non-additive. 
Our motivation for this is twofold. First, the additive MOI model 
is commonly employed in GWAS, and second, the answer to the 
question: “what statistical methods should be used to conduct GWA 
type studies?” does not have a definitive answer. The best method 
typically depends on what MOI gene model has been associated with 
the associated diagnosis. 

Our results show the major factors that influence association 
predictions. They also indicate that a strategy based on predicting 
associations using multiple statistical methods can be more accurate 
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(much more accurate if the governing marker is recessive) than those 
that assume a single (additive) mode. The multiple test procedure 
proposed here uses a combination of the recessive, additive and 
dominant MOI-optimal statistical methods, all of which are derived 
from the well known Cochran-Armitage test. We also examined 
different procedures for combining the tests.  

Methods
We examine the accuracy of association detection by generating 

synthetic data with properties that are known to influence statistical 
power. We used a Monte Carlo method to generate the data from a 
set of random variables described below. The main purpose of the 
synthetic data is to act as a “truth set” to assess the performance of 
commonly used statistical methods used in a GWAS context.

Generating the data

Our method for generating the synthetic marker data is derived 
from a study by Iles (2002) and is based on Mendelian concepts 
of inheritance. We include autosomal dominant and autosomal 
recessive patterns that are single gene inheritance patterns. We 
also incorporate additive and multiplicative inheritance patterns to 
represent the actions of multifactorial inheritance patterns.    

A description of the data generating process begins from the 
notion of disease penetrance. Penetrance in genetics is the proportion 
of individuals carrying a particular variation of a gene (allele or 
genotype) that also express an associated trait. We designate A as the 
risk allele, and a as the allele without risk. By using the relationships 
between penetrance and relative risk as defined in Table 1, for 
different MOI categories, generating the synthetic gene dataset was 
straightforward. Specifically the steps were:

1. Preload the details that define the factor combinations per MOI
category (we used 864 combinations for this study). The factors
are:

1.1 nj = the target number of cases and controls in a given experiment 
(100, 250, 500,1000, 2000,4000, 8000, 9500),

1.2 dpj = the disease penetrance, (.3, .4, .5),

1.3 ErrPj = the misclassification error rate contained in the phenotype 
data, (0, 2, 5%),

1.4 ErrGj = the misclassification error rate contained in the genotype 
data, (0, 2, 5%),

1.5 Φ j = the relative risk, (1.0, 1.15, 1.3, 1.45),

2. Draw a genotype distribution (at random from the master set of
genotype distributions obtained from real distribution data (i.e.,
the Schymick et al. (2007) data). At this stage, Chan et al. (2009)
recommends that a minor allele frequency (MAF) threshold not be
applied. They argue that filtering MAFs out of the process because
of low frequencies or to maintain Hardy–Weinberg equilibrium
(HWE) deviation has little effect on the overall false positive rate
and in some cases, filtering MAF only serves to exclude SNPs. The
effect of this step is to select a specific genotype distribution (at
random) from the master distribution.

3. Use Table 1 to assign a case (1) or a control (0) based on the
selected genetic relative risk (GRR), penetrance (P) and MOI factors.
This step converts the GRR ratio value into the probability that the
case occurs for the MOI gene model of interest. This process can
be represented by the following logic that was derived from Iles
(2002):

Major Homozygote (aa): Assume that the aa genotype is selected. 
The probability of a case given this selection is equal to the disease 
penetrance P, or. Ψaa  = P.

Minor Homozygote (AA) – liability increasing allele: Assume the 
aa genotype is selected. GRR can be expressed as a ratio of two 
probabilities: the probability of a case for a minor homozygote 
divided by the probability of a case for a major homozygote, i.e.,

ΨAA  = Prob(case/AA) / Prob(case/aa) = x/P.             (1)

From (1) the probability of a case given the minor genotype = x 
= Ψ AA * P                   (2)

where Ψ AA = one of the assigned risk factors and P is one of the
assigned penetrance factors. 

Heterozygote (aA): Assume the aA genotype is selected. By the 
same argument, the phenotype risk given a heterozygote is:

ΨaA = Prob(case/aA) / Prob(case/aa) = y/P,   (3)

By the same arguments, the risk of a case given the heterozygote 
= y = ΨaA * P                     (4)

where ΨaA = one of the assigned risk factors and P is one of the 
assigned penetrance factors.

4. Using the estimate of x and y, assign a case or control at random
using the four different MOI models in conjunction with equations
(2) and (4) and Table 1 below. We assigned cases in proportion
to x (y) and controls in proportion to 1- x (1-y) for the minor
homozygote (heterozygote) genotypes respectively. For the MOI
models that assume an elevated risk from the minor and the
hetero genotypes, we would expect a higher proportion of cases
to be more easily identified via the statistical procedures. The
specification of risk depends on specific and unknown disease
mechanisms. A relative risk of 1.7 is considered strong and is
associated with positive replication, see Sladek et al. (2007), and
a risk of 1.3 is considered by Ziegler et al. (2008) to be a realistic
assumption for complex diseases. We limited our focus to a
relative risk range of 1.15 to 1.45 and were particularly interested
in scenarios with low relative risk.

5. Individuals are either assigned as cases or controls according to
the probabilities given in Table 1.

6. Continue with the above process until n1 cases and n2 controls
are generated (note in this example n1 = n2, but that can be
tailored to a specific set of n1 – n2 targets).

7. Apply a set of statistical methods to predict associations and
record the results.

8. Generate 1,000 replicate experiments for each set of 3,456 factor
combinations.

The simulated dataset that we generated has the following
characteristics:

Major homozygote Minor homozygote1 Heterozygote2

MOI ΨAA

Pr(case/aa)
Ψaa = ____________
Pr(case/AA)

Pr(case/aA)
ΨaA = ____________
Pr(case/AA)

Recessive 1 Φ 1
Dominant 1 Φ Φ
Additive 1 2*Φ-1 Φ
Multiplicative 1 Φ *Φ Φ

1Ψaa is the relative risk of homozygous minor to homozygous majors
2Ψaa is the relative risk of heterozygote to homozygous major

Table 1: Relative Risk assumptions by MOI, see Iles (2002).
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• The proportion of cases (controls) that are major homozygotes =
50.3 (63.0)%.

• The proportion of cases (controls) that are heterozygotes = 39.2
(31.3)%.

• The proportion of cases (controls) that are minor homozygotes =
10.5 (5.7)%.

• With MOI distribution:

o Recessive = 25%,

o Dominant = 25%,

o Additive = 25%, and

o Multiplicative = 25%.

We acknowledge that the distribution of MOI traits above is not
representative of how inheritance traits are distributed in humans. 
The Online Mendelian Inheritance in Man (OMIM, http://www.ncbi.
nlm.nih.gov/omim) provides the best source of information on the 
MOI distribution (Table 2). However, OMIM is disproportionally 
populated by genes linked to single Mendelian disorders. Therefore, 
genes associated with multifactorial disorders are under-represented 
in OMIM. Because polygene influences are assumed to be a major 
source of additive and multiplicative SNP behavior, the distribution 
in Table 2 is likely biased. Accordingly, we populated SNPs in our 
data with equal MOI representation and acknowledge that it is not 
representative of the true distribution.

The three “optimal” MOI specific methods are the three variations 
of the Cochran-Armitage (CA) trend test described in Zheng and 
Gastwirth (2006). We also included a fourth “individual” method, 
the 2df genotype test, which is a commonly used method. Using the 
notation in Table 3 to define the 2x3 table of case-control counts 
stratified by genotype , a test statistic (T2(x)) for the three variations 
of the CA trend methods is defined as:

T2(x) = n [Σ0,1,2  {xi (s ri -  r si)}]2 / [r s (Σ0,1,2  n {xi xi ni } – {Σ0,1,2  (xi

ni)
2 })].                                   (5)

The values represented in equations (5) and (6) are shown in 
Table 3 below and the value of xi defines the specific test x0 = 0, x2 

= 1 and x1 = {0 – recessive, .5 – additive, 1 – dominant).

Under the null hypothesis of no association, T2(x) has an 
asymptotic χ2 distribution with 1 degree of freedom.

As an alternative to equation (5), it is also possible to use a 
normally distributed test statistic per Li et al. (2008):

N(x) = n1/2 [Σ0,1,2  {xi (s ri -  r si)}] / [r s (n Σ0,1,2 {xi xi ni} – [Σ0,1,2  {xi

ni}
2]1/2.                                  (6)

Under the null hypothesis of no association, N(x) has an asymptotic 
normal distribution N(0,1), which suggests a one-sided test because 
the synthetic data assumes that the minor allele conveys the risk of 
phenotype.

We use eight sample size assumptions with equal numbers of 
cases and controls to perform our analysis, with N defined as the 
number of cases = 100, 250, 500, 1,000, 2,000, 4,000, 8,000, or 
9,500. We estimate statistical power by statistical method and N 
using a significance threshold of α = 10-7. In a GWA study, researchers 
usually perform a single marker analysis as a starting point to identify 
SNPs for additional and more comprehensive analysis. This initial 
pass creates a large number of statistical tests as well as a high 
potential for false-positive predictions, which has caused researchers 
to perceive the need for a very low threshold. Accordingly, recent 
studies have used type-I threshold levels on the order of 10-7 as in Iles 
(2002), Ziegler et al. (2008) and Van Es et al. (2008). 

The multi-test statistical methods we use in our comparisons are:

1. The Bonferroni (BON) method, shown in Holm (1979). A simple
form of the Bonferroni correction results when using n methods to
test for an association outcome. The correction involves dividing
the alpha level by n. For example, if the association of a given SNP
involves using three different statistical methods, the corrected
alpha level (α) would be α/3. This would ensure that the overall
chance of making a Type I error is still less than α.

2. A MAX method from Li et al. (2008) that departs from the
Bonferroni method. Bonferroni assumes that the individual tests
are mutually independent, while Li et al. (2008) assumes that the
individual tests are correlated and incorporates an approximation
of the joint distributions into the method.

Results

Results - statistical method assessment 

Table 4 presents power estimates by statistical methods and 
sample size, and is based on a fixed alpha threshold (α = 10-7). All 
tests are one-sided and the tests included in this table are:

• The additive χ2 version of the CA (CA-A) test, which was the best
method for both additive and multiplicative gene models but not
particularly effective when applied to recessive MOI data.

• The Bonferroni test (BON), which uses (combines) the χ2 version
of the recessive, additive, and dominant MOI specific tests (CA-R,
CA-A, CA-D) and improves on the test performance of the three
individual tests when the MOI gene model is not known.

• The MAX test due to Li et al. (2008) which uses (combines) the
Normal version of the CA-R, CA-A, CA-D tests to improve on the
test performance of the three individual tests if the MOI gene
model is not known.

• The dominant χ2 version of the CA test (CA-D), which was the best

Table 2: Distribution of Genes in OMIM by MOI.

Key Words Frequency
Autosomal Dominant 3805
Autosomal Additive 12

Autosomal Multiplicative 21
Autosomal Recessive 3775

Table 3: Terms Defined in Equations (5) and (6).

AA – Major genotype
Aa – Heterozygote genotype
aa – Minor genotype

AA Aa Aa Total
Case r0 r1 r2 R

Control s0 s1 s2 S
Total n0 n1 n2 N

Table 4: Power Results by Statistical Method and Number of Cases: Additive MOI 
Data.

N CA-A BON MAX CA-D CA-R 2df-G
100 2.26 1.73 1.91 0.62 0.46 0.00
250 13.47 12.22 12.25 9.46 5.56 2.41
500 30.00 28.12 28.06 24.19 12.63 10.48
1000 49.91 48.31 48.26 45.72 25.11 25.21
2000 68.80 67.40 67.31 64.72 41.08 46.35
4000 83.00 81.86 81.94 80.25 58.24 65.96
8000 94.30 93.69 93.72 92.58 72.36 80.52
9500 96.07 95.63 95.46 95.01 75.66 83.90

http://dx.doi.org/10.4172/jpb.1000159
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method for the dominant gene models. 

• The recessive χ2 version of the CA test (CA-R), which was the best
method for recessive gene models but the least effective when
applied to non-recessive MOI data.

• The 2df genotype test (2df-g), which is never an optimal method
for any of the scenarios we examined; in every scenario, a more
powerful alternative can be identified (see Table 4).

Our results indicate that the best method in terms of statistical 
power is CA-A, but that little is lost if the MAX method is used 
instead. Similarly, the results in Tables 5, 6 and 7 indicate that the 
best method in terms of statistical power for identifying dominant 
MOI loci is CA-D and CA-R for recessive MOI loci. For multiplicative 
MOI loci, the best method is CA-A. In all four scenarios, little is lost if 
the MAX (or the BON) methods are used as replacements.   

However, if we use the CA-A method, which is advocated by 
many as an initial GWAS pass and the locus in question is recessive 
or dominant, a power loss will occur. Table 8 indicates that while the 
CA-A method is the optimal choice (by as much as 2%), if the MOI of 
the locus is additive or multiplicative, there is a risk of as much as a 
4% power loss if the locus MOI is dominant and as much as 15% loss if 
the MOI of the locus is recessive (see Table 8).

If we knew the distribution of the MOI property, we could assess 
the overall risk of using an additive method such as CA-A for GWAS. 
However, without a reliable estimate, one should exercise caution 
and apply a procedure that limits the risk of making the wrong 
assessment of the MOI inherent to the locus inducing diagnosis. 

Discussion
In the literature, many statistical methods that have been used to 

perform GWAS assume a MOI specific hypothesis. Our results confirm 
the work of many others (see Iles, 2002): that is, in the context of a 
single marker scenario, the best method for predicting associations in 
recessive SNPs was the CA-R method; the best method for dominant 
MOI SNPs was the CA-D method; and the best method for additive 
and multiplicative SNPs was the CA-A method. We also show that 
the 2df genotype method used in many studies (for example, see 
Schymick et al. (2007)) is never an optimal method because there 
are always other methods that provide greater statistical power. This 
statement holds regardless of whether the MOI is known a priori 
or not.  We also show that in the context of a general method to 
use in the initial GWAS pass, researchers may encounter adverse 
consequences if, for example, the MOI of the operating locus is not 
consistent with the assumption employed by the statistical method 
used.  Thus, using 2df does not appear to be appropriate for GWA 
studies in any circumstances.

Consequently, we examined the possibility of employing an 
alternative procedure that incorporates the three core tests defined 
above into two multi test procedures: the Bonferroni procedure and 
the MAX test procedure due to Li et al. (2008). These procedures are 
opposites in many respects, in that they assume different underlying 
distributions of the test statistics. The MAX method assumes that 
the three separate tests have dependencies that can be accounted 
for, whereas the Bonferroni method assumes that they are mutually 
independent. We note that despite these differences, the two 
methods produce similar power profiles.

We generated our results using 1,000 replicates per parameter 
combination. Our standard error estimate of power varies from .262 
to .315. Consequently, our 95 percent confidence interval around the 
mean will be approximately plus or minus .019. While we recognize 
that a larger number of replicates will improve power precision, we 
believe that our conclusion will remain as stated.  

In summary, researchers should consider a multi-test procedure 
combining the results of individual MOI-based core tests as a 
possible statistical method for conducting GWAS rather than a 2df 
test. Combining individual methods and comparing the individual 
and combined results may help identify the MOI character of the 
gene. The actual process of combining the core tests into a single 
operational test can be done in a number of ways, all of which 
produce very similar statistical power profiles. 
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