
Fungal Genomics & Biology

OPEN ACCESS Freely available online

Short Communication

1Fungal Genom Biol, Vol. 12 Iss. 2 No: 1000182

Correspondence to: Dr. Solomon I. Ubani, Department of Nature Sciences, Gaiasce Company and Gss Subsidiary, 18 Haymarket Street, Manchester, 
United Kingdom, Tel: 447405536727, E-mail: soloredzip517@gmail.com 

Citation: Ubani SI (2022) Fungal Mitigation of Sodium Chloride and Chloroform of Rivers and Canals. Fungal Genom Biol.12: 182. 

Copyright: © 2022 Ubani SI. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 

treatment. This was designed for algae growth. The samples were 
taken to ensure nutrients were not counteracting eutrophication 
[25]. The number of representative samples was n≈1000 in as 
many paths of the pine-oak forests. 

Table 1: Properties of sodium chloride.

Properties of sodium chloride

Composition NaCl

Density 2.17 g/cubic cm 

Melting limit 801°C 

Evaporation limit 1413°C 

Classification Salt

Table 2: Primary and secondary outcomes.

Properties of chloroform

Composition CHCl 

Density 1.48 g/cubic cm 

Melting limit 63.50°C

Evaporation limit 61.20°C 

Classification Chloroform

Surface tension 

The chloroform and sodium chloride were added to the samples 
in the bioreactor. A microscope was used to observe the physical 
activity. The survival rate was measured according to upper and 
lower limit of 2-6 on a scale of 1 to 10. The quality of life between 
7-12 on a scale of 1 to 20. When the survival rate was high the 

Fungal Mitigation of Sodium Chloride and Chloroform of Rivers and 
Canals
Solomon I. Ubani*

Department of Nature Sciences, Gaiasce Company and Gss Subsidiary, Manchester, United Kingdom

INTRODUCTION

The chloroform has co-occurring properties. It ensures survival 
of sea going in non-salty riverine. Larvae of insects are considered 
competitors to filamentous fungi. These parasites counteract the 
development. Sodium chloride knows as salt does not cover well 
the hyphal fungi organisms [1-6]. These had a negative effect on 
the number of larvae. Chloroform was more readily absorbed 
by the filamentous fungi. Sodium chloride has a minor effect 
on fungi growth with 1, 5 and 10 larvae reductions of growth. 
Chloroform increased the larvae with a selective priority growth 
of larvae. The rivers and canals during this research were observed 
for 12 days to ascertain the performance of fungi treatment [7-12]. 

MATERIALS AND METHODS

A pine-oak forest with rivers and canals passing on its shores, 
this had a high biodiversity. This report was based on a field 
study of 12 days. To understand the status of the remnant of 
the sea going creatures [13-17]. The growth of fungi was analyzed 
using spectrometer and microscopy. This was used for obtaining 
topographic measurements. The objective was prevention of 
desalination of the rivers and canals [18-24]. Mass spectroscopy 
was used to obtain the challenges in the fungi reduction for larva 
growth for seagoing creatures (Tables 1 and 2).

Assessment and measures

A bioreactor was used to store samples of rivers and canals for each 
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surface tension was low whereas when the quality of life was high 
the surface tension was high. This was a quantitative assessment 
of the reactions occurring in the bioreactor [26]. 

Pearson χ
This was used to indicate a linear trend. To assess the statistical 
significance of the measured results. The logistic models 
indicated the survival rate and quality of life of the samples 
after chloroform and sodium chloride treatment. These two 
variables had more than two categories. The effect showed the 
modifications and interactions for Probability values, P<0.05 
were significant [27,28].

Fungi density

The percentage of sediments in the samples in the bioreactor was 
used to ascertain the depletion of fungal growth. The bulk density 
in chloroform pretreatment was normal between 20-25 kg/m2. 
The density of sodium chloride was low less than 30 kg/m2 [29-
32]. The interaction between these three factors were analysed 
and associations were considered non-significant at P=0.15.

RESULTS 

The results of the multivariate analysis were shown in Table 
3 for both sodium chloride and chloroform treatment. The 
survival rate was written as a ratio. For sodium chloride it was 
1.53 and for chloroform it was 1.72. The quality of life was 
written as a ration for sodium chloride it was between 1.22-1.93 
and chloroform it was between 1.39-2.14. These were the pre-
treatment values [33-38]. The post-treatment yielded different 
values due to disassociation of the fungal growth. The survival 
rate for sodium chloride was 1.36 and quality of life was 1.03-
1.80. The chloroform survival rate was 1.90 and quality of life 
was 1.63-2.22. Thus was statistically higher for the larvae growth 
[39-41].

The fungal density for sodium chloride pretreatment was 
nominal 1.53 and posttreatment nominal was 1.71. The fungal 

density changed during the 12 day time for sodium chloride 
was between 1.25 -1.88 for pre-treatment and 1.37-2.13 for post-
treatment. For chloroform was between the chloroform density 
nominal was pretreatment was 1.64 and post treatment 1.61 of 
the bioreactor. The fungal density changed during the 12 day 
time for pre-treatment was between 1.31-2.04 and posttreatment 
between 1.39 -1.86 [41-45].

DISCUSSION

The purpose of the study was to estimate quantitatively the 
prevalence of fungi growth using the treatments. This was a 
survey of a pretreatment initial process and a comprehensive 
posttreatment of the rivers and canals. The previous research 
estimated the activity had not been representative of population 
of an entire geographical region due to local approach [46-
49]. The population of the treatment had sample averages and 
unequal variances. The pearson χ
depth of fungal depletion before replenishment (Table 4).

There was a prevalence of the sedimentation of the sodium 
chloride for fungal growth initially. This had a percentage effect 
between 54.5 to 71% and the chloroform had a greater difference 
between 43.3 to 87.8% [49-52] (Figure 1).

The statistical significance graph shows the first 6 days both 
the sodium chloride and chloroform performed well in fungi 
treatment. After this the chloroform had a more lasting effect 
with the greatest 9 days from treatment (Table 5).

The activity was about 23% increase from the pretreatment of the 
fungal growth [52-58]. The application of the measures to estimate 
the activity obtained a large difference in sodium chloride and 
chloroform of the bioreactor samples (Figure 2).

The degree of change for the sodium chloride for larvae growth 
was 6 whereas for chloroform it was 8. Therefore the depletion 
used in activities involved larvae ≥ 2. The reactions were not 
observed until this value [58-65].

Table 3: Statistical significance of sodium chloride and chloroform treatment.

Sodium chloride Chloroform

Survival rate Quality of life Fungal density Survival rate Qaulity of life Fungal density

Nominal Min Max Nominal Min Max Nominal Min Max Nominal Min Max

Pre-treatment 1.53 1.22 1.93 1.53 1.25 1.88 1.72 1.39 2.14 1.64 1.31 2.04

Post-treatment 1.36 1.03 1.8 1.71 1.37 2.13 1.9 1.63 2.22 1.61 1.39 1.86

Table 4: Pearson χ2 test of the post-treatment.

t-test: two-sample assuming unequal variances Sodium Chloride Chloroform
Mean 1.556666667 1.706666667
Variance 0.090546667 0.112226667
Observations 6 6
Hypothesized mean difference 0

df 10

t stat -0.815946087

P(T<=t) one-tail 0.21676825

t critical one-tail 1.812461123

P(T<=t) two-tail 0.433536499

t critical two-tail 2.228138852

2 test

2 test was used to evaluate the 
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CONCLUSION

It can be concluded the prevalence of fungi was especially 
high among the sodium chloride treatment. The chloroform 
showed similar trends in the first 6 days. This was used to 
assess the prevalence. The P-vales for the Pearson χ
a linear trend 0.21676825- 1.812461123; **P=0.43353649- 
2.22813885;***P<0.5. Therefore, the results were significant for 
the research. This project was financially supported by Gaiasce 
Company and Gss subsidiary.
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Table 5: Pearson χ

Mean 1.556666667 1.706666667

Variance 0.090546667 0.112226667

Observations 6 6

Hypothesized mean difference 0

df 10

t stat -0.815946087

P(T<=t) one-tail 0.21676825

t Critical one-tail 1.812461123

P(T<=t) two-tail 0.433536499

t critical two-tail 2.228138852

t-test: two-sample assuming unequal variances Sodium Chloride Chloroform
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