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How diverse can function and physiology be on extreme sites? 
How diverse can the species, and their physiological responses and 
adaptations be if the hydric conditions vary from extremely dry to 
extremely flood along the annual course? How specialized do species 
need to be, which physiological amplitudes can or must species possess 
on extreme sites? The term‚ extreme site’ is frequently used in current 
publications, but its delimitation and definition are not clear. The above 
mentioned questions have been a challenge in the past decades for 
ecologists and physiologists. I propose a definition of the term‚ extreme 
site’ basing on the biological stress concept, Larcher [1] which states 
that, resulting from cumbering climatic conditions, limited nutrient 
availability, biological competition and damage, plants are subjected 
to a variety of strains, for which the term stress is used. Extreme sites 
are therefore “environments in which one or more factors are over- or 
underrepresented in a manner that the organisms can live there only 
if they possess special adaptations”. These environments normally are 
represented by polar deserts in the Antarctic region [2] arid deserts [3-
5] alpine environments with debris [6], or inselbergs [7,8]. Ecosystems
with extreme conditions where non-coniferous trees dominate, for
example, gallery forests in deserts and savannas or mangrove forests
along tropical coasts, normally represent forests with low diversity
of species and a low diversity of physiological responses [9,10].
On the other hand, there are extreme sites which show a very high
diversity despite unfavourable growth conditions–a good example are
Amazonian floodplain forests [11]. These show all the characteristics
typical for a stressful extreme site: uninterrupted flood duration with
high amplitudes, rapid changes of water levels, anoxic conditions in
the rhizosphere, high sedimentation in várzea, nutrient scarcity in
sediment-poor igapó, high mechanical stress, sometimes even drought
contribute to make growth and establishment difficult for most
organisms [12,13].

Despite the strongly restricting environmental conditions, 
Amazonian floodplain forests are characterized by an extremely high 
diversity of species and physiological responses [14-17]. This diversity 
results from the fact that the stressors in this extreme site possess only a 
low level of restriction for tree life, and disturbances may even represent 
an enhancing factor for resistance and adaptive evolution. The high 
complexity of the system and the short, but regular presence of factors 
favourable for high physiological performance allowed the evolution 
of highly diverse survival strategies. The species living there partly are 
highly specialized, but most of them have rather high physiological 
amplitudes. One may say the physiological specialization of the trees 
is low enough to be able to respond flexibly to changing environmental 
conditions and guarantee survival. On the other hand, specialization 
is high enough to allow a high diversity and establish different species 
along hydric and edaphic gradients.
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