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INTRODUCTION OF BILE ACIDS
The human colonic microbiota is a large and complex microbial 
community, which involved in metabolism of carbohydrates, 
proteins and bile acids. It plays an important role in human health 
[1-3].The undigested dietary carbohydrates can be converted 
into the short chain fatty acids by gut microbial fermentation 
[2]. Human gut microbiota can produce metabolites by protein 
fermentation which have beneficial or harmful physiological 
effects on humans [3]. There is no evidence that a fraction of 
ingested lipids is degraded by the microbiota. However, ingestion 
of lipids is linked to bile acids secretion [4].

Bile flow is generated mainly by bile acids which converted 
into from cholesterol. About 50% of cholesterol in the body is 
excreted in the form of bile acids. This is the important way of 
cholesterol metabolism. Primary bile acids Cholic Acid (CA) and 
Chenodeoxycholic Acid (CDCA) are synthesized in the liver and 
conjugated with the amino acids glycine or taurine, stored in the 
gall bladder. Following a meal, they are secreted into the small 
intestine where they play an important role in digestion of fat and 
fat-soluble vitamins. About 97% of bile acids are reabsorbed in the 
ileum and return to the liver, 3% enter the large intestine. Glycine 
and taurine conjugates of CA and CDCA are transformed into 
the secondary bile acids deoxycholic acid (DCA), lithocholic acid 
(LCA) and a small amount of urosodeoxycholic acid (UDCA) by 
microbiol actions. According to the hydrophobic property, bile 
acids is in the order of LCA>GCDCA>DCA>CDCA>CA. Less 
hydrophobic bile acid CA has no cytotoxic effects [5].

Bile acids are known for their role in promoting lipid absorption 
and maintaining cholesterol balance, but they also act as messenger 

to regulate their own synthesis and play an antibacterial role to 
protect intestinal mucosa [6]. Bile acids also damage gut barrier. 
In conclusion, the interaction between bile acids and intestinal 
mucosa is unique. Each bile acid plays a different role due to its 
different physiological characteristics.

INTERACTION BETWEEN UDCA AND INTESTINAL 
MUCOSA
UDCA is a hydrophilic dihydroxycholic acid first found in bile 
duct of the Chinese black bear [7]. It is formed by differential 
isomerization of hydroxyl groups at C7 of primary bile acid 
CA under gut microbial activities [8,9]. It’s a physiologic cholic 
acid that is low in humans. UDCA plays an important role in 
protecting gut barrier. It plays an immunomodulatory role by 
downregulating the secretion of IL-8 in intestinal epithelial 
cells [10]. It can protect colon epithelial cells from DCA [11]. In 
indomethacin-induced enteropathy, a model of Crohn’s disease, 
UDCA has a protective effect by reducing epithelial permeability 
and decreasing oxidative stress [12-15]. When different 
concentrations of UDCA were applied to trinitrobenzenesulfonic 
acid-induced colitis, it was found that 50 mg/kg of UDCA had 
therapeutic effect, with the increase of s100A8, a neutrophil/
monocyte marker, and augmentation of IL-1β expression [13]. 
Primary biliary cirrhosis patients who treated with UDCA has 
higher expression of BCRP an  apical ATP-dependent efflux 
pumps of intestinal epithelia, than normal. BCRP plays a key 
role in extruding toxins and carcinogens from enterocytes into 
the intestinal lumen often after glucuronidation or sulfation. It is 
believed that UDCA stabilizes the small intestinal detoxification 
machinery through the upregulation of BCRP [14].
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INTERACTION BETWEEN DCA AND INTESTINAL 
MUCOSA
DCA is a potentially toxic secondary bile acid. It is converted 
from CA which is modified by deconjugation followed 
by dihydroxylation at C-7 by bacterial enzymes [15]. High 
concentration of DCA in the large intestine has been found to 
be particularly harmful to colon epithelial. Not only can DCA 
induce DNA damage in the colonocyte cell line HT29 [16], but 
also cause DNA damage and apoptosis in the HCT-116 human 
colon adenocarcinoma cells [17]. While DCA is suspected to have 
mutagenic and carcinogenic effects because of its genetic toxicity 
[18]. DCA in the physiological concentration range inhibited 
intestinal epithelial cell proliferation via an FXR-dependent 
mechanism that may include downstream inactivation of the 
EGFR/Scr/ERK pathway [19] and inhibited colonic epithelial 
wound healing by activation of FXR, with down regulation of 
CFTR expression [20]. In patients with collagenous colitis in 
remission, normal concentration of DCA exacerbated the already 
impaired mucosal barrier function by increasing bacterial uptake 
fourfold [21]. DCA is also a pro-inflammatory factor. One study 
has shown that colitis can be induced in rats by giving them a diet 
containing DCA [22].

INTERACTION BETWEEN LCA AND INTESTINAL 

MUCOSA
LCA is formed by deconjugation of CDCA followed by 
dihydroxylation at C-7 by bacterial enzymes [15]. Recent studies 
suggested that LCA can be used as one of  potential biomarkers 
to assist diagnosis of disease [23]. LCA can destroy the integrity 
of colonic mucosal membrane and cause mucosal hyperplasia, 
but also has mutagenic effect. LCA and 3KCA can bind and 
transactivate the vitamin receptor, the pregnane X receptor and 
farnesoid X receptor. These receptors are highly expressed in 
the intestine. LCA regulate bile acid synthesis, metabolism and 
transport through its interaction with PXR, VDR and FXR [24].
One study suggested that PXR-mediated repression of NF-κB 
target genes in the colon is a critical mechanism by which PXR 
activation decrease the susceptibility of mice to DSS-induced IBD 
[25].While LCA is a direct agonist ligand for the human PXR 
receptor [26]. 

INTERACTION BETWEEN CDCA AND INTESTINAL 
MUCOSA
It has been evidenced that the genotoxicity of chenodeoxycholic 
acid CDCA has DNA damage [27]. CDCA can induce apoptosis 
and upregulate expression of COX-2 in a concentration- and 
time-dependent manner [28,29]. A research indicated that 
CDCA promoted tumor growth through decrease of MCT1- 
and SMCT1-mediated butyrate absorbed in intestinal epithelial 
[30]. Another study gave an information that in people with 
oral CDCA the colonic transit accelerated significantly, stool 
frequency increased and stool consistency decreased [31]. To 
Irritable bowel syndrome (IBS), some researchers found that the 
concentration of fecal primary BA was dramatically higher and 

the percentage of fecal secondary BA was lower in patients with 
diarrhea-predominant IBS (IBS-D) than in healthy subjects (HS) 
[32]. This may explain the reason of diarrhea in IBS caused by 
increase of concentration of primary BA.

BILE ACIDS AND GUT MICROBIOTA
Intestinal flora plays an important role in maintaining host 
health. It not only obtains nutrition and energy from food, but 
also produces some related metabolites such as bile acids that can 
regulate host metabolism. The biotransformation of bile acids is 
accomplished by the action of intestinal flora, which is mainly 
regulated by FXR receptor and TGR5 receptor related signaling 
pathways [33]. Similarly, bile acids can also affect the survival and 
growth of bacteria by regulating the expression of FXR receptors. 
There is interaction between bile acids and intestinal flora [34]. 
The level of intestinal bile acid is related to the overgrowth and 
inflammation of intestinal bacteria [35,36].

BA is one of the host factors that regulate composition of 
gut microbiota, and oral bile acids (BAs) induce changes in 
gastrointestinal bacterial populations [37]. Gut bacterial species 
is important for bile acids diversity. A research showed that the 
rats lack of intestinal microbiota had decreases of secondary BAs 
and increases of conjugated Bas [38]. In patients with ulcerative 
colitis, concentration of secondary BA was lower in the presence 
of intestinal microdysbiosis and exacerbated gut inflammation 
[39].

The different bile acids play some different important roles in 
the intestinal tract and gastrointestinal diseases. The interaction 
between bile acids and intestinal flora affects the maintaining 
homeostasis.
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