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Abstract
Clusterin (CLU) is a chaperone-like protein and has been discovered more than thirty years ago; however, its 

biological significance is still not fully understood. This review aims to summarize the principal observations of CLU 
roles related to the kidney. In humans, three or more mRNA isoforms of CLU could be expressed due to different 
translation start sites, but only two forms of CLU protein, secreted (sCLU, isoform 2) and nuclear (nCLU, isoform 1), 
have been well characterized, whereas there is only sCLU form in mice. In the biopsies of renal tissue from patients, 
up regulated CLU expression has been found in rejecting kidney transplants or diseased kidneys, and a lower level 
of serum CLU is correlated with many types of kidney disease in patients. In mice, a deficiency in CLU expression 
specifically leads to the phenotype of age-dependent chronic glomerular injury - moderate to severe accumulation 
of the mesangial matrix, becomes more susceptible to ischemia-reperfusion injury (IRI), negatively impacts renal 
repair after IRI and worsens renal fibrosis after ureteral obstruction. All these observations may imply the biological 
significance of CLU for the maintenance of the tissue homeostasis in adult kidneys. However, how CLU protects the 
kidney from injury or by which extracellular and intracellular pathways mediate the cyto-protection of CLU in the kidney 
has not been well investigated. Understanding of the cyto-protective activities of CLU in the kidney could lead to the 
development of novel therapeutic strategies for the prevention and/or treatment of kidney injury or diseases.
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CLU Gene, Isoforms and Cellular Localization
Clusterin (CLU) protein was first discovered more than thirty years 

ago [1], and a large volume of research has been dedicated to it since 
– there are more than two thousand publications in Pubmed/NCBI
databases when using ‘clusterin’ as a keyword search criteria today.
Human CLU gene (NCBI Gene ID: 1191) is located at chromosome
8p21-p12, and consists of 10 exons, in which the first two exons
are alternative (designated 1 and 1’) [2]. Thus, CLU gene can be
transcribed into at least three mRNA variants (NCBI Reference No.:
NM_001831.3; NR_038335.1; NR_045494.1) or perhaps even more
[3]. The mRNA isoform 1 is a major form of CLU mRNA, whereas
other forms including mRNA isoform 2 collectively count for less
than 1% of total CLU mRNA [3]. Two isoforms of CLU proteins have
been well characterized; nuclear isoform of CLU (nCLU, isoform 1)
containing the nuclear localization signal that is translated due to the
splicing at exon 1 and 3 together placing a downstream AUG at exon
3 as the first available translation and lacking of exon 2 [3,4], while
pre-secreted isoform of CLU (sCLU) containing the endoplasmic
reticulum (ER)-targeting signalencoding in exon 2 [3]. The nCLU is
translocated into the nucleus after translation andprobably without
glycosylation [3], whereas the pre-secreted sCLU is targeted to ER and
Golgi bodies glycosylation and cleavage between Arg-205 and Ser-206
to produce mature sCLU, a secreted disulfide-linked heterodimer of
α- and β-chains [5-7]. Under certain stress conditions, sCLU however
can be retrotranslocalized into the cytosol instead of secretion [8].
However, the cellular localization of all these isoforms and their
expression are largely unknown. Murine CLU gene (NCBI Gene ID:
12759; MGI ID: 88423) is found at chromosome 14, and contains nine
exons that are only transcribed to a single mRNA (NCBI Reference
No.: NM_013492.2, 1808 bp) [9]. nCLU isoform has not been found
in mice as of yet. The homolog of mouse CLU to human sCLU is 75%
at the amino acid level, and both have the same ER-targeting signal
peptide and the cleavage site [9] (Figure 1). By immunohistological
staining using the same anti-CLU α-chain antibody, CLU protein was
localized inhuman kidney sections in the same pattern as that of mice
(Figure 2). Thus, CLU in mice can serve as a counterpart for sCLU

(both extracellular and intracellular) in humans, particularly in the 
study of the kidney disorders.

In the human body, sCLU is a major glycoprotein in all the 
physiological fluids such as plasma, milk, urine, cerebrospinal fluid, 
and semen [6]. It is constitutively produced and secreted by almost all 
cell types that form the cellular interfaces of fluid compartments [6], 
and similarly by the liver [10]. The serum levels of sCLU in humans are 
present in a range of 35-353 µg/mL [11-14]. In tissue, upregulation of 
CLU expression (probably including nCLU) is associated with many 
pathophysiological processes, such as neuropathologies [15,16], heart 
disease [17], cancer [18-20], kidney transplant rejection, and kidney 
disease including glomerulonephritis [21,22]. In rodents, renal CLU is 
upregulated following a variety of insults, such as unilateral ureteral 
obstruction (UUO) and ischemia-reperfusion injury (IRI) [23,24], 
acute glycerol-induced renal failure, chronic vitamin E and selenium 
deficiency [25], lupus-like nephritis [26], and in resident glomerular 
cells exposed to complement-mediated injury [27]. The CLU expression 
in glomerular mesangial and epithelial cells, as well as renal proximal 
tubular epithelial cell (TEC) is increased in response to the stimulation 
of thrombin [28] and hypoxia in our unpublished observations. Further 
studies indicate that CLU is an apically secreted glycoprotein in renal 
TECs [29], and is detected in both viable and apoptotic cells following 
renal injury [23,30]. The molecular mechanism(s) for either constitutive 
or inducible expression of CLU have not been well investigated. It has 
been reported that CLU gene proximal promoter contains a ‘clusterin 
element’ (CLE) that is specifically bound by heat-shock factor (HSF) 
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1 after heat shock, or by HSF1-HSF2 up on proteasome inhibition 
[31,32], resulting in the induction of CLU gene transcription.

Biochemistry and Functions of sCLU
The primary structure of sCLU in both α- and β-chain subunits 

contains several large molten globule domains, amphipathic regions 
and coiled-coil α-helices [9,33-35], which are typical of molecular 
chaperone - conformational adaptability to allow CLU protein to bind 
its substrate proteins or lipids with high affinity and low specificity 
[35-37]. Furthermore, one study has revealed that the glycosylation of 
sCLU may not be required for its overall secondary structure content 
and binding activity to its substrate [38].

The biological activities of extracellular sCLU have been studied 
extensively; it was initially found to induce cell aggregation [39-41], 
and in the plasma it inhibited the cytolysis of complement membrane 
attack complex (MAC) by binding to the complement components 
[42-44], and was associated with both high-density lipoprotein 
(HDL) and low-density lipoprotein (LDL) complexes [33,45,46]. 
These studies suggest that sCLU in the blood may serve not only as 
an inhibitor of the lytic terminal complement cascade, but also as a 
regulator of lipid transport and local lipid redistribution. Furthermore, 
addition of sCLU prevents cell apoptosis in cultured cells treated 
with TNF-α, H2O2 or gentamicin probably by activation of magalin-
phosphatidylinositol 3-kinase/Akt pathway [47-49], and mediates 
clearance of cellular debris into non-professional phagocytes [50]. 

Figure 1: Sequence alignment between mouse CLU (top sequence) and human sCLU (bottom sequence). The same amino acid residues were underlined with “”. 
ER-targeting signal peptide (mouse: 1-21; human: 1-22), and the cleavage site (Mouse: R226 – S227; human: R227-S228).

Figure 2: Induction of CLU protein in both tubules and glomeruli following transplant rejection or IRI. Kidney tissues were fixed in 10% buffered formaldehyde, 
embedded in paraffin, and then sectioned for immunohistochemical staining with goat polyclonal anti-CLU-α (C-18). (A) Biopsy sample of rejecting kidney transplant 
(Banff 97 grade 1 chronic rejection) from a 15-year old female patient (provided by Dr. Alex Magil, St. Paul’s Hospital, Vancouver, BC, Canada). (B) Mouse kidneys 
with renal ischemia-reperfusion injury. Brown color (also pointed by red arrows): positively stained cells. The data are presented as a typical image from each 
examination.
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Based on all of these observations, it has been proposed that sCLU 
functions as an extracellular chaperone, a previously unknown quality-
control system for protein folding that mediates the recognition and 
disposal of extracellular misfolded proteins via receptor (i.e. megalin)-
mediated endocytosis and lysosomal degradation [51]. This hypothesis 
is supported by a recent study showing that sCLU in the blood binds to 
a panel of proteins, including ceruloplasmin, fibrinogen, and albumin, 
in response to physiologically relevant stress [52]. 

Inside human cells, in addition to nCLU isoform that is mainly 
localizing in the nucleus and triggers cell death [53], sCLU could redirect 
to the cytosol under cellular stress [8, 54]. In mice, CLU in normal tissues 
(heart and kidney) is present as a single protein band at approximately 
40 kDa in Western blot analysis in our studies [24,55,56], while in 
cultured cells from these tissues two protein bands at approximately 
60 kDa and 40 kDa are detected [24,55,56], suggesting that mouse CLU 
probably is also retrotranslocated to the cytosol following exposure to 
sub lethal stress in culture conditions. A variety of biological activities 
of intracellular sCLU or cytoplasmic CLU (cCLU) have been reported; 
it inhibits apoptosis by the interaction with BAX or GRP78 [54,57,58] 
or promotes cell survival by the activation of Akt and NF-κB pathway 
[48,59]. It is of much more interest to see that sCLU (~70 kDa) acts as 
an intracellular chaperone to interact with both ATP7A and ATP7B 
(Cu-ATPases) and facilitates degradation of misfolded/mislocalized 
mutant ATP7B [60]. Whether or not intracellular sCLU plays a role 
in ER quality control machinery that facilitates the degradation of mis/
un-folded proteins in ER remains further investigation.

Requirement of CLU for organogenesis

During rodent embryogenesis, CLU expression is detected in a 
variety of the tissues in many developing organs, such as the epithelial 
cells of comma and S-shaped bodies of the primordial kidney [61], 
developing islet of Langerhans of the primordial pancreas [62], 
myocardial cells adjacent to developing endocardial cushions of both 
atrioventricular canal and truncusarteriosus, stromal connective 
tissue throughout leaflet formation of the developing hearts [63], 
hypothalamic region, neocortex and hippocampus of the developing 
brain [64,65]. Interestingly however, complete knockout (KO) of 
CLU expression in CLU KO mice has not been found to cause any 
phenotypic change in postnatal development as compared to WT 
mice [66], suggesting that CLU may not be absolutely required for the 
differentiation and morphogenesis of an organ (i.e. kidney). Although 
brain weight, neurons, astrocytes and oligodendrocytes are not 
significantly different between WT and CLU KO mice during postnatal 
development, it is noted that there is a significant deficit in motor cells 
(~16%) in the facial nucleus in CLU KO compared with WT mice 
[64], suggesting that CLU may have a negative impact on neuronal 
development in certain motor nuclei. Indeed, in cultured progenitor 
or undifferentiated cells, CLU enhances neuronal differentiation 
from neural precursor cells [67], and ectopic over expression of CLU 
significantly up-regulates the expression of morphogenic factor Pdx-1 
and Ngn-3 that is correlated with an increase in β-cell transformation 
from neogenic ductal cells [68], and increases CXCR4 expression 
and migration of cardiac progenitor cells by [69]. We have recently 
demonstrated that kidney repair or tissue regeneration is impaired 
after IRI in CLU KO mice [55], suggesting that CLU may play a key 
role in the differentiation and migration of renal stem/progenitor cells 
that have been found to contribute to renal repair after injury [70-72] 
which however remain elusive.

CLU as a Kidney ‘Bodyguard’ 
The cytoprotection of sCLU in human kidney disease

sCLU in the body fluids has been reported to bind to MAC 
component(s) [42-44], all types of immunoglubins, particularly 
aggregated IgG [73], and lipoprotein particles [33,45,46]. In renal 
biopsies from all forms of kidney disease, the terminal complement 
complex is identified, at least partly, in sCLU-SC5b-9 complex both in 
the specific immune glomerular deposition and in the “non-specific” 
deposition in areas of renal injury [11,21,74,75], and glomerular CLU is 
co-localized with LDL receptor (LDR-R) in patients with membranous 
glomerulonephritis (MGN) and is associated with a reduction of 
proteinuria after a follow-up of 1.5 years [74]. In patients’ sera, sCLU 
levels are markedly lower with active membranous nephropathy 
(MN), focal segmental glomerulosclerosis (FSGS), and in children 
with steroid-responsive nephritic syndrome (NS) compared to 
controls [76]. So far, the role of sCLU in the pathogenesis of human 
kidney disease has not been well investigated. Saunders et al. [77] have 
reported that perfusion with sCLU-depleted plasma from patients with 
Heymann nephritis induces glomerular injury and significantly greater 
proteinuria in an isolated rat kidney model, and sCLU prevents MGN 
serum-activated cellular stress in cultured podocytes [74]. All these 
observations may uncover an important role for serum sCLU in the 
protection of the kidney fromplasma-induced injury, which however 
remains further investigation.

An emerging hypothesis suggests that extracellular chaperones 
(ECs) including sCLU likely patrol biological fluids for misfolded 
proteins and facilitate their clearance via endocytic receptors to 
maintain protein proteostasis in fluids such as plasma [51,78,79]. If 
this hypothesis is correct, sCLU may protect the kidney from injury 
by at least two mechanisms: First, extracellular sCLU may facilitate 
the clearance of mutant, misfolded or unfolded proteins that are the 
result of immune activation and/or direct nephrotoxicity. Hence, a 
lack of sCLU or the imbalance of sCLU to “nephrotoxic” proteins will 
result in the aggregation/deposition of these proteins in the kidney and 
cause kidney damage. Indeed, a high level of aberrantly glycosylated 
IgA1 and its associated immunocomplexes induce glomerular injury, 
and are a pathogenic factor for the development of IgA nephropathy 
[80-83], and extracellular mis-/unfolded amyloidogenic “precursor 
proteins”, such as serum amyloid A, apolipo protein AII, and Ig light/
heavy, form amyloid fibril deposition in the kidney, causing kidney 
injury and failure (amyloidosis-associated kidney disease) [84]. Second, 
extracellular sCLU may be required for the efficiency of the kidney in 
metabolic clearance of proteins. It has been recognized previously that 
the kidney is responsible for 30% to 80% of the metabolic clearance of 
protein/peptide ‘waste’ in the plasma [85,86], and recently, Wilson et 
al. has demonstrated that proteins injected into rats are cleared more 
rapidly from circulation when complexed with sCLU [79], suggesting 
that in low sCLU states, the inefficiency of the metabolic clearance of 
protein waste will induce cellular stress in the kidney, resulting in the 
disturbance of tissue homeostasis. Further experimental studies are 
needed to confirm this novel observation.

CLU and kidney injury in animal models

The effort to understand the role of sCLU in the pathogenesis of 
kidney disease using CLU KO mice has been carried out by our lab 
and others. Total knockout CLU expression in mice does not change 
their phenotype [66]; organ development and reproduction in young 
CLU KO mice are not different from wild type (WT) mice. However, 
by 21 months of age, up to 75% of glomeruli in CLU KO mice exhibit 
moderate to severe mesangial lesions - the accumulation of the 
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mesangial matrix and the presence of intra mesangialtubulo-fibrillary 
structures as compared to little or no glomerular injury in WT controls 
[87]. Furthermore, the immune complexes of IgG, IgM, IgA, and in 
some cases C1q, C3, and C9 in the glomeruli could be detectable as early 
as 4 weeks of age of CLU KO mice, and these immune complex lesions 
can be induced as early as 3 months of age by unilateral nephrectomy 
[87]. The phenotype of age-dependent glomerular injury in CLU KO 
mice clearly suggests the biological significance of CLU for tissue 
homeostasis of the kidney. Recently, we and others have demonstrated 
that following renal IRI or UUO, renal CLU expression is up-regulated 
[24,55,88], and the lack of CLU expression in the kidneys worsens IRI 
[24], impairs renal tissue repair after IRI [55] and accelerates renal 
fibrosis or increases the levels of plasminogen activator inhibitor 
(PAI)-1, type I collagen, and fibronectin in response to obstruction 
[88]. These results may suggest that upregulation of CLU during renal 
injury is a protective response that may prevent cell death during IRI, 
facilitate renal tubular cell proliferation for renal repair after IRI, and 
maintain renal tissue homeostasis against the development of renal 
fibrosis. These observations suggest there is still much to learn about 
the role of sCLU in development various kidney pathologies. Further 
studies by using CLU KO mice as a negative control to investigate the 
cytoprotection of CLU in the kidneys of WT mice are needed.

Conclusion
The study of CLU in acute kidney injury and chronic kidney disease 

is but one segment of a host of additional biomedical research fields 
such as cancer, cardiovascular disease and Alzheimer’s disease, which 
are actively studying the role of CLU since it was discovered more 
than 30 years ago. Accumulating evidence in the literature reveals the 
chaperone activity of sCLU in both extracellular and intracellular fluids 
to maintain the protein proteostasis, by which sCLU could protect the 
kidney from injury (Figure 3). We believe that further understanding of 
the role of sCLU in the development of kidney disease is required and 
may help to develop therapeutic strategies specific for the prevention or 
treatment of a variety of renal pathological states.
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