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Abstract
Background: There is increasing evidence that specific ambient air pollutants are associated with coronary 

heart disease (CHD) morbidity and mortality and risks may differ by gender. Renal transplant recipients have 
previously been identified as a potentially sensitive subgroup. The purpose of this study was to evaluate the possible 
effect of long-term ambient pollutant ozone (O3) and particulate matter (PM10) on risk of coronary heart disease 
(CHD) mortality and determine if gender differences exist among renal transplant recipients. 

Methods: This retrospective cohort study included 38,101 (22,276 males and 15,825 females) subjects identified 
through the US Renal Data System (USRDS), which included adult, renal transplant recipients, transplanted between 
1997-2003, and living in the continental U.S.A. Air pollution statistics collected over the national ambient monitoring 
network, were extracted from US Environmental Protection Agency (EPA) Air Quality System (AQS). Mean monthly 
concentrations of O3, and PM10 calculated from ambient monitoring data and interpolated to ZIP code centroids 
according to residence of the subjects. Cox proportional hazard models used to estimate effect of air pollutants on 
mortality (CHD) risks, while adjusting for potential confounders. All analyses conducted were gender-specific.

Results: In both the age-and multivariable adjusted models, there was a significant association between risk of 
fatal CHD and O3 for females (HR=1.56, 95%CI: 1.06-2.30), no significant association found for males. O3 displayed 
the strongest association with CHD mortality among females with a HR=1.57 (95%CI: 1.07-2.30) after adjustment 
for PM10 in the two pollutant multivariable model. For both pollutants and across all models, females consistently 
experienced greater risk than males. No significant association identified for PM10 for either gender.   

Conclusions: The findings from our study have potential implications for policies and regulations of air pollution.  
Gender, as a higher risk category, may be relevant in developing individual CHD risk reduction strategies for renal 
transplant recipients to ultimately improve long-term survival.  
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Background
Substantial epidemiological research has identified a potential link 

between ambient air pollutants and a number of adverse cardiovascular 
(CVD) health outcomes [1-10]. Subpopulations with states of chronic 
inflammation such as diabetes and hypertension experience enhanced 
susceptibility to adverse cardiovascular conditions associated with 
ambient air pollution [11-14]. Both gaseous and particulate ambient 
air pollutants, including ozone and particulate matter have been 
identified as potential agents capable of instigating inflammatory 
response associated with exposure, with some of the greatest risks 
identified for individuals with compromised health status. Across a 

number of air pollution studies researchers have identified potential 
gender differences in risk [10,15-17]. Recently, we have identified 
renal transplant recipients as potentially another sensitive subgroup 
experiencing enhanced susceptibility associated with air pollution 
and the identified associated risks may not be gender equal [18]. 
Both traditional risk factors (including diabetes and hypertension) 
and nontraditional risk factors (e.g. inflammatory markers and 
immunosuppressive medications) are prevalent in renal transplant 
recipients [19, 20].   

Numerous epidemiological studies have provided evidence 
indicating that women may be at increased risk of adverse health 
events associated with air pollution, however it remains to be 
determined if female transplant recipients are at greatest risk. Chen et 
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al. have previously reported gender-based differences for risk of fatal 
CHD with women experiencing a higher risk associated with chronic 
ambient particulate pollution [10]. The observed differences between 
men and women may be due to biological factors (i.e. lung volume, 
hormonal activity…etc), environmental activity exposure patterns 
(i.e. job related…etc.) or a combination of both [21]. It is important 
to determine if risk of CHD mortality associated with chronic ambient 
air pollution differs by gender among renal transplant recipients, as 
identification of risk reduction opportunities could ultimately reduce 
CHD morbidity and mortality and positively influence longevity.  

The purpose of this study was to evaluate the potential association 
between long-term ambient air pollutants (O3 and PM10) and the risk 
of CHD mortality and determine if any gender differences exist among 
renal transplant recipients.

Materials and Methods

Study population

Study subjects were identified through the US Renal Data System 
(USRDS). The USRDS is a national data repository containing 
extensive demographic (including updated residential information) 
and diagnostic data (including extensive transplantation information), 
biochemical values, dialysis claims and information on treatment 
history, hospitalizations, physician/supplier services and mortality data 
for all persons living with end-stage renal disease (ESRD) and renal 
transplant recipients. The USRDS is funded directly by the National 
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and 
collaborates with other agencies including CMS (Centers for Medicare 
and Medical Services), UNOS (United Network for Organ Sharing), 
the Centers for Disease Control (CDC), and ESRD Networks to share 
datasets and work to improve the accuracy of patient information 
contained within the USRDS database. All data derived through 
the USRDS database has been validated [22]. Our study population 
included all primary renal transplant recipients, 18 years and older, 
transplanted between 1997-2003, with at least one year of graft survival, 
and living within the continental U.S.A. Only subjects residing within 
the same ZIP-code during the entire follow-up study period were 
included in analysis. Subjects were followed until date of event (CHD 
mortality) or censoring which occurred at the end of the study period 
(10/31/2003). Censoring included death from non-CHD causes or 
the end of the study. Those who smoked cigarettes (N=2,502) at the 
time of transplant were excluded. Thus a total of 38,101(22,276 males, 
and 15,825 females) non-smoking, renal transplant recipients met the 
inclusion criteria and were included in this study.  

Pollution exposure assignment

Air pollution statistics collected over the national ambient 
monitoring network from 1997-2003, as well as the geographic 
coordinates of each fixed monitoring station, were extracted from 
the US Environmental Protection Agency (EPA) Air Quality System 
(AQS). The detailed methods for assigning air pollutant estimates for 
each individual subject have been previously described in detail [18].  
Briefly, hourly O3 and PM10 data were collected for each monitoring 
location and were used to create monthly average values for each 
site. ArcGIS 9.3 (ESRI, www.esri.com) was used for all spatial data 
manipulations and implementation of exposure models in order to 
estimate air pollutant concentrations for each subject. Estimates of 
monthly concentrations of ambient O3 and PM10 were created for each 
of the study subjects according to their residential address at the time 
of transplant. Residential ZIP codes were used to geo-reference the 

study population. Using GIS-based Inverse-Distance weighted (IDW) 
interpolations (power = 2; # neighbors = 3), multiple monthly pollution 
surfaces were created in order to predict O3 and PM10 concentrations 
at each ZIP-code centroid. Employing overlay geo processing tools, we 
linked the residential ZIP-code locations with the air pollution surfaces 
containing the ZIP-code specific exposure estimates modeled from 
ambient air pollution data.  GIS-derived monthly exposure averages 
were used to cumulate and assign a moving average exposure for each 
subject from the time of transplant through the follow-up period, 
with exclusion of the month prior to death to avoid any short term 
induced effects in assigning exposure.  Subjects were only included in 
the analysis if they resided within 50 Km of an air pollutant monitor.  

Ascertainment of Deaths

Our main outcome of interest was death from CHD. CHD death was 
defined as the primary cause of death as it was coded within the USRDS 
database and this information has been previously validated [22]. If the 
primary cause of death listed was acute MI or atherosclerotic heart 
disease then it was determined that a fatal CHD event has occurred.  

Potential confounding variables

All identified potential confounders available within the USRDS 
database, were assessed for confounding in the base model by adding 
and removing each potential confounder one at a time to the base 
model and determining if they individually changed the air pollution 
main effect by 10% or more. The potential confounders investigated 
included: race (White, Black, Other); body mass index (<18.5, 18.5-
29.9, 30+); duration of pre-transplant dialysis (months); causes of 
renal failure (diabetes, hypertension, primary glomerulonephritis, 
polycystic kidney disease, miscellaneous factors and unknown factors); 
UNOS region (eleven regions divide the US for administration), serum 
creatinine level prior to post-transplant hospital discharge (0.1-1.2, 
1.3-1.7, 1.7-2.7, and 2.8+mg/dl); hypertension independent of the 
cause of renal failure (yes/no); diabetes independent of the cause of 
renal failure (yes/no); educational level at the time of transplant 
(<=high school, college+); pre-transplant blood transfusion (yes/
no); delayed graft function defined as the need for dialysis within 
the first week post-transplantation or the lack of urine output in the 
first 24 hours after transplantation (yes/no); total number of kidney 
transplants performed throughout the follow-up period (1 only, 2 or 
more); organ donor type (deceased/living); organ donor age (<30, 30-
44, >44-60, 60+years); and organ donor gender. Immunosuppressant 
medication was evaluated on an intention- to-treat basis and included 
the following variables: cyclosporine (yes/no), tacrolimus (yes/no), 
other (rapamycin, leflunomide, deoxyspergualin, sang Cy A) (yes/
no), azathioprine (yes/no), mycophenolate mofetil (yes/no), steroid 
(prednisone, methylprednisolone, solumedrol, medrol, decadron) 
(yes/no).  

Statistical analysis

Gender-specific comparison of recipient baseline and follow-up 
demographics were made utilizing Student t-test or Chi-square test 
for univariate analysis. Correlation of air pollutants estimated using 
Pearson correlation coefficient. The specific health outcome analyzed 
included death from CHD as previously defined. Subjects were 
followed from time of transplant until event or censoring as previously 
defined.  Cox proportional hazard models were used to estimate the 
effect of ambient air pollutants on risk of CHD. We further adjusted 
for change in the air pollutant compositions over time by adding year 
of transplant as a covariate.  
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A basic model was developed which included the air pollutant, 
gender, age, the year of transplant and presence of heart disease at the 
time of transplant. Subjects with a history prior to transplantation of 
ischemic heart disease and peripheral vascular disease were coded as 
having prevalent heart disease at the time of transplant. All potential 
confounders available within the USRDS database were assessed 
for confounding in this base model. None of the candidate variables 
changed the main effect 10% or more.  However, because of the strong 
predictive effect of primary cause of renal disease and length of dialyses 
before transplant on mortality among renal transplant subjects, these 
were added to the final model. Tests of interactions between the various 
patient demographics and air pollutants were assessed utilizing the log 
likelihood ratio chi-square test comparing the reduced Cox model 
(without interaction terms) with the full Cox model (with interaction 
terms). None of the interaction terms were statistically significant. 
All variables in the final model were assessed with respect to meeting 
the requirements of proportional hazard assumptions by checking 
the log [-log(survival)] curves against the log time variable and they 
all met the assumption. Additionally, all variables were assessed for 
multicollinearity. All Cox regression analyses conducted were gender-
specific. Results are reported per 10 ug/m3 increase for PM10 and 10 
ppb increase for O3. A sandwich variance estimate was added to the 
final model to adjust for potential correlation that might exist between 
observations within a localized area [23]. Additional sensitivity analyses 
were conducted which included only subjects residing within 30 km of 
the nearest monitor to compare with overall study results.  No large 
differences were observed when utilizing a cohort of subjects residing 
within 30km compared with subjects residing within 50km. All 
analyses were performed utilizing SAS version 9.2 (SAS Institute, www.
sas.com).  University IRB approval was obtained prior to conducting 
this research.  

Results
Study population

The transplant cohort consisted of subjects residing across the 
continental U.S. (Figure 1). A total of 379 CHD deaths occurred during 
the 7-year follow-up period (257 CHD deaths among males and 122 
among females). For males, deaths from CHD accounted for 15.7% of 
1,637 total deaths from natural causes and, for females 10.7% of 1,138 
total deaths. Among the transplants that died from CHD, the median 
time from transplantation to death from CHD was 35.7 months (mean 
= 37.1±17.6 months) for men and 35.4 months (mean=36.6± 17.0) for 
women. A total of 5,863 subjects (3,773 males and 2,090 females) had 
prevalent heart disease at the time of transplant. Cases and non-cases 
differed on a number of baseline demographic and other variables 
(Table 1). For the entire transplant cohort the average pollutant level 
for PM10 and O3 was 25.3 ug/m3 (± 6.4 ug/m3) and 25.5 ppb (± 4.4 
ppb) respectively. The correlation between O3 and PM10 was low, but 
statistically significant (p<0.0001).

Risk of fatal CHD

Single pollutant models
In the age-adjusted model, there was a significant association 

between risk of fatal CHD and O3 for females with the strongest 
association found for the multivariable adjusted model (HR=1.56, 
95%CI: 1.06-2.30, p value=0.02). Among males a weaker association 
was found for O3, within the age- and multivariable adjusted models 
(HR=1.14 and 1.13, respectively), however the results did not attain 
statistical significance. PM10 also exhibited a higher point estimate for 

females within the age- and multivariable adjusted models compared 
with males. The point estimates for O3 and PM10 changed very little 
from the age adjusted to the multivariate adjusted models. Overall 
there were no statistically significant differences identified between 
males and females for either PM10 or O3 and risk of CHD mortality 
(Table 2).  

Two-pollutant models 

For females, a consistent and strong association was seen between 
fatal CHD and O3 across all the models and after adjustment for PM10. 
After adjustment for PM10, the relative risk of CHD mortality for O3 
among females was 45% higher than the corresponding risk found for 
males (HR=1.57 and HR=1.12, respectively). Comparing the relative 
risk estimates for O3 between males and females, females consistently 
had a higher risk value after adjustment for PM10. The strongest relative 
risk associated with O3 was found for females with a HR= 1.55 (95%CI: 
1.06-2.26, pvalue=0.02) in the age adjusted and a HR=1.57 (95%CI: 
1.07-2.30, pvalue =0.02) in the multivariable adjusted models after 
adjustment of both models for PM10.  For males the corresponding 
point estimate for O3 adjusted for PM10 in the age adjusted model is 
1.13 (95%CI: 0.86-1.49, pvalue=0.39) and a HR=1.12 (95%CI: 0.84-
1.49, pvalue=0.61) in the multivariable adjusted model. PM10 did 
not show any statistically significant relationship for either males or 
females, however the point estimates were consistently stronger for 
females compared with males (Table 3).  

Discussion
Overall our results revealed, for females, a consistent and significant 

increased risk of fatal CHD for increasing levels of ambient O3, across 
all models from age- to multivariable-adjusted and in both single 
and two pollutant models. For O3, in age-and multivariable adjusted 
and single-and two pollutant models, females consistently displayed 
a higher risk of CHD mortality than males although the differences 
were not statistically significant.  For both O3 and PM10 females 
consistently experienced a greater risk. The findings from this cohort 
study provides support to the hypothesis that air pollution exacerbates 
the atherosclerotic process and may increase the risk especially among 

Figure 1: Cohort of Kidney Transplant Study Subjects (ages 18+), 1997-
2003.
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                       Males                         Females
                                     (N=22,276)                                          (N=15,825) 
Characteristics                Cases               Noncases     Cases                                      Noncases    
    (N=257)  (N=22,019)  (N=122)    (N=15,703)               
Age at Transplant[years(mean+SD)]  54.2+9.5**       47.6+12.3   52.0+10.1** 47.2+12.3
Race 
 White   172(66.9)  15,554(70.6) 73(59.8) 10,620(67.6)          
 Black   70(27.2)        5,185(23.5)   44(36.1) 4,003(25.5) 
 Asian/Indian/Other  15(5.8)  1,274(5.8)   5(4.1) 1,077(6.9)
College Education   94(36.6)  8,220(37.3)   30(24.6) 5,474(34.9)

BMI
 <18.5     4(1.6)  375(1.7)  2(1.6) 662(4.2)
 18.5-29.9   125(48.6)  12,170(55.3) 52(42.6) 8,116(51.7)
 30+   39(15.2)  3,899(17.7)  21(17.2) 2,943(18.7)

Primary Cause of ESRD
 Diabetes   121(47.1)  5,483(24.9)  62(50.8) 3,549(22.6)
 Hypertension  53(20.6)  4,359(19.8)  21(17.2) 2,524(16.1)
 Primary nephritis  43(16.7)**  6,063(27.5)  12(9.8)** 3,825(24.4)
            PKD   9(3.5)  2,211(10.0)  6(4.9) 1,829(11.6)
 Miscellaneous  19(7.4)  2,563(11.6)  16(13.1) 2,978(19.0)
 Unknown factor  12(4.7)  1,340(6.1)  5(4.1) 998(6.4)
Hypertension    107(41.6)  10,800(49.0) 53(43.4) 7,505(47.8)

    (independent of cause of ESRD)
Time on dialysis (months)

 0-12   88(34.2)  9,074(41.2)  35(28.7) 6,596(42.0)
 13-24   48(18.7)  4,440(20.2)  29(23.8) 2,962(18.9)
 >24   121(47.1)  8,505(38.6)  58(47.5) 6,145(39.1)

Creatinine level at discharge
 0.1-1.2 (mg/dL)  35(13.6)  2,932(13.3)  33(27.0) 5,919(37.7)
 1.3-1.7   53(20.6)  5,782(26.3)  21(17.2)* 3,367(21.4)
 1.8-2.7   66(25.7)  5,728(26.0)  17(13.9) 2,474(15.8)
 2.8+   99(38.5)  7,042(32.0)  45(36.9) 3,573(22.8)
Living Donor type   66(25.7)**  8,882(40.3)  33(27.0)* 6,447(41.1)
Female Donor sex   127(49.4)  10,645(48.3) 56(45.9) 7,389(47.1)
Delayed graft function   64(24.9)**  4,400(20.0)  43(35.2)** 2,735(17.4)
Pretransplant blood transfusion  83(32.3)**  5,184(23.5)  46(37.7) 4,956(31.6)

Values are presented as no. (%) or mean ± SD
Some columns do not add to 100% because of missing data
*p < 0.01, **p < 0.001
*For continuous outcomes, comparison by Student t test.  For categorical outcomes, comparison by chi square test
Conversion factors for units: serum creatinine in mg/dL to umol/L, x76.26

Table 1: Baseline Characteristics of the Study Population.

aMultivariable model is adjusted for all of the following variables: race (White, Black, Other), age, year of transplant (1997-2003), primary cause of ESRD (diabetes, 
hypertension, primary glomerulonephritis, polycystic kidney disease, miscellaneous, and unknown factor), time on dialysis prior to transplantation (0-12, 13-24, 24+ 
months), and prevalent heart disease at time of transplant (yes/no)
bMultivariable model with inclusion of sandwich variance estimate to adjust for potential spatial autocorrelation.

Table 2: Age and Multivariable Adjusted Relative Risks of Fatal CHD: SINGLE POLLUTANT MODELS.

                 Age adjusted                  Multivariable adjusted a         Multivariable adjusted b

Gender Pollutant    Increment         Cases HR(95%CI)          Cases   HR(95%CI)                 Cases    HR(95%CI)

Males PM10       10 ug/m3       257   0.95 (0.78-1.15)      252     0.92 (0.75-1.11)           252     0.92 (0.75-1.12)
 O3       10 ppb          257   .14 (0.86-1.50)        252     1.13 (0.86-1.50)           252     1.13 (0.86-1.49)

Females PM10       10 ug/m3      122     1.11 (0.86-1.44)     121     1.07 (0.83-1.40)      121     1.07 (0.88-1.33)
 O3       10 ppb         122     1.54 (1.05-2.26)     121     1.56 (1.06-2.30)      121     1.56 (1.06-2.31)

female renal transplant recipients for fatal CHD events. To the best 
of our knowledge, no other studies have been conducted to assess if 
gender differences exist for risk of CHD mortality associated with 
chronic air pollution exposures among organ transplant recipients.  

The identification of potential gender difference within this study 

is further supported by findings from a number of additional published 
epidemiological studies identifying a greater risk among females for 
adverse health outcomes associated with ambient air pollution. The 
Adventist Health Study on the Health Effects of Smog (AHSMOG) 
cohort study with 22 years of follow-up found a positive association 
with three fractions of PM (<2.5, 2.5-10, and ≤10ug/m3) for increased 
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risk of CHD mortality among women, but not for men [10].  The Public 
Health and Air Pollution in Asia (PAPA) study found for women strong 
associations between a number of ambient air pollutants including 
PM10 and O3 and increased risk of daily total mortality [15]. A Spanish 
study assessed 2,305 adults in Spain and found a greater increase in both 
all cause and cardiovascular related mortality associated with ambient 
air pollutant exposure among women [16]. A US study analyzing 
deaths in 27 communities across the country identified a larger risk for 
cardiovascular related deaths among women compared with men [17]. 
However, there are published studies citing no gender increase risk and 
others citing males as increased risk, thus the gender results may differ 
between populations. The findings from this study provide additional 
support to the growing pool of studies indicating that compared with 
males, females potentially experience a greater risk of CHD related 
health events associated with chronic ambient air pollution exposure.  

Among the female population, female renal transplant recipients 
may be one of the most sensitive subpopulations and there may be a 
number of factors at play enhancing susceptibility placing them at even 
greater risk than the general public for adverse cardiovascular events 
associated with chronic ambient air pollution. Hospital admissions and 
mortality research have implicated diabetes, obesity, hypertension and 
elderly age as groups with enhanced vulnerability [11-14,24]. Many of 
these conditions are highly prevalent among renal transplant recipients 
potentially making them one of the highest risk sensitive subpopulations, 
with women at even greater risk, for cardiovascular effects associated 
with air pollution [19].  In addition to the high prevalence of the known 
CHD risk factors, transplant recipients have additional CHD risk 
factors as a result of the use of immunosuppressant medications. The 
medications have been associated with hyperlipidemia, hypertension, 
and new onset of diabetes post-transplant [25,26].  Together, these 
various factors may enhance vulnerability among renal transplant 
recipients, making them one of the most sensitive subpopulations at 
risk for adverse cardiovascular health effects associated with short- and 
long-term ambient air pollution exposures.    

Possible biological mechanisms

The basic biological mechanisms as well as any potential gender 
differences through which air pollution may promote adverse 
cardiovascular effects remains unclear. One of the supported biological 
mechanisms is that inhalation of ambient air pollutants promotes a 
pulmonary inflammatory response that triggers a cascade of events, 
including subsequent release into circulation of prothrombotic and 
inflammatory cells and mediators, setting in motion a systemic 
inflammatory process [27]. Scientific evidence is accumulating that 
air pollutants may influence a number of blood markers including 
fibrinogen, platelets, C-reactive protein (CRP) and white cell count 
ultimately increasing the risk of cardiovascular disease and mortality 
[28-30]. Researchers have identified that gender differences exist 

in the distribution of CRP within the general public with females 
experiencing higher median CRP levels [31]. Thus the possibility exists 
that air pollution may exacerbate the already heightened levels of CRP 
among women enhancing a disruption in the cardiovascular system 
homeostasis and further promoting heart disease [32].  In addition to 
inflammation, there may be a number of other sex related biological 
factors influencing increased susceptibility among females including: 
smaller lung size,  increased deposition of fine particles in the lungs, 
[33]  and increased airway responsiveness and hyper responsiveness 
[34]. Further research is required to determine which gender specific 
characteristics potentially increase the risk of CHD mortality for female 
transplant recipients when exposed to air pollution.  

Strengths and Limitations
Our study design had several strengths as well as limitations.  By 

utilizing the USRDS database we have a nationally representative 
sample of more than 79,500 first time, renal only, adult transplants, 
transplanted between 1997 through 2003. This large number of 
transplant recipients also gives access to a large number of events, 
providing sufficient strength in determining if these subjects are 
especially vulnerable with respect to risk of CHD in an environment 
with higher air pollution levels.   

Our study has some limitations that merit discussion. As with 
other studies on the health effects of air pollution, only ambient 
pollution concentrations at place of residence was available, which 
could potentially cause exposure misclassification. However, it is 
unlikely that there is a directional bias with only cases experiencing 
misclassification of exposure assignment. Additionally we did not 
have information on ambient levels of PM2.5. As PM2.5 (≤2.5 um) is 
smaller in diameter compared with PM10 (≤10 um), it is anticipated 
that stronger associations will be found for PM2.5 as the smaller particle 
more easily penetrates the biological defense mechanisms. Adjusting 
for this pollutant could potentially alter the effects of O3 even if adding 
PM10 in two pollutant models, did not change the effect of O3. However, 
a number of both animal and human laboratory studies have found 
harmful effects of O3 independent of PM2.5 [35-37].  Lastly, the low 
number of CHD deaths among renal transplant recipients in this study, 
may indicate that CHD deaths have been assigned a different cause of 
death within the database, quite possibly with a cardiovascular disease 
other than CHD.  Further analysis into the association between ambient 
air pollutants and other cardiovascular related deaths are warranted.  

Conclusion
In summary, we have presented the first epidemiological evidence 

showing the possibility that female renal transplant recipients may be at 
greater risk of fatal CHD associated with chronic exposures to ambient 
air pollutant O3, when compared to male recipients. More research is 
needed to confirm our findings among renal transplant recipients and 

aMultivariable model is adjusted for all of the following variables:  race (White, Black, Other), age, year of transplant (1997-2003), primary cause of ESRD (diabetes, 
hypertension, primary glomerulonephritis, polycystic kidney disease, miscellaneous, and unknown factor), time on dialysis prior to transplantation (0-12, 13-24, 24+ 
months), and prevalent heart disease at time of transplant (yes/no) .  
 bMultivariable model with inclusion of sandwich variance estimate to adjust for potential spatial autocorrelation

Table 3: Age and Multivariable Adjusted Relative Risks of Fatal CHD: TWO- POLLUTANT MODELS.

                                         Age adjusted       Multivariable adjusted a             Multivariable adjusted b

Gender     Pollutant    Increment    Adjusted       Cases    HR(95%CI)        Cases    HR(95%CI)                  Cases    HR(95%CI)

Male         PM10        10 ug/m3             O3                 257      0.96 (0.79-1.16)     252      0.92 (0.76-1.12)            252      0.92 (0.76-1.12)
                 O3            10 ppb PM10             257      1.13 (0.86-1.49)     252       1.12 (0.84-1.49)           252      1.12 (0.85-1.47)

Female  PM10       10 ug/m3           O3                122       1.13 (0.88-1.45)     121      1.10 (0.85-1.42)    121      1.10 (0.91-1.33)
 O3        10 ppb              PM10            122       1.55 (1.06-2.26)      121      1.57 (1.07-2.30)            121      1.57 (1.08-2.30)
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additionally determine if subjects with renal insufficiency in general 
have increased risk of fatal CHD associated with ambient air pollution. 
Findings from this study may thus have implications for policies and 
regulations of air pollution in protecting the health of a potentially 
vulnerable segment of our population. Additionally, the findings from 
our study have implications for development of health information 
guidelines and patient education targeting exposure reduction for this 
potentially vulnerable population.
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