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Introduction
In Phase I oncology studies, the most important primary 

objective is to find the maximum tolerated dose (MTD). Drug 
exposure and toxicity events are the two major components required 
for characterization of the MTD. It has often been assumed in the 
literature as well as clinical practice, as a simplified approach, that 
the toxicity outcome can be observed before a given time T, and the 
assigned dose level would represent the drug exposure leading to the 
outcome of with or without toxicity before time T. Consequently, many 
Phase I oncology dose finding designs, including the traditional 3+3 
fixed designs and various versions of adaptive continual reassessment 
methods (CRM) [1] have been operated under a set of distinct cohorts 
of patients with a predefined observational period (e.g. the first cycle) 
for tracking the toxicity outcomes. The dose escalation decision would 
be made periodically, requiring all the patients within the cohort of the 
assigned dose have been enrolled and followed up until crossing the 
finish line of the observational period.

In addition to the operational restrictions, strong clinical and 
statistical assumptions are made for those conventional dose escalation 
studies including fixed and adaptive designs: the observational period 
is chosen properly such that the intended toxicity incidence would 
follow the stochastic process according to the underlying population 
true incidence rate; moreover, the expected time of the onset for dose-
related toxicity is assumed to be the same across different patients and 
all dose levels interrogated. While there might be situations where it 
would be possible to measure the two required components - drug 
exposure and toxicity outcome - with an approximation by fixing 
the observational period and using the assigned dose level, the strong 
clinical and statistical assumptions rarely truly hold. The duration 
for the observational period is often set up based on the assumed 
hematologic recovery period, more subjectively on the assumed 

toxicities that are expected, or based purely on practicality; otherwise, 
if a study stretches the observational period to capture delayed-onset 
toxicities, the dose-finding process will be substantially delayed before 
moving on to the next cohort. As a result, the conventional dose-
escalation designs that treat many patients at sub-therapeutic doses 
unnecessarily prolong the time of studies, are often inaccurate in 
determining true toxicity rates, and rarely allow estimation of clinical 
response at doses to be used in phase II studies. These designs also have 
the disadvantage of periodic closures and lengthy accrual time, and 
often lose momentum because of the episodic nature of accrual [2]. 
The operational and clinical challenges, along with major drawbacks 
including 1) the time to the toxicity event is not accounted for, 2) the 
extent of drug exposure leading to the onset of toxicity is not measured 
correctly, and 3) delayed-onset toxicities past the cut-off observation 
period are not captured, improvements should be made to attain more 
accurate information on the extent of exposure and the time to event, 
with a more dynamic enrollment to facilitate better decision making at 
the early phase, thereby increasing the probability of success in treating 
patients.

To address the major drawbacks as described above, statistical 
methodology has been proposed in the literature including using 
sequential designs for phase I clinical trials with late-onset toxicities 
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Abstract
Finding the maximum tolerated dose (MTD) is the most important primary objective for Phase I oncology studies. 

The drug exposure and the toxicity event are the two components required for characterization of the MTD. Phase 
I trials currently require multiple subjects treated at numerous dose levels, with many of these subjects receiving 
doses of drug at less than predicted efficacious exposures. Further, these studies employ predefined, step-wise 
increments in doses that can result in inaccurate predictions of the MTD. Improvements to conventional adaptive 
dose finding designs to attain more accurate information on the extent of exposure and the time to event, with a more 
dynamic enrollment to facility better decision making are needed and have been the focus of previous published 
efforts. The EACRM dynamically extends the conventional adaptive dose finding designs by incorporating dose 
limiting toxicity (DLT) events as well as at-the-event information from each patient. An Accelerated Failure Time 
model with some tweaking to update the time to DLT for subjects who did not complete the entire DLT assessment 
period at particular time point was developed. Simulations, under a variety of assumptions, have indicated that the 
EACRM performed equal or better than the traditional 3+3 design in identifying the MTD and also outperformed the 
3+3 design in other important operating characteristics such as the length of study, the number of subjects treated at 
above the MTD, and the total number of subjects.
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(TITE-CRM) by Ying Kuen Cheung and Rick Chappell [3] via the 
maximum likelihood approach, and Bayesian approach by Suyu Liu 
and Jing Ning [4] for drug combination trials with delayed toxicities. 
The general pros and cons from either maximum likelihood vs. 
Bayesian approaches have been debated extensively in the statistical 
literature, and the debate is not the focus of this research. The 
objective of our research is to address the major drawbacks from the 
conventional designs by proposing a robust methodology that is readily 
implementable in real clinical practice. Furthermore, the operational 
hurdle of periodic closures is overcome by being able to enroll patients 
in a staggered fashion. The rest of this paper is organized as follows. We 
present our new methodology of determining the MTD along with the 
main algorithm in section 2 and conduct simulation studies to compare 
it with some existing methods in section 3. In section 4 we address our 
conclusion and raise some further discussion on our method.

Methodology
Model specification

The proposed exposure-adjusted continual reassessment method 
(EACRM) assumes continuous enrollment of patients/subjects 
with a calculation of the estimated MTD for each subject enrolled at 
corresponding time point. An accelerated failure time (AFT) model 
with dose level as the covariate will be employed to characterize the 
time to dose-limiting toxicity (DLT). The proposed AFT model is:

log ( ) = + +log T Dα β σ

where D is the dose level and T is the time to DLT. The AFT 
model assumes linear relationship between the mean of logarithm of 
time to DLT and dose level as α and β denote the intercept and slope, 
respectively. Moreover, σ is a positive parameter that controls the 
variability of the model and ϵ denotes the error term. In this paper we 
assume that T follows either a log-Normal or Weibull distribution. 
More specifically, under 1) log-Normal model, ( )2,T LN Dα β σ∼ + and 

( )0,1∼ N ; under 2) Weibull model, ( )1, DT W eα βσ − +∼ and ϵ follows a standard 
extreme value distribution with density function ( ) −=

vv ef v e .

As an incorporation of the time-to-event information, let δ be 
the indicator of DLT (δ=1 for DLT) and let w denote the weight of an 
observation. Essentially the weight factor will control the contribution 
to the likelihood function from each data point during the estimation 
process. Given a set of full data ( ){ } 1

, , ,
n

i i i i i
T D wδ

=
 and corresponding 

density function f, the problem can be well characterized under the 
framework of survival analysis and the likelihood function is written as

( : 1) ( : 0)( | , , ) [ ( | , )] [1 ( | , )]i i

i ii

w w
i i i i iL f T D F T D

δ δα β σ α β σ α β σ
= ==Π + ⋅ Π − +T

A frequentist approach based on maximum likelihood method with 
Newton-Raphson algorithm will be utilized for the model estimation 
process. To assign the dose level to the next subject entering our trial, 
predictions of time to DLT are made based on all m possible dose levels 
{ }0: ; 1, ,jd d jd j m+ = …  with d0 mg starting dose and d mg increment.

( ){ }1 1/3
ˆmax : ; 1, ,n j jD d T d L j m+ = ≥ = …

where L is a prespecified toxicity assessment period of study and 
1/3
ˆ )  (T D indicates that we are predicting the 1/3 quantile of the time to 

DLT for the new dose level as it is the usual threshold for DLT rate 
allowed. Once the estimated parameters, α̂ , β̂  and σ̂  are obtained, 
we can update the estimation of time-dose curve given the formula 
derived as follows: for log-Normal model, ( ) ˆ 0.431 ˆ

3
ˆ

1/
ˆ DT D eα β σ+ −= ; for 

Weibull model, ( ) ˆ 0.903 ˆ
3

ˆ
1/
ˆ DT D eα β σ+ −= . Note that the estimates α̂ , β̂  and σ̂  

are different under two models.

Determination of the responses and weights

As introduced in section 1, the model we proposed is able to utilize 
not only the toxicity events but also the time-to-event information by 
specifying appropriate time responses { } 1

n
i i

T
=

 and weights ( 1){ } =
n

i iw  in the 
AFT model. Although there is no unique mathematical approach for 
the weights, it is natural and practical to make some basic assumptions 
on them: 1) Given a specific time point during the trial, a non-DLT 
subject with longer survival period (e.g. 9 weeks without having a 
DLT) is expected to have a lower probability of occurring a DLT 
than one with shorter survival period (e.g. 2 weeks without having a 
DLT) and hence higher weight of surviving entire toxicity assessment 
period without occurring a DLT. 2) In general, the weight should be an 
increasing function of observed time t0 taking values in [0,1]. A weight 
of 1 indicates that the information from that individual is fully used in 
the model.

A good candidate for the weight is the conditional probability of 
completion, or no DLT given the observed time. For example, if the 
duration of the observation period is L weeks long and t0 is the observed 
time, then the conditional probability is given by ( )0|P T L T t> > . It will 
be generic if we want the weights to be independent of the distribution 
of T, since the true distribution may not be known in the real case. 
However, to calculate the weights, we have to assume a specific 
distribution. And we point out that a distribution with constant hazards 
will be sufficient when subject is on a particular dose level over the 
entire toxicity assessment period. Throughout this section we let T be 
the time to DLT with mean time to DLT λ and assume ( )| ExpT λ λ∼  
with density function, which is a special case of Weibull distribution 
with shape parameter value of 1 given by

( ) , 0−= ≥t
Tf t e tλλ

Note that this would assume constant hazard of observing DLT at 
each dose level. Under Bayesian framework, it is natural to consider a 
Gamma prior for λ, i.e., ( )Gamma ,a bλ ∼ with shape parameter a and 
rate parameter b. Then the corresponding density function is

( ) ( )
1 , 0− −= >

Γ

a
a bb e

a
λπ λ λ λ

It follows that the posterior distribution for λ remains to be a 
Gamma distribution: | Gamma( 1, )t a b tλ ∼ + + . Meanwhile, recall that 
we allow at most 1/3 DLT rate when seeking the MTD, which gives us 
a restriction between λ and the duration of the observation period, L:

( ) ( )1| 1 1 / 3      log 3 / 2LP T L e
L

λλ λ−< = − = ⇒ =

 Then under an approximate relationship we have

( ) ( )      log 3 / 2a bE a
b L

λ λ= ≈ ⇒ =

Given all the information on distributions and parameters, now 
consider

( ) ( ) *
0

0 0

log 3 / 2 / 11|
b LaE T t

b t b t
λ λ

++
= = = =

+ +

 If we fix λ =λ*  then for 00 t L< <  the probability of completing 
toxicity assessment period without DLT is

( ) ( ) ( )*
0*

0 0
0

( )|
( )

L tP T Lp t P T L T t e
P T t

λ− −>
= > > = =

>

Moreover, it can be shown that 0|T t T L< <  follows a truncated 
exponential distribution with density function

( )
*

* *0 0

*

| 0, 
t

T t t L

ef t t t L
e e

λ

λ λ

λ −

− −
= < <

−
Therefore, the corresponding conditional expectation is
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where *( | 2, )Γ ⋅F λ  is the cumulative distribution function of Gamma 
(2,λ*).

Given the derivation of all the relevant probabilities and 
distributions as shown above, we determine the response and weight 
for each subject in the following Table 1.

Main algorithm for implementation

Based on the introduction to our model from above, at each time 
point that a new subject enters the trial, MTD will be re-estimated 
based on all available observations using a parametric survival 
regression model. Then a simple algorithm can be provided as follows 
assuming that at most n subjects are recruited for the study and the 
time of enrollment follows a certain distribution, e.g. an exponential 
distribution with rate τ:

1. First allow 3 subjects to go through the entire trial process with 
either completion or DLT as the outcomes and check certain futility 
criteria.

2. Starting from the fourth subject, proceed iteratively for 3≤ k ≤ 
n-1:

a. When the (k+1)-th subject enters the trial, determine the time on 
the toxicity assessment period, DLT status and corresponding weight 
for all k existing subjects: ( )1 1 1, ,T wδ ,…, ( ), ,k k kT wδ .

b. Drop all non-DLT observations that have small exposures, e.g. 
less than 10% out of entire toxicity assessment period.

c. Perform survival regression based on the AFT model. Use 
effective data collected from above steps.

d. Obtain the 1/3 quantile predictions for time to DLT for all dose 
levels { }

1

m

j j
d

=  and assign proper dose level 1kD +  to the ( )1k + -th subject 
based on formula derived in section 2.1.

e. Determine if MTD is achieved based on clinically not significant 
change in predicted MTD and end the iteration if necessary.

3. Verify the estimated MTD and collect summary statistics for 
time and dose variables.

Note that the futility criteria and conditions for MTD attainment 
may vary by specific studies. However, some general guidelines are 
highly desirable. For instance, a negative sign of the estimated slope for 
dose β̂  is expected in each iteration and some convergence check for 
the dose assignment will be necessary when seeking the MTD.

Generalization of the weights

As an illustration of the mechanism of EACRM introduced in the 
previous sections, we first provide an application of the AFT model in 
predicting MTD with modified observations incorporating the weights 
specified above. This methodology was utilized in locally advanced rectal 
cancer study which administered investigational drug in combination 
with chemotherapy and radiation therapy. The toxicity assessment 
period was 8 weeks. The dose range planned to be investigated were 
20–400 mg BID with anticipated MTD at 250 mg BID. For example, 
the next tolerable dose prediction was carried out using EACRM after 
enrolling 12 subjects. The data used and corresponding plot along with 
predicted tolerable dose using all available data are as follows (Table 
2), (Figure 1):

We note that our exposure adjusted design will handle the practical 
situation better in terms of the weights when fitting a model and provides 
a more reasonable prediction of MTD. Also, the prediction curve clearly 
indicates that the expected survival time E(T) decreases as the dose level 
D increases. But the previous designs assume no association between the 
expected time to DLT, E(T) and dose D since E (T)=E (1⁄ λ)= b/ (a-1). 
Therefore, a possible re-parameterization for λ is given by

( ) ( )
1

bE T g D
a

=
−

,

which can allow such negative trend of the time-dose curve, 
where g(D) is a monotonically decreasing, positive function of dose 
D. Two simple but straightforward choices are 1) λ~~Gamma(aD,b)  
with  ( )

1
bE T

aD
=

−
 and 2) λ~~Gamma(a,b/D) with ( ) ( )1

bE T
a D

=
−

. These 
specifications are illustrated in the following two examples (Figure 2).

The plots demonstrate reasonable fits to the real data with 
dose ranging from 10 to 250 mg. Hence we will consider both 
parameterizations of λ along with the original design that λ~~Gamma(a,b) 
as in section 2.2. 

Note that due to the maximum of 1/3 DLT rate allowed, we 
anticipate similar restrictions on hyper-parameters a and b for both re-
parameterizations of λ as in section 2.2. However, since the dose level 
is involved, such restrictions can be only achieved at a given “targeted” 
dose level 0D , which leads to  ( )

0

log 3 / 2 ba
L D

= ⋅  . This relationship holds for 
both cases. Once 0D  is specified which simply could be an assumed 
MTD, there will be only one free hyper-parameter, say, b. Then, as the 
rate parameter in Gamma distribution, b can be chosen as any positive 
constant. However, recall that  ( )

1
bE T

aD
=

−
 for the first case and ( ) ( )1

bE T
a D

=
−

 
for the second one. To ensure that ( )   0E T >  for all possible dose levels 
starting from some initial dose d0, we need  ( )

0

0log 3 / 2
LDb

d
>  for the first case 

and ( )
0

log 3 / 2
LDb >  for the second. Therefore, generally the minimum value 

for b in the latter case is d0 times the one in the former case.

Progress of a Subject in Trial Response (Ti) Weight (wi)
Completed without DLT L 1

Observed with DLT
DLTt 1

In Progress and ( )0 0|t E T t L+ ≥ L ( )*
0p t

In Progress and ( )0 0|t E T t L+ < ( )0 0|t E T t+ ( )*
01 p t−

Table 1: Specification of response and its weight in model.

Subject 
Number Dose Level 

Time on 
Toxicity 

Assessment 
Period (weeks)

DLT Status Weight

1
2
3
4
5
6
7
8
9

10
11
12*

20
20
20
20
30
60
70
70
70
80

100
110

8
8
8
8
8
8
8
8

1.9286
8
8

6.8571

No
No
No
No
No
No
No
No
Yes
No
No
No

1
1
1
1
1
1
1
1
1
1
1

0.9372
*Toxicity assessment period of 8 weeks was not completed by the time of subject 
13 enters to the study. No DLT observed up to that point (6.8571 weeks) and so 
probability of not observing a DLT by 8 weeks is high (weight=0.9372).

Table 2: Example data from rectal cancer study.
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setting without using weights. For each case we run 1000 simulations 
based on two targeted MTD: 120 mg and 70 mg. The investigated 
dose range is 10-250 mg and toxicity assessment period is set to be 10 
weeks. The maximum number of enrolled subjects is 40 for each trial 
(simulation). The arbitrary enrollment rate  1 / 4τ =  which leads to 
an average of 4 weeks waiting time between two consecutive subjects. 
We also assume the rate parameter for Gamma, 500b =  for LN1, LN2, 
W1, W2 and 3000b =  for LN3 and W3 to guarantee the probability of 
observing DLT within toxicity assessment period is not greater than 

Simulation Study
In this section, we run the simulations to study the performance 

of proposed EACRM design described in section 3 above. Depending 
on different assumptions on the true distribution of the time to DLT 
and the time-dose structure (in terms of parameterizations of λ), we 
consider the following 6 cases (Table 3):

We compare our 6 cases with traditional 3+3 design and EACRM 
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Figure 1: Predicted Time to DLT vs. Dose: The predicted MTD based on the data from an 8-weeks toxicity assessment period study is 160 mg BID which reflects 
33.3% rate of DLT and the expected time to see a DLT is 8.46 weeks.

Figure 2: Predicted Time to DLT vs. Dose: Two examples allowing dose-dependent hazard rate.
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Prior Distribution used for Weight Derivation Distribution for Time to DLT is Log-Normal Distribution for Time to DLT is Weibull
Gamma (a,b) LN1 W1

Gamma (aD,b) LN2 W2
Gamma (a,b/D) LN3 W3

Table 3: Parameterization and distribution matrix.

1/3 and ( )   0E T > . If greater than 33% DLTs observed at first dose level 
tested then study is stopped for futility. The iteration of algorithm is 
stopped if change in predicted MTD is not clinically significant, i.e. less 
than 10% increment from current dose level.

Specification of true distribution

The parameters of true distributions that we choose are shown in 
the following Table 4.

The parameters are specified in a way that 1) they result in 
corresponding targeted MTD; 2) the slope coefficients of dose remain 
the same and 3) all the other parameters are comparable under different 
targeted doses and distributions.

Pseudo-Data: A guarantee for convergence of survival 
regression

During the early stage of simulation as subjects start to enter into 
a trial, the sample size may be small (e.g. 3 to 5), which usually results 
in a failure in convergence of the estimation under survival regression. 
Hence it is necessary to add a small number of pseudo-data into 
the regression as early observations. These pseudo data will be fixed 
throughout the study and will help in the model fitting process by 
solving convergence issues encountered during the early stage of the 
study. Appropriate weights will be assigned to them to reflect only a 
small degree of certainty. The pseudo-data we used are (Table 5):

Some general guidelines for pseudo data selection can be described 
as follows:

1. Consider 3 dose levels in lower, middle, and upper spectrum of 
the dose range to be investigated.

2. At each selected dose level in step 1 consider 2 data points, one 
with DLT occurring close to the end of toxicity assessment period and 
the other without DLT at the end of toxicity assessment period.

3. Assign very small weight (≤ 0.1) to those 6 data points. Also, 
consider the possibility of occurring a DLT event at selected dose level 
based on prior assumptions. For example, possibility of a DLT event at 
lower dose level is less compares to possibility of a DLT event at higher 
dose level.

A sensitivity analyses was carried out by altering the pseudo-data 
points generated using above guidelines. We point out that the pseudo-
data will not have notable impact to the final simulation results. In real 
practice, it is also very unlikely that the MTD will be achieved based on 
only a few data points with high degree of randomness.

Simulation results

We provide the summary statistics for all 6 cases for EACRM 
(LN1-LN3, W1-W3), 2 cases for EACRM without weights (LN0 and 
W0) as well as the 3+3 design (3+3) under both 120mg and 70 mg 
targeted doses. The results are listed in the tables below. The 25%, 50% 
and 75% label denotes the corresponding quartiles of the distribution 
of variables including the median (Tables 6 and 7).

Figures 3 and 4 provided below summarize and visualize the 

simulation process of 6 cases for EACRM under 120 mg and 70 mg 
targeted MTD. In each plot, we show the true dose-toxicity curve as 
well as the distribution of particular dose selected as MTD over 1000 
simulations.

Conclusions and Further Discussions
From the simulation results presented in section 3.3 above, 

we claim some clear advantages of our proposed EACRM over the 
traditional 3+3 or standard survival regression model. First, by 
utilizing the DLT information as well as time on the study, the EACRM 
gives more accurate estimate of MTD than the 3+3 in general. Such 
improvement of accuracy becomes more significant as the targeted 
(true) MTD increases as the distribution of predicted MTD becomes 
more concentrated in terms of the variance and quantiles. It also allows 
for a more dynamic enrollment of subjects, facilitates better decision 
making thus requires shorter duration and potentially less subjects for 
a study. Meanwhile, the AFT model with weights depending on dose 
levels provides both high flexibility and efficiency in modeling, and 
the combination of frequentist approach for model estimation and 
Bayesian approach for weight determination shows more reasonable 
predictions for MTD.

When comparing the results from different distributions, we 
find that Weibull distribution demonstrates more variability when 
determining the MTD than the log-Normal distribution although 
it may require shorter duration of study. The EACRM keeps under-
estimating the true MTD slightly due to its conservative nature.

Although EACRM provided a satisfactory performance in 
terms of dose finding, it is commonly agreed among clinicians and 
biostatisticians that, as an adaptive design, the continual reassessment 
methods offer more aggressive dose escalation which may raise notable 
safety concern. Therefore, certain appropriate stopping criteria may be 
applied when selecting the MTD. Moreover, to handle a method with 
such a high flexibility in modeling, a good knowledge of both clinical 
trial and statistics will be essential. In practice, for first-in-human (FIH) 
studies that employ the EACRM, we have identified specific measures 
to ensure subject safety: 1) the first subject enrolled should complete 
the entire observation period prior to any dose escalations, 2) at the 
time of a DLT, any subject that enrolled at higher dose levels should 
have the option to reduce the current dose dependent on the toxicity 
observed, 3) some staggering of subject enrollment is required, thus we 
have required that in the event of very aggressive enrollment that no 
more than 6 subjects can be enrolled at the same dose level.

We also want to point out that there is always room for 
improvement regarding our proposed models and methods. For 
instance, a straightforward generalization of the time-dose relationship 
can be made by developing more complicated but flexible priors 
on λ when deriving the weights such as λ∼ Gamma(a0+a1D,b) or 

1

0

Gamma , ba
b D

λ
 

∼  
+ 

. By introducing the intercept term we obtain a full 

linear function of dose level 𝐷 which is able to fit a variety of decreasing 
curves which may be necessary since the pattern of time-dose curves can 
be more moderate as predicted MTD goes up. Another generalization 
is applicable on the distribution of T. When specifying the weights we 
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Log-Normal Distribution: ( )2,LN LN LNT LN Dα β σ∼ +

Parameter \ Targeted Dose 120 mg 70 mg

LNα 2.6615 2.5500

LNβ -0.0022 -0.0022

LNσ 0.2239 0.2239

Weibull Distribution: ( )1, W W D
WT W eα βσ +−∼

Parameter \ Targeted Dose 120 mg 70 mg

Wα 2.7820 2.8052

Wβ -0.0022 -0.0022

Wσ 0.2379 0.3857

Table 4: Specification of true distribution.

Observation # \ Variable Time (weeks) DLT Status (1 = Yes) Dose (mg) Weight
1 10 0 60 0.09
2 8 1 60 0.01
3 10 0 120 0.07
4 8 1 120 0.03
5 10 0 200 0.04
6 8 1 200 0.06

Table 5: Pseudo-data Assignment.

Case \ Stats.
MTD (mg) Trial Size Trial Duration (wks)

Med. DLT %
25% 50% 75% 25% 50% 75% 25% 50% 75%

LN1 90 110 130 20 23 28 82.3 96.9 114.1 26.7
W1 80 110 140 19 24 29 82.3 99.7 118.2 29.2
LN2 90 110 130 19 23 28 81.7 96.0 115.4 26.7
W2 80 110 140 20 24 29 82.8 100.4 118.8 28.6
LN3 90 110 130 19 23 28 80.6 97.2 115.4 26.7
W3 80 110 132.5 19 23 28 80.7 97.6 116.3 27.3
LN0 80 100 120 21 24 28 87.8 102.4 118.3 21.7
W0 70 100 120 20 24 28 81.5 99.7 120.0 24
3+3 40 90 120 15 24 30 90.0 144.0 180.0 21.4

Table 6: Summary Statistics for simulations under targeted dose 120 mg.

Case \ Stats.
MTD (mg) Trial Size Trial Duration (wks)

Med. DLT %
25% 50% 75% 25% 50% 75% 25% 50% 75%

LN1 40 60 80 16 20 25 67.6 85.2 104.8 33.3

W1 10 50 100 14 19 24 58.0 80.9 105.4 33.3

LN2 40 60 80 16 20 24 69.4 85.6 107.5 33.3

W2 10 50 100 15 19 24 62.3 83.8 106.2 33.3

LN3 40 60 80 16 20 24 67.6 85.4 103.6 32.1

W3 10 50 90 14 19 24 61.5 81.1 104.4 33.3

LN0 30 60 80 18 22 26 71.3 93.3 114.1 28.6

W0 10 20 80 11 19 26 50.3 79.4 108.2 31.8

3+3 20 40 50 9 12 21 54.0 72.0 126.0 25.8

Table 7: Summary Statistics for simulations under targeted dose 70 mg.
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Figure 3: Plots for Targeted MTD 120 mg:(A) Case LN1; (B) Case LN2; (C) Case LN3; (D) Case W1; (E) Case W2; (F) Case W3.

consider an exponential distribution T~ Exp (λ) resulting in a constant 
hazard, which can be extended to a Weibull distribution, T~W (K, 
λ) with more general hazard given the shape parameter  K and rate 
parameter λ. Then to obtain an appropriate posterior distribution, 
one may assume less informative Gamma priors for K and λ or even 
non-informative priors like ( ) 1π θ ∝  or ( ) 1 /π θ θ∝ , where θ  is 
any parameter of interest. However, the corresponding posterior 
distributions have no known closed forms. Thus some sampling 

techniques for Bayesian inference such as Markov Chain Monte Carlo 
(MCMC) method may be needed for obtaining the posteriors and will 
be based on conditional distributions.
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