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Introduction
Background to the Study

Anthropogenic activities particularly fossil fuel combustion, 
deforestation and industrialization have resulted in increased 
concentration Carbon dioxide (CO2) and other greenhouse gases in 
the atmosphere (IPCC 2012). This has resulted in the need to identify 
strategies to mitigate the effects of global warming, which is one of 
the major drivers of climate change. Two main strategies have been 
proposed to mitigate the negative effects of climate change and these 
are: reducing the emission of greenhouse gases and the capture and 
storage of CO2 from the atmosphere [1].

The terrestrial ecosystem plays a pivotal role in the capture and 
storage of atmospheric CO2. So far, a total of five major carbon sinks 
have been identified in terrestrial ecosystems. These are the above 
ground biomass, below ground biomass, litter, woody debris and soil 
organic matter [2]. Among all the carbon pools, above ground biomass 
constitutes the largest component of the carbon pools hence its potential 
contribution to climate change mitigation has been widely researched 
[3] at the expense of other components of the carbon pool especially
soil organic carbon (SOC). The role played by other carbon pools
particularly the soil carbon pool has received less research attention yet 
globally soils contain almost twice the amount carbon found in above
ground biomass [4].

Modelling soil carbon stocks: To address this knowledge gap, 
calls have been made to develop simple indirect methods to try to 
estimate soil carbon stocks [1]. Remote sensing technique that, provide 
low cost and spatially continuous information that cover large areas 

on a repetitive basis are being explored to provide spatially explicit 
information on soil carbon dynamics in terrestrial ecosystems. Soil-
vegetation interactions can also be utilized since the process of soil 
carbon sequestration is partly dependent on litter fall from the above 
ground vegetation. Accurate and rapid estimation of SOC stocks is 
important in dry Miombo ecosystems to estimate their contribution 
to global carbon stocks and also for carbon trade purposes under the 
Reducing Emissions from Deforestation and Forest Degradation+ 
(REDD+) scheme. The Miombo woodlands are the most extensive 
warm dry forest type in southern Africa and they are an important 
center of plant biodiversity.

Problem statement
Current scientific understanding of soil carbon dynamics in dry 

Miombo ecosystems is poorer than that of above ground biomass 
carbon dynamics. This knowledge mismatch arises because most 
studies on carbon dynamics target above ground biomass, which 
is relatively easy to measure [5], compared to the soil carbon pool. 
Further, quantifying and monitoring changes in soil carbon stocks in 
Miombo ecosystems remains a challenge mainly because existing soil 
carbon monitoring techniques are costly and labor intensive [6]. This 
has resulted in underestimation of the total carbon pool in Miombo 
ecosystems. 

Abstract
The total carbon pool in dry Miombo ecosystems is often underestimated. This study sought to close this gap 

by modelling the relationship between the above ground fresh woody biomass carbon pool and the soil carbon pool 
using both ground based methods and remote sensing methods. A total of thirty (30 m × 30 m) plots were randomly 
selected within the study area. Tree height and diameter at breast height (dbh) are the vegetation characteristics, 
which were measured in the present study. These variables were later used to calculate the above ground fresh 
biomass carbon per hectare. Soil samples were randomly collected from five points within the plots. The soil samples 
were analyzed for soil organic carbon (SOC). Three remotely sensed vegetation indices are-Ratio Vegetation Index 
(RVI), Normalized Difference Vegetation Index (NDVI), and the Soil Adjusted Vegetation Index (SAVI), which were 
calculated using geometrically and radiometrically corrected Landsat 8 Operational Land Imager (OLI) satellite 
images. Correlation and regression analysis were used to quantify the relationship between SOC, above ground 
fresh woody biomass carbon and remotely sensed vegetation indices. Results showed that, above ground fresh 
woody biomass carbon was significantly related to SOC in the top soil layer (0-15 cm) and not the deeper soil layer 
(15-30 cm). The significant positive relationship between above ground fresh woody biomass carbon and SOC 
suggests that, above ground fresh woody biomass carbon can be used as a proxy to estimate SOC in the top soil 
layer (0-15 cm) in dry Miombo ecosystems. Remotely sensed vegetation indices were not significantly (p>0.05) 
related to the SOC regardless of depth. This result implies that further work is needed before multi-spectral optical 
remote sensing can be used as a tool to estimate SOC in dry Miombo ecosystems.

Estimating Soil Carbon Stocks in a Dry Miombo Ecosystem Using Remote 
Sensing
Richard Muchena*
Chesa Forest Research Station, Harare, Bulawayo, Zimbabwe

*Corresponding author: Richard Muchena, Chesa Forest Research Station, Harare, 
Bulawayo, Zimbabwe, Tel: +263773243211; E-mail: richymuchena@gmail.com 

Received February 22, 2017; Accepted March 28, 2017; Published April 04, 2017

Citation: Muchena R (2017) Estimating Soil Carbon Stocks in a Dry Miombo 
Ecosystem Using Remote Sensing. Forest Res 6: 198. doi: 10.4172/2168-
9776.1000198

Copyright: © 2017 Muchena R. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Forest Research
Open AccessFo

re
st

 R
esearch: OpenAccess

ISSN: 2168-9776



Citation: Muchena R (2017) Estimating Soil Carbon Stocks in a Dry Miombo Ecosystem Using Remote Sensing. Forest Res 6: 198. doi: 10.4172/2168-
9776.1000198

Page 2 of 6

Volume 6 • Issue 1 • 1000198
Forest Res, an open access journal
ISSN: 2168-9776

Objectives

1. To determine the relationship between above ground fresh
woody biomass carbon and SOC stock.

2. To determine the relationship between remotely sensed
vegetation indices and SOC stock.

Justification

There is need to quantify the soil carbon pool because a large 
portion of carbon in terrestrial ecosystems is stored in soils. In the 
Miombo ecosystem, it is estimated that 50–80% of the total ecosystem’s 
carbon stock is found in the top 1.5 m below ground [7]. Globally, 
the amount of carbon contained in soils is approximately twice as 
large as that contained in the atmosphere [8]. Small changes in the 
SOC pool can result in significant impacts on the atmospheric carbon 
concentration. Therefore, quantification of the soil carbon pool using 
cheap locally calibrated models would help policy makers to understand 
the dynamics of soil carbon as well as its role in the global carbon cycle. 
Forest soils in particular might act both as a source of atmospheric 
CO2 and also provide a prospective way of mitigating the increasing 
atmospheric concentration of CO2.

Materials and Methods
Study area

The study was carried out at Mukuvisi Woodlands located at 
latitude 17° 50’ 35′′ S and longitude 31° 5’ 42′′ E about 7 km east of 

Harare city in Zimbabwe as in Figure 1. The woodland is 265 ha in area. 
Mukuvisi Woodlands is protected and therefore has remained relatively 
undisturbed by human activity since its establishment in 1965. It covers 
an area of about 265 ha [9].

Vegetation sampling	

The study area was classified into woodland and other land cover 
types. A total of 30 plots were randomly selected within the woodland 
(Figure 2) using Arc view GIS software. The coordinates of the sample 
points were uploaded into a handheld Garmin Global Positioning 
System (GPS) receiver. The GPS readings were taken as plot centers. 
Each plot size measured 900 m² (30 m × 30 m).

Plots were north oriented using a magnetic compass. Tree height 
and diameter at breast height (dbh) were measured using a Suunto 
Clinometer and a Diameter Calliper, respectively. Soil samples were 
collected was done. Soil samples for bulk density analysis were collected 
using a soil bulk density core (Figure 3). The field work was undertaken 
during the month of February up to March 2014.

Estimation of above ground fresh woody biomass carbon: To 
estimate the soil carbon stock indirectly from above ground biomass, 
all tree stems greater than 5 cm diameter at breast height (dbh) and 
greater than 3 m height were identified in each of the 30 sample plots. 
Then, the following variables were measured: height and dbh (1.3 m 
above ground surface). These variables were then used to calculate 
above ground biomass per tree using biomass allometric equations 

Figure 1: Location of study area in Zimbabwe. Sample plots are overlaid as solid black circles. Map units are in UTM zone 36S with WGS84 as the datum.
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widely used in the literature [10] as follows:

B=3.01D0-7.48	               dbh<10cm	 (1) 

B=20.02D-203.37 	  dbh<10cm		              (2) 

Where,

B=Biomass

D=Diameter at breast height

Biomass for all trees species in each plot was summed and divided 
by the size of the plot (0.09 ha) to give biomass per hectare. The above 
ground biomass was then multiplied by a conversion ratio of 0.5 to 
obtain an estimate of forest carbon in a plot (IPCC 2003).

Soil sampling

For each sample plot, a composite sample weighing 100 grams 
was collected at two depths (0-15 cm and 15-30 cm) using a soil auger 
and put in air tight soil sampling bags, separately. Assessing SOC at 
these two depths is necessary because most organic carbon in tropical 
ecosystems is concentrated in the top mineral layer [8] but, the 0-30 
cm layer is the recommended depth in spatial inventories of SOC in 
each plot, was taken from depths of 0-15 cm and 15-30 cm, respectively. 
Since, measurement of SOC is costly and a composite sampling method, 
which consists of mixing soil samples from different soil profiles to 
obtain one average sample, was considered a good compromise [11]. 

Soil bulk density was determined in the field using the core method 
[12]. One sample was collected from the center of each plot using a bulk 
density core (Figure 3) of known volume (100 cm³). The samples were 

put in air tight plastic bags and were then placed in an oven at 60ºC 
for 48 hours to drive out moisture. Soil bulk density values were then 
derived by dividing the mass (g) of the oven dried soil samples by the 
volume (100 cm³) of the bulk density core.

3

3

Ovendryweight(g)Bulkdensity(g/ cm)
100cm

=              (3) 

SOC analysis: To measure SOC, all samples were air dried for 48 
hours passed through 2 mm sieve and crushed to produce fine particles. 
SOC content was determined using the Walkely Black Method [13] 
in the laboratory in the Soil Science Department at the University of 
Zimbabwe. 

SOC stock (Mg/ha) at a given depth was derived from the percentage 
of carbon in the soil and bulk density (Pearson et al. 2005) as follows:

SOC stock (Mg/ha)=C% × Bulk density × Soil depth (4)	 

Image acquisition and pre-processing: Landsat 8 Operational 
Land Imager (OLI) satellite images for the month of February 2014 
were acquired from the United States Geological Survey (USGS) 
website and imported into ILWIS 3.3 GIS software for processing. 
Prior to calculating vegetation indices, the Digital Numbers (DN) 
were converted to radiances and then to Top of Atmosphere (TOA) 
reflectance using radiometric rescaling coefficients provided in the 
product metadata file (MTL file). The process was done using the 
following formulae (USGS 2013):

' M Qcal Aρλ = ρ + ρ 	 (5)

Figure 2: Distribution of sample plots within the study area.
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Where:

ρλ’ =TOA planetary reflectance, without correction for solar angle. 

Mρ =Band-specific multiplicative rescaling factor from the metadata 

Aρ =Band-specific additive rescaling factor from the metadata 

Qcal = Quantized and calibrated standard product pixel values (DN)

Reflectance with a correction for the sun angle was calculated as:

 cos( sz) sin( se)
ρλ ρλ

ρλ = =
θ θ (6) 

Where, 

ρλ=TOA planetary reflectance 
θSE=Local sun elevation angle

θSZ=Local solar zenith angle; θSZ=90°-θSE

Remotely sensed vegetation indices: To assess whether soil carbon 
stock can be estimated indirectly from satellite imagery the following 
remotely sensed vegetation indices were calculated from Landsat 8 
images using: Ratio Vegetation Index (RVI), Normalized Difference 
Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index 
(SAVI). 

NIRRVI
R

=            (7) 

NIR RNDVI
NIR R

−
=

+
   (8)

Where, NIR is Reflectance in the near Infra-red and R is reflectance 
in the Red Band

NIR RSAVI (1 L)
NIR R L

−
= +

+ +
                    (9) 

Where,

NIR is Reflectance in the Near Infra-red and R is Reflectance in 
the Red Band. L (0.5) is a constant that is empirically determined to 
minimize the vegetation index sensitivity to the soil background 

reflectance.

Statistical analysis

Pearson product-moment correlation was used to explore whether 
above ground woody biomass was correlated with SOC. The data were 
tested for normality using Shapiro Wilk’s test prior to correlation. 
Regression analysis was used to evaluate the relationship between SOC 
and above ground woody biomass as well as to assess the relationship 
between SOC and remotely sensed vegetation indices. Relationships 
were considered significant at α=0.05. R2 as well as the root mean 
square error were used to evaluate model fit. Root Mean Square Error 
was calculated in Percentage after randomly splitting the dataset into a 
calibration dataset (75%), and a validation dataset (25%). 

Results and Discussion
The results in Table 1 show that the top soil layer (0-15 cm) 

contained twice as much SOC as the deeper soil layer (15-30 cm). The 
mean above ground fresh woody biomass (23.1 Mg C ha-1) was higher 
than the mean carbon content in the upper soil layer (15.3 Mg C ha-1). 
The fraction of SOC did not exceed 1.2% in both the top 15 and the 15-
30 cm layers. Tree stem density at the study site ranged between 144 and 
2277 as shown in Table 1.

Relationship between remotely sensed indices and carbon pools: 
SOC in the upper soil layer (0-15 cm) and was positively correlated 
with above ground fresh biomass carbon and this relationship was 
significant (r=0.678; P<0.01). However, there were no significant 
correlations (r=-0.11, P>0.05) between SOC in the deeper soil layer 
(15-30 cm) and above ground fresh woody biomass carbon. Since the 
above ground carbon had a significant relationship with the top soil 
layer (0-15 cm) subsequent regression models were developed for the 
0-15 cm soil layer only.

Relationship between remotely sensed vegetation indices and SOC: 
Table 2 summarizes the relationships between above ground woody 
and soil carbon pools and remotely sensed vegetation indices. It can be 
observed that, all the three indices were positively correlated with SOC 
in the top layer but the relationship between The Ratio Vegetation Index 
(RVI) and SOC was stronger (r=0.45) compared to other indices. RVI 
also had the strongest relationship with above ground fresh biomass 
carbon. The relationships between SOC and remotely sensed indices 
were all negative and weak as shown in Table 2. Based on the significant 
relationship between RVI and SOC for the top 0-15 cm layer, the linear 
regression model best SOC’s relationship (Figure 4) to optical remote 
sensing in Mukuvisi woodlands is:

Y=0.0234X + 1.945, (R2=0.30, % RMSE=16, P<0.05)	 [14] 

Where, Y is SOC and X is RVI. This is the best Linear model with 
the lowest Root Mean Square Error % of 16. However, the model only 
explained 30% of the variation in SOC stock as shown in Figure 5.

Discussion
Results from this study indicate that, the spatial distribution of 

SOC in the dry Miombo ecosystem is significantly influenced by above 
ground fresh biomass carbon. Several studies in forest ecosystems have 
also found that, spatial variability in above ground woody biomass 
is a key factor in determining SOC variability [15]. A similar study 
conducted in Nhambita Community area-a dry Miombo ecosystem in 
Mozambique [16] also found positive correlations between soil C stocks 
and above ground biomass carbon. Our results are also consistent with 
those obtained in a study carried out in a mountainous forest landscape 

Figure 3: Soil bulk density core.
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Variable Min. Max. Average S.D. N
Above ground fresh woody biomass (Mg C ha-1) 7.4 56.1 23.1 10.6 30

Soil organic carbon stock in the 0-15 cm layer (Mg C ha-1) 8.9 28.4 15.3 4.8 30
Soil organic carbon stock in the 15-30 cm layer (Mg C 

ha-1) 2.6 7 4.9 1.2 30

Soil organic carbon in the 0-15 cm layer (%) 0.38 1.15 0.67 0.2 30
Soil organic carbon in the 15-30 cm layer (%) 0.12 0.32 0.22 0.05 30

Tree density (stems/ha) 144 2,277 816 540 30

Table 1: Descriptive statistics of measured variables.

Variable RVI NDVI SAVI
SOC (0-15 cm) 0.45 0.38 0.34

SOC (15-30 cm) -0.141 -0.156 -0.198
Above ground fresh woody biomass carbon 0.598 0.544 0.537

Table 2: Pearson correlation coefficients between carbon pools and remotely 
sensed indices. Coefficients in bold significant at P<0.05.

Figure 4: Scatter plot showing the relationship between above ground fresh 
woody biomass carbon and soil organic carbon for the top 0-15 cm layer in 
Mukuvisi Woodlands.

Figure 5: Scatter plot showing the relationship between soil organic carbon 
stock for the 0-15cm layer and the remotely sensed index - RVI in Mukuvisi 
Woodlands.

in Japan [17]. The positive correlation between SOC and above ground 
biomass can be attributed to litter fall from above ground vegetation 
which as an important soil organic matter input.

The upper soil layer (0-15 cm) showed significant (p<0.001) 
positive correlation with above ground fresh biomass carbon whereas 
the relationship between SOC in the lower 15-30 cm layer was not 
significant. This result implies that in Miombo ecosystems woody 
vegetation through allocation biomass to roots concentrated in the 
upper layer, which is more fertile, may be influencing the vertical 
distribution of SOC This inference is in accord with a previous 
study reporting that variations in vegetation cover controlled SOC 
distributions with soil depth [18].

Exploring whether remote sensing may aid the estimation of SOC is 
critical given that this technology overcomes some of the limitations of 
field-based methods. The findings of this study indicate that vegetation 
indices derived from optical bands had a weak relationship with SOC. 
The results are similar to those obtained in a study in Botswana [19], 
where NDVI only explained 23% of the variation in SOC stocks. This is 
an indication that multi-spectral optical remote sensing faces challenges 
in estimating SOC stocks in dry Miombo ecosystems. This result 
underscores the observations made previously that the distribution of 
soil carbon and the variable nature of soil organic matter complicate 
the use of optical remote sensing for spatial prediction of soil carbon 
stocks in Africa. With regard to use of remote sensing for soil carbon 
estimation, the results in this study are clearly in conflict with a study 
done in a tropical woodland ecosystem in Brazil that reported a much 
stronger relationship was also obtained in a study carried out in Brazil 
where the SOC showed a good correlation (r=0.97) with the remotely 
sensed Leaf Area Index (LAI), implying that LAI permits estimation 
of SOC through NDVI. This discrepancy in the low ability of remote 
sensing to estimate SOC in dry Miombo regions and its high potential 
in wet tropical ecosystems reflect that estimation of SOC using remote 
sensing is still difficult in dry Miombo woodland ecosystems containing 
low SOC levels (less than 2%) compared to wet tropical regions where 
SOC levels are higher (more than 2%).

Conclusions and Recommendations
Conclusions

In conclusion, the results of this study indicate that above ground 
fresh woody biomass carbon, which can be estimated from space, offers 
a promising avenue to estimate SOC in the upper soil layer (0-15 cm) in 
dry Miombo ecosystems of southern Africa. However, direct estimation 
of SOC from space relying on satellite remote sensing is still difficult 
and more research using non-optical regions of the electromagnetic 
spectrum is needed to address this gap.

Recommendations

Land managers can use the above ground fresh woody biomass 
carbon pool to estimate SOC. However, the following recommendations 
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are suggested:

i. Developed models should be site specific due to the differences
in soil types. Future studies should: Quantify the relationship
between other carbon pools and the soil carbon pool.

ii. Use high spatial remote sensing satellite imagery to improve
the relationship between remotely sensed imagery and the soil
carbon pool.

iii. Incorporate climatic factors and soil properties to develop
strong models to predict SOC because SOC is influenced by
many factors.

iv. Stratify study sites according to soil type.

v. Quantify the relationship between soil properties and SOC
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