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deviations signify symptoms of cardiac disease [5]. Traditionally, 
cardiologists manually interpret ECG results based on diagnostic 
criteria and their experience. However, manual interpretation is 
time-intensive and demands expertise [6]. Misinterpreted ECG 
results can lead to incorrect clinical decisions, posing risks to 
human life and well-being. Given the rapid improvement of 
ECG technology and the scarcity of cardiologists, reliable and 
automated identification of ECG signals has emerged as an 
attractive study topic for many academics.

Several efforts were made over the last decade to discover acute 
ECG patterns by employing 12-lead ECG data, especially using 
freely accessible open-source ECG databases [7,8]. While these 
methods anticipate results with excellent accuracy based on 
one-dimensional ECG rhythms, they have yet to acquire broad 
acceptance in healthcare organizations. One of the key challenges 
in applying Machine Learning (ML) to ECG analysis is feature 
extraction [9]. Current classification systems extract medical 
features through signal-processing techniques. These systems 
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INTRODUCTION

CVD is the leading cause of death, based on statistics from the 
American health monitoring organisation and the Centres for 
Disease Control and Prevention (CDC) [1]. The CDC reports 
that heart disease affects a staggering 74% of the population 
annually. The prevention of CVDs hinges on early and accurate 
diagnosis [2]. The realm of modern medical science has unveiled 
potent solutions for addressing heart-related issues, leveraging 
advanced information technology techniques. Among the most 
common methods for detecting heart disease are angiography, 
ECG, and blood tests [3]. The ECG, which is frequently used 
as a diagnostic aid for screening CVD, includes recording visual 
signals by inserting electrodes into the skin of the person to 
track voltage changes. ECG serves to detect potential cardiac 
abnormalities, particularly in the ST segments [4]. Typically, it 
identifies changes such as ST-segment elevation or depression, 
T wave alterations, or the appearance of new Q waves-these 
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The global impact of Cardiovascular Diseases (CVDs) is profound and requires urgent attention. Accurately classifying 
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a critical role in diagnosing CVD by providing graphical representations of the heart's electrical activity. In this 
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classification task, we utilize the PTB-XL database, which eliminates the need for real-time patient data collection 
by providing a comprehensive collection of ECG recordings. To aid in the accurate classification of ECG data, 
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methods that have shown potential in DL applications, such as ResNet-50 and Inception-v3. The suggested CNN-
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in the early detection and effective management of CVDs, thereby enhancing healthcare outcomes for individuals 
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performs admirably, with high positive metrics. The bimodal 
CNN surpasses conventional categorization techniques trained 
solely on gray images or scalograms, providing an important 
instrument for CVD diagnosis. The paper provides a system for 
predicting, categorizing, and improving the diagnostic efficacy 
of CVDs using multiple ML algorithms [15]. To identify CVD 
risk factors, various ML strategies are used. For dealing with 
continuous and categorical variables, mixed-data transformation 
and categorization algorithms are used. Employing a real CVD 
data sample acquired from a hospital, the research compares 
hybrid models to current ML approaches in depth. The results 
show that the suggested methodology outperforms well-known 
statistical and ML methodologies, with ANFIS attaining the 
most accurate predictions. The work describes a DL-based 
system that uses CNNs to classify ECG signals from the MIT-
BIH Arrhythmia dataset [16]. A 1-D convolutional deep ResNet 
model is used in the suggested technique to extract features from 
the heartbeats. To overcome class imbalance throughout training, 
the Synthetic Minority Oversampling Method (SMOTE) is used, 
effectively identifying 5 heartbeat patterns in the test data sample. 
The effectiveness of the classification model is evaluated using 
ten-fold cross-validation, displaying high metrics scores. The 
suggested ResNet (Residual Neural Network) model outperforms 
other 1-D CNNs in ECG signal categorization, demonstrating its 
usefulness.

The research focuses on detecting both regular and abnormal 
ECG signals [17]. Since there are many different kinds of noise 
present in ECG data, this study suggests a record-filtering strategy 
to get rid of those. Furthermore, a feature fusion method is 
created for obtaining both global and local characteristics from 
various ECG leads, resulting in the construction of an accurate 
depiction of the ECG record. RF, Multi-Layer Perceptron (MLP), 
and modified ResNet are among the classification baselines used. 
Ensemble approaches are also investigated, which combine RF 
with ResNet and MLP. When compared to many state-of-the-
art approaches on the same database, the hybrid model, which 
uses RF and modified ResNet, provides the most effective 
outcomes for classification. The study focuses on classifying 
various CVDs using bio-inspired algorithms with and without 
hyper parameter optimization [18]. ECG signals are subjected 
to dimension reduction methods such as linearity preserving 
projection, principal component analysis, variational bayesian 
matrix factorization, and Kernel-linear discriminant analysis. 
Whale optimisation, particle swarm, grey wolf, fish swarm, 
KNN, SVM with RBF kernel, and NB are used to classify ECG 
signals after reducing their dimensionality. The paper presents 
accurate findings for classification algorithms with and without 
hyperparameter tuning. Particularly, hyperparameter optimization 
using the Adam and Randomised Adam (R-Adam) techniques 
improves the efficiency of classifiers significantly, with the Grey 
Wolf-R-Adam classifier obtaining exceptional overall accuracy in 
categorizing CVD. The paper provides a DL and fuzzy clustering-
based technique (Fuzz-ClustNet) for detecting arrhythmias in 
ECG signals [19]. The study starts with denoising ECG readings 
to eliminate defects. Data augmentation is conducted to solve the 
class imbalance. For extracting characteristics from augmented 
images, a CNN feature extractor is used, which is then fed to a 
Fuzz-ClustNet method for ECG signal categorization. Multiple 
simulations are run on benchmark datasets, and the results are 
analysed using a number of performance measures. The finding 
indicates the efficiency of the suggested approach in detecting 

integrate the extracted features and compare them with features 
derived from various heart diseases. However, due to noise 
interference, some features are challenging to extract. Moreover, 
different CVDs exhibit distinct ECG signal features, making it 
impractical to design a system that can capture all the necessary 
features. Consequently, these diagnostic systems suffer from poor 
scalability and reduced accuracy. Recently, DL techniques have 
emerged as a positive solution for ECG interpretation [10]. In 
this work, we employ DL models to automatically extract features 
from the raw ECG signals. 

Literature survey
In this section, we will delve into a thorough examination of 
the latest developments in the field of CVD detection through 
the use of ECG signals. Recent researchers in this subject have 
opened the way for spectacular achievements and creative 
approaches that offer suggest enhancing the early identification, 
evaluation, and tracking of CVD illnesses. In the study, DL 
approaches are used to identify four significant CVDs from ECG 
signals [11]. The study looks at transfer learning using pre-trained 
Deep Neural Networks (DNN) like SqueezeNet and AlexNet. 
Furthermore, the authors suggest a unique CNN framework 
designed specifically for CVD prediction. Particularly, these DL 
models can also be used to extract features from standard ML 
algorithms such as K-Nearest Neighbors (KNN), Support Vector 
Machine (SVM), Random Forest (RF), Decision Tree (DT), and 
Naive Bayes (NB). The findings show that the suggested CNN 
model achieves outstanding performance. When employed for 
feature extraction, it surpasses existing algorithms, achieving 
the greatest score with the NB approach. The study introduces 
a set of ML models aimed at solving the challenge of ECG-based 
CVD detection [12]. Mechanisms for data collection and training 
techniques for multiple algorithms are accounted for in the 
models. The authors integrate the heart dataset with additional 
classification models to validate the success of their technique. 
The suggested method outperforms other current methods with 
about 96% accuracy and provides a comprehensive analysis across 
several variables. The study emphasizes the potential value of new 
data from various medical institutions in improving the creation 
of artificial neural network architectures and so contributing to 
the field of DL. The fundamental goal of this suggested model 
is to improve the accuracy of ECG-based CVD categorization by 
using a hybrid feature engineering technique [13]. The model is 
made up of three major parts: Pre-processing, integrated feature 
extraction, and categorization. The goal of the pre-processing 
step is to remove baseline and powerline interference while 
keeping heartbeat information. A hybrid technique is developed 
for effectively recognizing the data, combining traditional ECG 
rhythm-extracting techniques with CNN-based features. The 
generated hybrid feature vector is subsequently fed into the Long 
Term Short Memory (LSTM) model. The simulation findings 
show that the suggested approach minimizes diagnostic mistakes 
and the time necessary to conduct a diagnosis when compared to 
existing techniques.

The research focuses on the creation of a bimodal CNN developed 
on gray images and ECG scalograms for CVD diagnosis [14]. 
The study makes use of a 12-lead ECG data, including 10,588 
ECG records labelled by a professional physician. One-
dimensional ECG data are converted to scalograms and two-
dimensional grayscale images, which are used as dual input 
images for the suggested CNN framework. The model, which 
is made up of two similar Inception-v3 backbone designs, 
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CVD from ECG signals when compared with existing approaches.

MATERIALS AND METHODS

This section comprehensively discusses the methodologies 
employed for CVD detection using a DL approach, presenting a 
step-by-step breakdown of the entire process.

Data 
In this study, the PTB-XL ECG database was utilized [20]. 
It represents a clinical ECG dataset of an unprecedented 
scale, modified to assess the performance of ML algorithms. 
This extensive dataset comprises 21,837 clinical 12-lead ECG 
recordings from 18,885 individuals. These recordings are 10 
seconds in duration and are sampled at both 500 and 100 Hz, 
with 16-bit resolution. Figure 1 provides illustrative examples of 
various ECG rhythms, which align with the data detailed in Table 
1 and were employed in the research. These examples encompass 
a range of ECG signals, including normal patterns, conduction 
disturbances, ST/T changes, MIs, and hypertrophy. Figure 2 
illustrates the sample ECG signal from each class.

Furthermore, it's worth noting that the PTB-XL database 
maintains gender balance, consisting of data from both male 
(52%) and female (48%) patients, spanning an age range of 2 to 
95 years (with a median age of 62). This dataset is supplemented 
with additional patient details like age, gender, height, and 
weight. The authors of the dataset have meticulously categorized 
each ECG into 23 diagnostic subclasses within five diagnostic 
classes, or alternatively, into non-diagnostic classes. Each class 
is associated with a corresponding probability. These classes are 
identified using the standard codes SCP_ECG. 

Figure 1: ECG data distribution in percentage. Note: (  ): Normal; 
(  ): Myocardial Infraction; (  ): ST/T change; (  ): Conduction 
disturbance; (  ): Hypertrophy.

Table 1: PTB-XL database.

Model Acronym Total records Train Test

Normal NORM 7185 5748 1437

Myocardial 
Infarction

MI 2936 2349 587

Conduction 
Disturbance

CD 3232 2586 646

ST/T 
Change

STTC 3064 2451 613

Hypertrophy HYP 815 652 163

Total  17232 13786 3446

Figure 2: Sample ECG signals of CVD.

Data processing
The data sourced from the PTB-XL database underwent a series 
of pre-processing steps and was subsequently partitioned into 
training, validation, and test subsets. During the pre-processing 
stage, the data was subjected to filtering and normalization to 
ensure its suitability for examination using the DL model [21]. 
The presence of noise in ECG signals can significantly hinder 
the identification of representative ECG patterns and may lead 
to erroneous interpretations [22,23]. Within ECG signals, two 
prominent types of noise exist, including electromyogram noise 
and additive white Gaussian noise, both of which are characterized 
by high frequencies. Low pass filtering is employed for denoising 
ECG signals to mitigate the impact of noise. Subsequently, in the 
pre-processing workflow, the normalization step was carried out 
to address negative signal values. This normalization is important 
to ensure that both normal and abnormal signals do not contain 
negative values. In essence, the normalization process aims to 
simplify the raw signal extracted from the PTB-XL Database 
before developing a system capable of distinguishing between 
normal and abnormal ECG signals. The normalization formula 
for obtaining Ns involves finding the minimum value from the 
signal v and subtracting it from v

n
, representing the value of the 

successive signal with the minimum value it shown in equation 1. 

( min(v))n
s ni

N v= −∑   (1)

Ns
 serves as a processed signal that facilitates the detection of the 

positions and values of P, Q, R, S, and T signals in both normal 
and abnormal ECG signals. Finally, the dataset was partitioned 
into three subsets: Train, validate, and test, with percentages of 
80%, 10%, and 10%. The 80% of the sample was utilized to train 
the DL network, the 10% sample aided in model validation, 
and the last 10% was instrumental in evaluating the network's 
performance.

Deep learning
The architecture and working of the DL network including 
ResNet-50, Inception-V3, and CNN-VAE are discussed below.

ResNet-50: The ResNet has garnered impressive results in various 
visual recognition competitions [24]. One of the key issues 
it addresses is the gradient disappearance problem, which is a 
significant reason for its adoption in this study [25]. ResNet is a 
development of VGG19 that introduces residual units via a short-
circuit method, downsamples with convolution using a stride 
of 2, and replaces Fully Connected Layers (FCL) with global 
average Pooling Layer (PL). The ResNet model employs two basic 
types of residual components [26,27]. The shallow network is 
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a construction block, while the deep network is the bottleneck 
block. There are two ways to enter information. The first is the 
identity mapping, it guarantees long-term memory retention. 
If enhancements are required, they are applied through direct 
mapping, denoted as f(x). Improved f(x) facilitates information 
flow between blocks, leading to enhanced model performance.

The residual structure's major purpose is to allow the NN to 
preserve its core identity mapping capabilities. This functionality 
guarantees that the training outcomes remain intact when 
networks are layered. Assuming that the NN's input and output 
parameters (x and h(x)), and the internal structure of H(x) are 
not explicitly described. ResNet allows the submodule to learn 
the residual f(x)=H(x)-x directly, resulting in the desired outcome 
F(x)+X. This prevents the efficiency and accuracy deterioration 
that might occur when there are too many Convolution Layers 
(CL). The result of the preceding layer is added to the result of 
this layer via the shortcut link, and then the sum is passed to the 
activation function. The shortcut connection of ResNet might be 
stated as (Equation 2).

( { })iy F x w x= +   (2)

For normal data, the correlation between the input data and 
the NN's outcome could be characterized as follows, taking 
into account the ReLU activation function and the double-layer 
weights (Equation 3). 

1(W x)zF W σ=   (3) 

Typically, the ReLU activation function introduces nonlinearity 
and connects the weights W

1 and W2 of the function and 
structure layers. To adjust the dimensions of the input and output 
data, a linear transformation WS is applied to x when creating a 
shortcut, as follows (Equation 4):

1(W x)zF W σ=   (4)

The ResNet-50 network framework was used in this research 
because of its broad use in image feature retrieval across multiple 
areas. The residual element of the ResNet-50 successfully handles 
the problem of network depth degradation. Furthermore, it 
addresses issues linked to shallow network layers' restricted 
potential for learning and inadequate feature extraction efficiency. 
Figure 3 depicts the ResNet -50 model's architecture, which 

consists of 50 layers organized into four major components. The 
initial component is made up of three smaller components, the 
subsequent component is made up of four smaller components, 
the third component is made up of 6 smaller components, and 
the final component is made up of 3 smaller components. Each 
tiny component has three convolutional cores. The 50-layer 
network framework is formed by a CL in the initial and a FCL 
in the last.

Inception-v3: The Inception model, introduced by Szegedy et 
al. during the 2016 Large-Scale ImageNet Visual Identification 
Challenge, was designed to address issues related to 
computational efficiency and parameter count in practical 
applications [28]. Inception-v3 takes input images sized at 299 
× 299, which is 78% larger than VGGNet (244 × 244), yet it 
exhibits faster processing speed. This efficiency can be attributed 
to several factors: Inception-v3 has fewer parameters compared 
to AlexNet, with fewer than half (60,000,000) and less than one-
fourth (140,000,000) of the parameters found in AlexNet [29] 
and VGGNet [30], respectively. Furthermore, the total amount 
of floating-point computations in the Inception-V3 model is 
around 5,000,000,000, which is considerably greater than in the 
Inception-v1 system (1,500,000,000). Because of these features, 
Inception-v3 is extremely practical and suited to be deployed in 
ordinary servers, allowing for immediate response.

Inception-v3 employs convolutional kernels of various sizes, 
allowing it to possess receptive fields covering different areas. 
To streamline the network design, it employs a modular system 
followed by feature fusion, enabling the integration of features 
from multiple scales. The network architecture comprises a series 
of CL and PL. Initially, CL-1 employs a 33-patch size and a stride 
of 2. Subsequently, CL-2 and CL-3 utilize a 33-patch size with a 
stride of 1. Following this, pool layer-1 adopts a 33 patch with a 
stride of 2. CL-4 employs a patch size of 33 and a stride of 1, while 
CL-5 uses a patch size of 33 and a stride of 2. CL-6 also utilizes 
a patch size of 33 with a stride of 1. These layers are followed by 
three inception blocks, five inception blocks, and two inception 
blocks. Finally, PL-2 employs a patch size of 8 × 8. The activation 
function employed for classification in this architecture is 
SoftMax. The model's configuration is depicted in Figure 4.

Figure 3: ResNet-50 architecture.
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A Batch Normalisation (BN) layer was added in Inception-v3 as a 
regularizer between the auxiliary and the FCL. The BN network 
uses batch gradient descent to speed up training and enhance 
model convergence in DNNs. These are the expressions of the 
BN formulas in below equations from 5-10:

1....{ }, ,mB X γ β+   (5)

,{ (X )}i iy BNγ β=   (6)

1
1 m

B i iX
m

µ =← ∑   (7)
2 2

1
1 ( )m

B i i BX
m

σ µ=← ∑ −   (8)

          (9)
     

(10)

Where, X represents the minimum activation value within batch 
B, γ, and β indicate learning parameters, m represents the total 
activation values, σB

2 represents the standard deviation in each 
feature map dimension, μΒ represents one dimension’s average 
value, and ε is a constant. Convolution and pooling processes 
are performed in parallel with Inception-v3's use of an approach 
in which giant convolution kernels are separated into smaller 
ones. In addition, it provides smoothing-criterion-based labels 
for regularisation. Inception-v3 adds BN by normalizing the 
input at each layer, optimizing the learning process to overcome 
input-output distribution inequalities that cause issues for feature 
extraction in conventional DNN.

CNN-Variational Autoencoder (VAE): Convolutional Neural 
Network (CNN); a CNN is a type of NN featuring multiple 
layers, like CL and PL, as well as a FCL [31,32]. The standard 
CNN design aims to recognize image shapes while retaining 
partial invariance to their location within the image. In the CL, 
input images are convolved with 2-D filters, denoted as K. For 
instance, given a 2-D image I as input, the convolution operation 
is represented as follows in equation 11:

(i. j) (I K)(i, j) K(i m, j n)m nS = × = ∑ ∑ − −   (11)

Subsequently, the feature maps resulting from the convolution 
operation are downsampled in the PL. The network learns the 
weights and filters (kernels) in the CL using backpropagation to 
minimize classification errors. In our dataset, we simultaneously 
use electrode location, time, and frequency data. Vertical 
activation locations are particularly important for classification 
performance, while horizontal activation locations are less 
significant. Therefore, in this experiment, the kernels applied 
are of the same height as the input image but have 1D filters 

horizontally. The network is trained using a total of TF=30 filters. 
Input signals are convolved with these training kernels, and an 
output map in the CL is generated through the output function 
f in equation 12:

(a) f((W ) )k k
ij ij kh f x b= = × +   (12)

Here, x represents the input image, Wk and bk indicates the 
weight matrix and bias value for k=1,2,...,T

F
. The chosen output 

function f is the ReLU function in below equation 13:
(a) ReLU(a)f =   (13)

The CL’s output consists of T
F
 vectors of dimensions (N

t
-2) × 

1. The following max-PL uses zero padding, resulting in the 
output map being subsampled into T

F
 vectors of 1D. The layer 

that follows max-PL is an FCL with five neurons that indicate 
ECG categorization. To train the CNN parameters, the 
backpropagation technique is used, with error E calculated based 
on the difference in the desired and the network's output. The 
gradient descent approach is then used to minimize the error E 
by modifying the network parameters using the equations 14,15.

k k
k

tialEW W
tialW

η= −   (14)
k k

k

tialEb b
tialb

η= −   (15)

Here, η represents the learning rate, Wk signifies the weight 
matrix for kernel k, and bk denotes the bias. The trained network 
will be utilized to categorize test samples.

Variational Autoencoder (VAE): The goal of an AutoEncoder 
(AE) NN is to have the output exactly match the input. The 
input is encoded in a hidden layer (h) that is part of the network's 
architecture. Where x is the input, the decoder function r=g(z) 
and the encoder function z=f(x) are the two main building 
blocks of the network. One method to get useful information 
out of an AE is to make z have fewer dimensions than x. Under 
completeness in an AE occurs when the dimension of the code 
is less than the input. In order for the AE to learn an incomplete 
representation, it must prioritize which elements of the training 
data are most important. The VAE is a directed model that 
requires just gradient-based approaches for training and relies on 
approximate inference learned from data [33-35].

First, it takes a random number z from the code distribution 

pmodel(z) to create samples from the VAE model. A generator 
network g(z) capable of differentiation is then applied to the 
sample. The last step is to draw x at random from the distribution 

pmodel
(x;g(z))=

pmodel
(x|z). The encoder q(z|x) is used to acquire 

z during training, while 
pmodel

(x|z) is considered as a decoder 

Figure 4: Inception-v3 Architecture.  Note: (  ): Input; (  ): Convolution + Relu; (  ): Max pooling; (  ): Average pooling; (  ): Fully 
pooling.
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network. Maximizing the variational lower bound L(q) for the 
data point x is the main idea underpinning VAEs' training 
strategy:

 (16) 

 (17)

The first element in Equation (16) indicates the joint log-
likelihood of hidden and visible elements. The entropy of the 
approximation posterior is the second element. Maximizing the 
entropy term stimulates a rise in the standard deviation of the 
noise when q is selected as a Gaussian distribution with noise 
introduced to a projected mean. More broadly, this entropy 
maximizes the variational posterior to attribute high probability 
to a range of z values from which x may have been formed, rather 
than a single point estimate. The first element in equation 
(17) is the reconstruction log-likelihood that appears in other 
AEs. The second element attempts to make q(z|x) a posterior 
distribution that is consistent with 

pmodel(z). The network can 
deal with stochastic inputs, and stochastic gradient descent has 
trouble with stochastic nodes. The "reparameterization trick," by 
which the sample is moved to an input layer, solves the problem. 
By picking from the range ~ N(0,I), we can generate a sample 
from the distribution N(μ(x),θ(x)), from which we can calculate 
Pmodelz=μ(x)+θ1/2(x) ϵ. Assume that q(z|x) has a mean and a 
covariance of μ(x) and θ(x), respectively. Therefore, the solution 
to Equation (17,18) is as follows:

 (18)

The VAE has three layers: Input, AEs, and output. Unsupervised 
training is used for each AE layer in the deep network, with the 
output of the prior AE's hidden layer feeding into the input of the 
following AE. After this initial phase of training, the network's 
parameters are trained via the backpropagation method in a 
supervised fine-tuning phase.

Combined CNN-VAE: The data collected from an ECG is 
relatively weak and subject to interference [36]. Artifacts add 
difficulty by triggering irrelevant effects that damage the actual 
ECG patterns. The existence of artifacts, channel correlations, 
and the immense dimension all make developing an appropriate 
ECG classification system problematic. To address these issues, 
we offer a novel DL approach that includes a CNN accompanied 
by a VAE, as shown in Figure 5.

Figure 5: CNN-VAE architecture.

In this DL construction, we first use CNN to analyse input and 
train network parameters alongside the kernels. Following that, 
the result of CNN is employed as an input to VAE model. The 
VAE's input stage is made up of 700 neurons. The CNN-VAE 
model is used in this structure to represent the spectral, temporal, 
and spatial aspects of ECG, which improves classification 
accuracy.

The CNN-VAE used in testing has a computational complexity 
of O(N

h
 × N

t
 × N

F
 × N

FS
)+O((N

t
 × N

F
)2 × N

L
). The computational 

complexity of the CNN is shown by the first element, where N
h
 × 

Nt is the size of the input image, N
Fs
 is the number of convolution 

kernels, and N
F
 is the size of the kernel. The computational 

complexity of the VAE is represented by the second element, 
where N

L
 is the number of total layers. Since the VAE network is 

fully connected, the complexity includes a squared term.

RESULTS AND DISCUSSION

Here, we demonstrate the results and discuss the efficiency of 
three DL models for CVD detection with ECG data: ResNet-50, 
Inception-V3, and CNN-VAE. To evaluate the efficacy of the 
DL models during the training phase, graphical representations 
of both accuracy and loss were developed. The x-axis of these 
plots represents the iterations used to train the model. The 
performance of the models is visualised along the y-axis, which 
shows both loss and accuracy values.

Training phase
The accuracy plot for ResNet-50 in Figure 6 demonstrates a 
consistent increase in both training and validation accuracy as 
the number of training epochs progresses. Notably, there are 
significant improvements observed within the initial 15 epochs, 
followed by diminishing growth. By the end of training, the 
model attained a training accuracy of 88.67% and a validation 
accuracy of 89.73%. The minimal difference between these 
two accuracies indicates that the model generalizes effectively 
to unseen data. Similarly, the loss plots illustrated in Figure 7 
showcase a continual decrease in both training and validation 
losses, resulting in values of 26.33% and 30.21%, respectively.

Figure 6: RESNET-50 accuracy performance on training phase. 
Note: (  ): Train accuracy; (  ): Val accuracy.

Figure 7: RESNET-50 loss performance on training phase. 
Note: (  ): Train loss; (  ): Val aloss.

In Figure 8, the accuracy plot for Inception-v3 demonstrates 
an upward trend as the number of training epochs increases, 
with most substantial improvements occurring within the first 
12 epochs. Overall, the model undergoes 50 epochs, achieving 
a training accuracy of approximately 93.11% and a validation 
accuracy of around 89.43%. As shown in Figure 9, the loss 
curves exhibit a decreasing pattern with epochs, concluding at 
a training loss of approximately 22.22% and a validation loss of 
approximately 29.18%. These results indicate the model's strong 
generalization capacity.
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Figure 8: Inception-v3 accuracy performance on training phase. 
Note: (  ): Train accuracy; (  ): Val accuracy.

Figure 9: Inception-v3 loss performance on training phase. 
Note: (  ): Train loss; (  ): Val loss.

Figure 10 portrays the accuracy plot for CNN-VAE, showcasing 
a remarkable increase in recognition training accuracy, reaching 
around 90% by the 11th epoch and eventually reaching a peak 
recognition training accuracy of 97.71% after 20 epochs. Similarly, 
the recognition validation accuracy increases steadily, reaching 
approximately 90% by the 22nd epoch and achieving a maximum 
of 96.8% after 44 epochs. Notably, CNN-VAE outperforms 
the other models in terms of accuracy. Concerning losses, the 
training loss reaches 2.4%, while the validation loss reaches 
8.53%, underscoring the model's impressive performance. Figure 
11 illustrates the loss plot of CNN-VAE.

Figure 10: CNN-VAE accuracy performance on training phase. 
Note: (  ): Train accuracy; (  ): Val accuracy.

Figure 11: CNN-VAE loss performance on training phase.  
Note: (  ): Train loss; (  ): Val loss.

Testing phase
After training the deep learning models, a comprehensive 
evaluation is conducted using various performance metrics. 
These metrics include accuracy, specificity, sensitivity, precision, 
False Negative Rate (FNR), and False Positive Rate (FPR). A 
detailed summary of these metrics for each disease classification 
is presented in Table 2-4. Notably, all models exhibit the highest 
prediction accuracy for normal ECG signals and the lowest for 
HYP ECG signals, likely due to data distribution disparities.

Table 2: ResNet-50 performance metrics on test data.

Model Accuracy Specificity Sensitivity Precision FNR FPR

NORM 95.26792 96.21622 94.26112 95.91241 5.738881 3.783784

MI 89.77853 91.27273 88.46154 92 11.53846 8.727273

STTC 92.65905 89.12281 95.73171 91.01449 4.268293 10.87719

CD 94.27245 93.18182 95.26627 93.87755 4.733728 6.818182

HYP 87.11656 85.33333 88.63636 87.64045 11.36364 14.66667

Total 91.8189 91.02538 92.4714 92.08898 7.5286 8.97462

Note: FNR: False Negative Rate; FPR: False Positive Rate; NORM: Normal; MI: 
Myocardial Infarction; STTC: ST/T Change; CD: Conduction Disturbance; 
HYP: Hypertrophy.

Table 3: Inception-V3 performance metrics on test data.

Model Accuracy Specificity Sensitivity Precision FNR FPR

NORM 96.93807 97.97297 95.83931 97.80381 4.160689 2.027027

MI 91.99319 93.79562 90.41534 94.33333 9.584665 6.20438

STTC 91.84339 90.35714 93.09309 91.98813 6.906907 9.642857

CD 96.59443 95.39474 97.66082 95.97701 2.339181 4.605263

HYP 91.41104 89.33333 93.18182 91.11111 6.818182 10.66667

Total 93.75602 93.37076 94.03808 94.24268 5.961925 6.629239

Note: False Negative Rate; FPR: False Positive Rate; NORM: Normal; MI: 
Myocardial Infarction; STTC: ST/T Change; CD: Conduction Disturbance; 
HYP: Hypertrophy.

Table 4: CNN-VAE performance metrics on test data.

Model Accuracy Specificity Sensitivity Precision FNR FPR

NORM 97.7731 98.1258 97.3913 97.9592 2.6087 1.87416

MI 93.8671 95.6364 92.3077 96 7.69231 4.36364

STTC 94.9429 93.8182 95.858 95.0147 4.14201 6.18182

CD 96.904 95.7792 97.929 96.2209 2.07101 4.22078

HYP 93.2515 92 94.3182 93.2584 5.68182 8

Total 95.3477 95.0719 95.5608 95.6906 4.43917 4.92808

Note: FNR: False Negative Rate; FPR: False Positive Rate; NORM: Normal; MI: 
Myocardial Infarction; STTC: ST/T Change; CD: Conduction Disturbance; 
HYP: Hypertrophy.

A comparative analysis of average metrics, presented in Table 5, 
reveals that CNN-VAE outperforms the other models, achieving 
the highest accuracy (95.34%), specificity (95.07%), sensitivity 
(95.56%), and precision (95.69%). Conversely, ResNet-50 
records the lowest accuracy (91.81%), specificity (91.02%), 
sensitivity (92.47%), and precision (92.08%). Figure 12 displays 
the performance scores for true predictions achieved by our DL 
models using a bar graph. Furthermore, Figure 13 provides a 
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comparison chart depicting the rates of false predictions, with CNN-VAE showcasing the lowest rate and ResNet-50 exhibiting 
the highest.

Model Accuracy Specificity Sensitivity Precision FNR FPR

RESNET50 91.8189 91.02538 92.4714 92.08898 7.5286 8.97462

INCEPTIONV3 93.75602 93.37076 94.03808 94.24268 5.961925 6.629239

CNN-VAE 95.34774 95.07192 95.56083 95.69064 4.439168 4.928079

Note: FNR: False Negative Rate; FPR: False Positive Rate.

Table 5: Performance evaluation of DL models.

Figure 12: DL Model comparison on true predictions.

Figure 13: DL Model comparison on false predictions.



9

Selvam IJ, et al. OPEN ACCESS Freely available online

Angiol Open Access, Vol.11 Iss.10 No: 1000396

Society for Computerized Electrocardiology. Circulation. 
2009;119(10):241-250.   

5. Nable JV, Brady W. The evolution of electrocardiographic 
changes in ST-segment elevation myocardial infarction. Am J 
Emerg Med. 2009;27(6):734-746.    

6. Itchhaporia D, Snow PB, Almassy RJ, Oetgen WJ. Artificial 
neural networks: Current status in cardiovascular medicine. 
J Am Coll Cardiol. 1996;28(2):515-521.   

7. Hong S, Zhou Y, Shang J, Xiao C, Sun J. Opportunities and 
challenges of deep learning methods for electrocardiogram 
data: A systematic review. Comput Biol Med. 
2020;122:103801.   

8. Somani S, Russak AJ, Richter F, Zhao S, Vaid A, Chaudhry 
F, et al. Deep learning and the electrocardiogram: Review 
of the current state-of-the-art. EP Europace. 2021;23(8):1179-
1191.   

9. Mincholé A, Camps J, Lyon A, Rodríguez B. Machine learning 
in the electrocardiogram. J Electrocardiol. 2019;57:S61-64.   

10. Hong S, Zhou Y, Shang J, Xiao C, Sun J. Opportunities and 
challenges of deep learning methods for electrocardiogram 
data: A systematic review. Comput Biol Med. 
2020;122:103801.   

11. Abubaker MB, Babayiğit B. Detection of cardiovascular 
diseases in ECG images using machine learning and deep 
learning methods. IEEE Trans Artif Intell. 2022;4(2):373-
382.  

12. Subramani S, Varshney N, Anand MV, Soudagar ME, Al-
Keridis LA, Upadhyay TK, et al. Cardiovascular diseases 
prediction by machine learning incorporation with deep 
learning. Front Med. 2023;10:1150933.   

13. Golande AL, Pavankumar T. Optical electrocardiogram 
based heart disease prediction using hybrid deep learning. J 
Big Data. 2023;10(1):139.   

14. Yoon T, Kang D. Bimodal CNN for cardiovascular disease 
classification by co-training ECG grayscale images and 
scalograms. Sci Rep. 2023;13(1):2937.   

15. Taylan O, Alkabaa AS, Alqabbaa HS, Pamukçu E, Leiva V. 
Early prediction in classification of cardiovascular diseases 
with machine learning, neuro-fuzzy and statistical methods. 
Biology. 2023;12(1):117.   

16. Khan F, Yu X, Yuan Z, Rehman AU. ECG classification 
using 1-D convolutional deep residual neural network. Plos 
One. 2023;18(4):e0284791.   

17. Song G, Zhang J, Mao D, Chen G, Pang C. A multimodel 
fusion method for cardiovascular disease detection using 
ECG. Emerg Med Int. 2022;2022.   

18. Shankar MG, Babu CG, Rajaguru H. Classification of cardiac 
diseases from ECG signals through bio inspired classifiers 
with Adam and R-Adam approaches for hyperparameters 
updation. Measurement. 2022;194:111048.   

19. Kumar S, Mallik A, Kumar A, Ser DJ, Yang G. Fuzz-Clust 
Net: Coupled fuzzy clustering and deep neural networks for 
Arrhythmia detection from ECG signals. Comput Biol Med. 

CONCLUSION

Our research aimed to enhance the early detection of CVD by 
utilizing DL algorithms to categorize ECG signals. To establish 
a solid foundation for our study, we carefully collected and 
processed a benchmark dataset. Through the implementation 
of DL models like ResNet-50 and Inception-v3, we achieved 
remarkable performance in identifying CVD cases. However, 
we took it a step further by introducing a novel hybrid model 
called CNN-VAE, which amalgamates the advantageous features 
of both VAE and CNN. This integration resulted in an effective 
tool for ECG signal categorization that greatly improved the 
reliability of our predictions. When comparing the outcomes of 
these three models, CNN-VAE exhibited superior effectiveness by 
significantly minimizing erroneous predictions while maintaining 
a high success rate. CNN-VAE's good performance in this area 
suggests that it may prove useful in medical diagnostics as a 
means of detecting CVD at an early stage. 

Several future improvements to the current system are 
possible. Overcoming data imbalance is a vital step, which 
can be accomplished by gathering more samples in real-time 
or via methods of data augmentation. A balanced dataset 
can significantly improve model accuracy. Additionally, the 
development of a mobile application incorporating the CNN-
VAE model from this study is underway. Such an application 
could prove invaluable for healthcare professionals, enabling real-
time CVD identification and proactive intervention.
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