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Abstract
We report a sensitive electrochemical voltammetric method for analyzing p-Chloroaniline using a carbon 

paste electrochemical (CPE) modified by porous material, such Clay (C). P-Chloroaniline strongly adsorbed on a 
C-CPE surface and provides facile electrochemical quantitative methods for electroactive p-Chloroaniline (p-CA).
Operational parameters have been optimized, and the stripping voltammetric performance has been studied using
square wave voltammetry. The peaks current intensity are highly linear, with a good sensitivity of C-CPE. These
findings can lead to a widespread use of electrochemical sensors to detect chloroaniline contaminates.
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Introduction
The interest for chloroanilines in the environment is due to 

their recognised toxicity associated to their ubiquitous diffusion. 
Chloroanilines can be present in industrial effluents, sludges and 
agricultural soils; they are produced in biodegradation processes of 
phenylurea, acylanilide and phenylcarbamate herbicides [1], can derive 
from azodye synthesis and industrial applications [2] and are important 
intermediates in production of polymers, rubber additives, dyes and 
pharmaceutics. Due to the high persistence in the environment and the 
low natural biodegradability, remediation strategies have been developed 
for their destruction, based on different processes and reagents [3]. 
Particular attention is devoted to the degradations of 2-chloroaniline 
[4] and especially of p-chloroaniline (p-CA) [5]. Degradation
pathways of p-CA induced by differently-catalysed chemicals and
microbiological treatments are reported. A photodegradation process
catalysed by TiO2 [6] and Fe(III)-assisted do not lead to complete
mineralization but to the formation of polymeric products, often red-
colored [7]. Some remediation strategies are based on H2O2 oxidation
catalysed by mixed metal oxides, metals and Fentontype heterogeneous 
mixtures. The oxidation with hydroxyl radicals leads to the formation of 
aminohydroxybenzene and HCl and then to complete mineralization,
the kinetics depending on the kind of the catalyst [8]. The photolytic
reactionperformed at 313 nm and assisted by electron transfer reactions 
to organic solvents leads to the formation of hydrogen chloride and
dimeric forms [9] while ozonation at different pH values leads to
the formation of products characterized by lower toxicity [10]. The
electrochemical oxidation in cyclic voltametry (acetonitrile as the
solvent) leads to the formation of dimeric products [11] and evidences
the role of the halogen substituents in the electroxidation process [12].
Pulsed laser-induced transient absorption spectroscopy in acetonitrile
has also been applied in the degradation of p-CA [13]. Degradation
reactions conducted in a photoreactor containing a fluorescent
lamp, in the presence of phosphate, leads to the formation of many
products, among which the purple colored 4,40-dichloroazobenzene
[14]. In acetonitrile 4- A undergoes heterolysis and in polar media
gives rise to photodechlorination, formation of organic species and of
hydrochloride, while nanosecond laser flash photolysis experiments
showed the effect of the solvent polarity on the degradation pathway
[15]. Photoirradiation of p-CA in acetonitrile in the presence of alkene
was shown to form diamine and aniline [16]. Ionisation radiation
has also been employed in the development of new technologies for

the treatment of waste waters. In particular the degradation of p-CA 
has been studied by ionising radiation, utilising a 60Co g-rays source: 
the reaction leads to the formation of NH3, chloride, aldehydes, acids 
and chlorophenols [17]. In soil remediation, degradation processes 
based on microbiological and enzymatic activity are also employed. 
Biodegradation by gram negative bacteria and by ‘‘natural attenuation’’ 
methods, consisting in natural processes have been also experimented 
[18]. Enzymatic activities were employed to degrade p-CA to polymeric 
species [19]. P-CA has been also destroyed by means of sequential 
airlift bioreactor SABR [20] and by sun light exposure in the presence 
of riboflavin-50-phosphate and sodium [21]. Some literature papers 
deal with the degradation reactions of p-CA in natural waters but 
no distinction is made among the possible contributions of sun light 
irradiation, temperature and bacteria, microbial microorganisms and 
humic acids present in water [22-24]. Aim of the present work is to 
evaluate the behaviour of p-CA in aqueous solution, when irradiated by 
natural sun light, to identify the structure of the degradation products 
formed and to evaluate their toxicity in comparison with that of p-CA. 
To this purpose, aqueous solutions of p-CA in the total absence of 
organic solvent are undergone to the effect of sun light, simulated by a 
solar box system. The concentration of p-CA (10.00 mg L-1) corresponds 
to its solubility in water that, due to the disagreement among literature 
data, has been evaluated in our laboratory. By HPLC-DAD–MS/
MS technique the decreasing concentration of p-CA due to photo 
irradiation is followed a long time, together with the formation of new 
products. The kinetics is evaluated and the structures of the degradation 
products proposed. Toxicity biotests are applied to evaluate any toxicity 
variation due to the photodegradation. In this paper, we describe the 
electrochemical analysis of p-chloroaniline on a clay modified carbon 
paste electrode. The electrochemical characterization of adsorbed 
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electroactive p-CA was evaluated using Cyclic Voltammetric (CV) and 
Electronic Impedance Spectroscopy (EIS) analysis.

Experimental
Reagent

P-CA, sodium sulfate, and nitric acid were of analytical grade and 
from Aldrich. Stock solutions of p-CA were prepared by dissolving 
p-CA in Deionized Water (DW). All preparations and dilution of 
solutions were made with deionized water. For reproducible results, a 
fresh solution was made for each experiment.

Electrode preparation

The electrode was prepared by mixing a pure graphite powder and 
synthesis clay described above. The mixture was grinding in a mortar. 
The mixture paste was packed into working electrode. The geometric 
surface area of the working electrode was 0.1256 cm2. The electrolytic 
solution Na2SO4 (0.1M) was deoxygenated with nitrogen during 
experiment at ambient temperature.

Apparatus and electrochemical procedures
Volta metric measurements were made using a potentiostat 

PGSTAT 100 driven by the General Purpose Electrochemical Systems 
data processing software (voltalab master 4 software). The auxiliary 
electrode was platinum, the reference electrode a saturated calomel 
electrode (SCE). The working electrode consisted of an C-CPE with a 
drop area of 0.1256cm2. The pH measurements were carried out with a 
pH meter. All experiments were performed at 25°C. Test solutions for 
voltammetric experiments were prepared in 20 ml volumetric flasks 
containing a suitable amount of p-CA solution, 0.1M sodium sulphate. 
All solutions were added deionised water to a final volume of 20 ml and 
transferred to the electrochemical cell. Before the voltammetric scan, 
the solutions were stirred and de-aerated by bubbling nitrogen gas 
(purity 99.95%) at flow rate of 50 ml min−1 for 5 min. Current-potential 
curves from -1 V to 1.7 V.

Results and Discussion
Voltammetric characteristics of 4-chloroaniline 

Figure 1 shows a cyclic voltammograms (CV) in the potential range 
-1 V to 1.7 V recorded for clay modified carbon paste electrode at 100 
mVs -1. No peak is observed in the case of C-CPE for the absence at 
p-CA (Figure 1a), contrary to the Figure 1b shows as p-CA exhibits 
has two oxidation peaks at Epa(1) = 0.35V and at Epa(2)= 0.74V , in 
addition to reduction peak at Epc = 0.025V.

Electrochemical Impedance Spectroscopy (EIS)
EIS was carried out on a clay modified carbon paste electrode 

(C-CPE) surface in 0.1 mol L-1 Na2SO4 in the absence and the presence 
of p-CA (1.18mM) at 298 K after 15 min of immersion (Figure 2). The 
charge-transfer resistance (Rt) values are calculated from the difference 
in impedance at lower and higher frequencies, as suggested by Tsuru et 
al. It appears clearly from these data that the capacitance at the interface 
increases when the C-CPE is exposed to p-CA. This observation gives 
another evidence for p-CA adsorption on the C-CPE as part of an 
integrated process leading to the electrolytic redox of p-CA at the C-CPE 
surface. The observed decrease of the charge-transfer resistance means 
also that the modified electrode becomes more conductive, which can 
be explained by the presence of p-CA on the electrode surface.

Optimization of experimental conditions
Optimum conditions for the electrochemical response were 

established by measuring the peak current in dependence on all 
parameters.

Influence of accumulation time: Figure 3 shows the effect of the 
accumulation time, this significantly affects the oxidation peak (Pic 
1) current of p-CA. The peak current of 0.4 mmol L−1 p-CA increases 
greatly within the first 15min. Further increase in accumulation time 
does not increase the amount of p-CA at the electrode surface owing 
to surface saturation, and the peak current remains constant. This 
phenomenon is due to the cavity structure of C-CPE that improves 
the ability of the electrode to adsorb electroactive p-CA. Maybe this is 

 

Figure 1: CV recorded for 1.18 mM p-CA at pH=7 at bare C-CPE (a) and 
C-CPE/p-CA(1.18mM) (b), scan rate 100 mV/s, preconcentration time (tp) = 
15min.

 

Figure 2: Impedance spectra at 0 V C-CPE (a) and (p-CA)-C-CPE (b).

Figure 3: Effects of accumulation time on oxidation peak (1) currents of 
0.4 mmol L−1p-CA (pH=7) at C-CPE, supporting electrolyte is Na2SO4 0.1M.
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attributed to the saturated adsorption of p-CA on the C-CPE surface. 
Taking account of sensitivity and efficiency, accumulation time was 15 
min in the following experiments.

Effect of scan rate: The effect of scan rate on the redox of p-CA 
was examined in 0.1 M Na2SO4 buffer solution of pH=7 as a supporting 
electrode. Figure 4 shows both the anodic and the cathodic peak 
currents linearly increase with the scan rate over the range of 100 to 
200 mVs-1. Figure 5 shows the linear relationship between the scan rate 
anodic peak and cathodic peak currents of p-CA at C-CPE. The linear 
regression equations:

Ipa(1)=0.008V-0.084 R2=0.995

Ipa(2)=0.010V+0.312 R2=0.996

Ipc(3)=-0.007V+0.229 R2=0.996

 Calibration graph: Figure 6 show the CV curves of different 
concentration of p-CA at C-CPE was increased from 0.4 mM to 1.96 
mM in 0.1 M Na2SO4 buffer solution at pH=7 at a sweep rate of 100 mVs-

1. Both the anodic and cathodic peak current increases linearly with 
the concentration of p-CA. The Figure 7 shows the linear relationship 
between the concentartion anodic peak and cathodic peak currents of 
p-CA at C-CPE. The linear regression equations:

Ipa(1)=0.392 [p-CA] +0.554 R2=0.988

Ipa(2)=0.510 [p-CA] +0.841 R2=0.960

Ipc(3)=-0.276 [p-CA] -0.503 R2=0.975

Effect of pH: Figure 8 shows the cyclic voltammograms of the 
p-CA at different pH. The current of the peak depend on the solution 
pH. The Figure 9 shows the graph of different pH versus peak current.

Analytical Application
In order to evaluate the performance of Clay modified carbon paste 

electrode by practical analytical applications, the determination of 
p-CA was carried out in tap water. The analytical curves were obtained 
by CV experiments in supporting electrode (Figure10). It was founded 
that the peaks currents increase linearly versus p-CA added into the tap 
water (Figure 11). The linear regression equations:

 

Figure 4: CV acquired on C-CPE with 0.4 mM p-CA in the buffer solution 
at different scan rates.

Figure 5: Plot of peaks area versus scan rate.

   

Figure 6: Cyclic Voltammograms of different concentration of p-CA at 
C-CPE in 0.1 M Na2SO4 pH=7, Scan rate 100 mV/s.

Figure 7: Plot of peaks area versus added concentration of p-CA. 

 

Figure 8: Effect of pH on the redox of p-CA at the Clay modified CPE.



Citation: Ouafy TE, Chtaini A, Oulfajrite H, Najih R (2015) Electrochemical Detection of p-Chloroaniline at Clay Modified Carbon Paste Electrode: 
Application in Tap Water. J Drug Metab Toxicol 5: 174. doi:10.4172/2157-7609.1000174

Page 4 of 4

Volume 5 • Issue 6 • 1000174
J Drug Metab Toxicol
ISSN: 2157-7609 JDMT, an open access journal

Figure 9: Plot of the relationship between solution pH and the redox peaks 
Current.

 

Figure 10: Cyclic Voltammograms of different concentration of p-CA at 
C-CPE in tap water, Scan rate 100 mV/s.

Figure 11: Plot of peaks area versus added concentration of p-CA.

Ipa(1)=0.616 [p-CA] +0.278 R2=0.997

Ipa(2)=1.394 [p-CA] +0.841 R2=0.989

Ipc(3)=-0.504 [p-CA] -0.245 R2=0.995

Conclusion
It was demonstrated here that Clay modified electrode exhibits 

higher electrocatalytic activity towards p-Chloroaniline redox. The 
obtained results revealed that determination of p-CA can be easily 
performed using the clay. The proposed methodology was successfully 
applied in tap water samples. The sensitivity signal is proportional to 
the concentration value of p-CA.
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