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Short Communication
Arthritis and related conditions have been recognized as the third

largest contributor to direct health care expenditure, affecting nearly 48
million people in USA [1]. More importantly, the economic and social
burden of arthritis is expected to grow, as the number of people with
arthritis is expected to reach 67 million in the USA by 2030 [1,2].
Among various arthritic conditions, rheumatoid arthritis (RA) is the
most common inflammatory arthritis worldwide. It is a chronic,
progressive autoimmune disease characterized by cellular infiltration
and proliferation of synovium, leading to progressive destruction of
articular bone and cartilage [3]. As RA tends to be progressive in
nature, the current treatments, including conventional therapies and
biologics, mainly aim to slow clinical progression and relieve patient
symptoms. However, the limited efficacy and side-effects associated
with these therapies underscore the need for new, effective, and safer
approaches to treating RA.

Green tea is a widely consumed beverage throughout the world,
with a wide spectrum of proven health benefits. Epigallocatechin-3-
gallate (EGCG) is the most abundant and most biologically active
catechin found in green tea [4]. Emerging evidence has documented
that EGCG possesses much of the health promoting properties
ascribed to green tea, including anti-inflammatory,
immunomodulatory and antioxidant effects. In 1999, Haqqi and
colleagues first reported the disease modulating effects of green tea
polyphenols (GTPs) on RA in a murine collagen-induced arthritis
(CIA) model. They reported that GTPs administration significantly
reduced the incidence and lowered the disease severity of arthritis,
associated with a marked reduction in IFN-γ, TNF-α, and
cyclooxygenase (COX)-2, as well as total IgG and type II collagen-
specific IgG (Ab) in the arthritic joints [5]. Following this, the
therapeutic effects of green tea or EGCG have been consistently
reported in a series of experiments using either CIA or Adjuvant-
induced arthritis (AIA) animal models [6-12]. Interestingly, in a
prospective cohort study of 31,336 subjects, Mikuls et al. reported that
consuming >3 cups tea per day significantly reduced the risk of RA
development [13].

More recently, Min and colleagues induced CIA in DBA/1J mice
and fed these mice EGCG 10 mg/kg nine times over three weeks [3]. In
agreement with earlier findings, their results again confirmed the
therapeutic efficacy of EGCG on RA. Of relevance to this commentary,
this work has contributed additional mechanistic insights on how
EGEG might be functioning at the molecular level.

Although EGCG has documented effects on both the adaptive and
innate arms of the immune system, a substantial degree of research has
focused on the impact of EGCG on T cell function, in the context of
arthritis. Of various T cell subsets, regulatory T cells (Treg) play a vital

role in maintaining immune tolerance and suppressing autoimmunity.
Several studies have demonstrated that EGCG administration can
increase Treg cell frequencies both in vitro and in vivo, accompanied
by reduced T cell responses [10-12,14,15]. However, how EGCG
modulates Treg cell function is unclear. Wong et al. proposed that
EGCG could function as a DNA methyltransferase (DNMT) inhibitor
to induce Foxp3 expression in naive CD4+ T cells, hence enhancing
Treg cell formation and function via an epigenetic mechanism [14]. An
alternative mechanism has also been proposed by Wu and colleagues,
whereby EGCG induced Treg cell differentiation was mediated by its
dampening of IL-6 signaling, including reduced soluble IL-6R,
membrane gp130, and IL-6-induced phosphorylation of STAT3 in
naïve CD4+ T cells [16]. Min et al. also reported the increased
frequency of Treg cells in the draining lymph nodes (dLNs) from
EGCG-fed CIA mice. They also demonstrated a novel mechanism
addressing how EGCG administration might lead to an increase in the
number of Treg cells [3]. First, they found EGCG could enhance
indoleamine-2, 3-dioxygenase (IDO) expression by CD11b+ DCs, and
these CD11b+IDO+ DCs were functionally active. Second, using an in
vitro coculture system, they reported that splenic CD11b+IDO+ DCs
from EGCG-fed mice were more potent in differentiating CD4+CD25−

T cells into Treg cells. Third, to address whether these effects are IDO-
dependent, an IDO inhibitor, 1-MT, was added to the CII antigen-
stimulated coculture system. Indeed, the increase in the proportion of
Treg cells from EGCG-fed mice was significantly abrogated. This
finding was further supported by their in vivo studies, where 1-MT
treated EGCG-fed mice displayed similar disease severity as the
vehicle-fed control CIA mice. These studies suggest that EGCG induces
IDO expression in CD11b+ DCs, and these CD11b+ IDO+ DCs in turn
generate Treg cells from CD4+CD25− T cells, via an IDO-dependent
pathway. Taken together, these recent reports have advanced novel
mechanisms explaining how EGCG modulates Treg cells in CIA.

Green tea has well documented anti-oxidant properties. In several
murine models of nephritis, the improvement in renal function and
histology with EGCG administration was associated with the
restoration of Nuclear Factor Erythroid 2-Like 2 (Nrf-2) signaling
[17-19]. Nrf-2 is a transcription factor that plays a major role in
cellular defense against oxidative stress by inducing inactivate reactive
oxygen species, such as Heme oxygenase-1 (HO-1). Nrf2 has been
documented to be activated in the joint tissue from both arthritic mice
and RA patients. Importantly, mice deficient in Nrf2 displayed more
severe cartilage injury and more oxidative damage [20,21]. In patients
with RA, Nrf2 activity strongly inversely correlates with RA disease
activity [22]. In agreement with these findings, Min’s results showed
that EGCG treatment significantly increased pNrf2 activity and the
expression of HO-1, an Nrf2 target gene, in the CIA model of arthritis
[3].
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These observations lead to an important question: is there any link
between EGCG induced immunoregulation and the EGCG induced
antioxidant response? Indeed, emerging evidence indicates that Nrf2,
the key modulator in the antioxidant pathway, also plays a role in
modulating immune responses. Perhaps the clearest demonstration of
this is the observation that mice deficient in Nrf2 are susceptible to
various inflammatory disorders including asthma and colitis [23,24].
Moreover, CD4+ T cells isolated from Nrf2 deficient mice produce
increased amounts of IFN-γ [21], while the activation of Nrf2 in T cells
inhibits IFN-γ secretion [25]. Using siRNA blockade, two independent
studies provide further support for the role of Nrf2 in EGCG-induced
immunoregulation. EGCG can inhibit Transforming growth factor-β1
(TGF-β1) induced epithelial-mesenchymal transition (EMT), and this
effect was completely blocked by siRNA-mediated knockdown of Nrf2,
indicating that EGCG prevents TGF-β1 induced EMT via the Nrf2-
mediated suppression of TGF-β1 signaling [26]. Similarly, silencing
Nrf2 increased the expression of pro-inflammatory genes and
decreased antioxidant gene expression in coplanar PCB 126-
stimulated, EGCG-treated vascular endothelial cells [27].

In Min and colleagues’ work, they also explored whether the
molecule IDO was related to the activation of Nrf2 [3]. They treated
EGCG-fed CIA mice with the IDO inhibitor, 1-MT, and found 1-MT
treated EGCG-fed CIA mice had comparable disease severity as the
vehicle-fed CIA mice, as alluded to above. In this study, they also
examined the pNrf2, Nrf2 and HO-1 levels in the joint homogenates
from EGCG-fed CIA mice, 1-MT treated EGCG-fed CIA mice as well
as the vehicle-fed CIA mice. The 1-MT treated EGCG-fed CIA mice
exhibited similar levels of all three molecules as compared to the
vehicle-fed CIA mice, implicating an IDO-dependent mechanism for
the enhanced Nrf2 expression. More recently, yet another novel link
between the anti-oxidant and anti-inflammatory effects of EGCG has
been reported. Zeng et al. reported that EGCG down-regulated NLRP3
inflammasome expression in a contrast-induced nephropathy murine
model, which was completely blocked by protoporphyrin IX zinc (II),
an HO-1 blocker, indicating that antioxidant pathway molecule, HO-1,
links EGCG’s therapeutic effects with inflammation pathway signaling
via NLRP3 [28].

In summary, the recent works by Min et al. and others offer several
novel perspectives on the role of EGCG in arthritis, autoimmunity, and
inflammation. Besides validating the salubrious effects of EGCG on
arthritis, these studies tie together several disparate molecular
pathways including the IDO pathway, the Nrf2 dependent antioxidant
pathway, and Treg cell mediated immunoregulation. It appears very
likely that the interplay of these different cellular and molecular
pathways also lies at the heart of how EGCG might modulate other
autoimmune and inflammatory diseases, though this needs to be
formally tested in future studies.
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