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Introduction
Forest is one of the most widely distributed terrestrial ecosystem, 

which has a direct effect on absorption of CO2 and other greenhouse 
gases and acts an essential indicator in global carbon cycle and climate 
regulation [1]. Forest biomass refers to the total amount of organic 
matter on a unit area at a certain moment, which accounts for about 
85%-90% of total biomass on earth and thus is the most essential 
index indicating the productivity of the terrestrial ecosystem [2,3]. 
Forest biomass is not only an important indicator of forest carbon 
sink capacity, but also a major parameter of forest carbon budget [4-
6]. Although forest biomass carbon pool plays an indispensable role in 
the regional carbon budget, the understanding of the change of forest 
biomass carbon stock and its response to the climate change is still 
poor due to limited data and spatial heterogeneity [1,7,8]. Therefore, 
estimating forest biomass as well as its change is a substantial part of 
the study on carbon cycle and climate change.

Climate change, especially high temperature, drought, flood, fire 
and other extreme disasters can disturb the growth of forest [9-16]. The 
suitability of meteorological factors to the forest can be summarized as 
optimum, the upper limit and the lower limit. When the meteorological 
factors are within the optimum range, the growth of vegetation would 
reach to the best condition; whereas inhibited vegetation or even death 
of vegetation could occur upon meteorological factors near or beyond 
the upper or lower limit [17]. Due to the global climate change, extreme 
drought occurred more frequently in recent years, which directly 
influenced the productivity and composition of the vegetation [18,19]. 
Studies have verified that the same vegetation has distinct response 
to different drought frequency and intensity [20], in addition, the 
response of vegetation which is different types but nearby to distinct 
frequency and intensity drought are also different [21]. Therefore, 
there is a clear need to study productivity change of forest vegetation in 
response to specific drought.

Severe drought occurred in five provinces in the southwestern China, 
which endured for a long time and deeply impacted a considerably large 

area. The Ministry of Civil Affairs statistics that about 21 million people 
are drinking water shortages, economic losses of nearly $30 billion 
(Consultation draft of National Disaster Committee, March 2010). 
In particular, the extreme drought occurred in 2010 was a disaster to 
the agriculture, industry, city development and other economic and 
social activities in the area, resulting in death of forest vegetation and 
thus a serious blow of local ecological environment [12,22]. In the 
past, many studies analyzed the impact of drought on vegetation in 
the region. Yang et al. [23] provided the most seriously affected area 
using the distribution of the site monthly precipitation anomaly in 
the past 50 years and the percentage of abnormal precipitation. This 
article comprehensively explored the reason for the drought and the 
change of the corresponding affected area over time. Zhao et al. [20] 
divided drought into different stages using Palmer drought severity 
index (PDSI) in the southwestern area from 2009-2010 and further 
studied the response of forest, grassland and savanna to different levels 
of drought. Severe drought can have different impacts on vegetation 
during different stage of drought. Zhang et al. [24] verified that the 
drought which occurred in the spring would make the enhanced 
vegetation index (EVI) and gross primary productivity (GPP) reduced, 
indicating that spring drought have an important impact on vegetation 
productivity and terrestrial carbon cycle. Although there are a handful 
studies on the impact of extreme drought on vegetation growth in the 
southwestern China, there are fewer studies focusing on the impact of 
drought especially years continuous drought on forest biomass carbon 
sink. Biomass is a major feature of terrestrial carbon cycle, therefore, 
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evaluating the impact of extreme climate change on forest BCD is an 
important and urgent task. Therefore, the purpose of this research is 
to focus on the effects of extreme drought on biomass carbon density. 
First calculated the actual biomass carbon density using the method of 
biomass conversion factors (BEF) and accompanied with forest volume 
and areas based on 3rd to 8th forest resources statistics of China. China 
forest BCD with high accuracy was then estimated using Inventory-
satellite-based method in conjunction with remote sensing data NDVI 
and elevation. At last, we used PDSI as the drought index to analyze the 
correlation between BCD anomaly and PDSI from 2009 to 2013 and 
verified the impact of drought disturbance on forest biomass.

Study area 

The study area is located in the southwestern China, including five 
provinces: Yunnan, Guizhou, Chongqing, Guangxi and Sichuan. Since 
2009, the precipitation in this region was continuously below normal 
level, and a rare continuous drought occurred from 2009 to 2012, 
resulting in death of a large area of forest, which was explored by quite 
a few studies [20,23,24]. Figure 1 shows the distribution of different 
types of vegetation in this region. The red square area are our study area 
which stand for the most seriously affected part, and they are calculated 
using the monthly precipitation anomaly spatial distribution data in 
the past 50 years and the percentage of anomaly precipitation [23].

Materials and Methods 
NDVI data

The NDVI, which is defined as a normalized ratio of the near 
infrared and red bands, is widely used as a proxy of canopy greenness. 
The GIMMS3g NDVI product was used to calculate NDVI at 0.083° 
spatial resolution and 15 day temporal resolution [25-27]. The method 
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Figure 1: The location of the five provinces in southwestern China and the spatial distribution of land cover. The pixels are generated using unchanged pixels in 
land cover data.

of Maximum Value Composition (MVC) was selected in the process 
of data synthesis, the data were corrected for the effect of atmospheric 
gases, thin cirrus clouds and aerosols. As NDVI can effectively reflect 
the biological and physicochemical characteristics of vegetation, such 
as biomass, coverage and chlorophyll content, it can be used to monitor 
the Earth’s terrestrial photosynthetic vegetation activity in support of 
vegetation change, climatic impact and biophysical interpretations 
[28].

Forest inventory data

The forest volume data were collected from forest inventory data 
for 1984-2013 in China. Sample areas in each province are periodically 
checked in China’s national forest inventory method. These forest 
resource data can be used to investigate the macroscopic status and 
dynamics of forest resources, which is important for the development 
and adjustment of forestry policy, planning and programs. Eight 
national forest inventories were completed from 1950 until 2013. 
The Ministry of Forestry completed the first national forest statistics 
in the 1960s. The second national forest inventory was conducted in 
1977-1981, and the third and the fourth inventories were conducted 
in 1984-1988 and 1989-1993. The forest inventory then was conducted 
every five years (1994-1998, 1999-2003, 2004-2008, and 2009-2013). 
These inventory data provide a scientific and reliable basis for national 
dynamic monitoring and management of forest resources. 

This research used 3rd to 8th forest resources statistics of China 
(1984-2013). The data of land vegetation included stand forest, 
economic forest and bamboo, among which stand forest could 
provide the area of the dominant species and the volume data while 
the economic and bamboo area data were estimated from the data of 
different provinces. It is worth notice that the definition of stand forest 

http://www.iciba.com/climatic_impact
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was changed in 1994: the canopy density for stand forest was adjusted 
from greater than 0.3 to no less than 0.2. In order to make consistent 
comparisons, we constructed a linear relationship between area and 
total carbon stock based on both standards [2,29]. To achieve more 
accurate conversions, we used power function conversion with canopy 
density equal to or greater than 0.2 as the uniform standard (as shown 
below) in the following analysis. 

Area0.2=1.29*Area0.3
0.995 (R2=0.996, N=30)                                          (1)

Carbon0.2=1.147*Carbon0.3
0.996 (R2=0.999, N=30)                                (2)

Where Area0.2 and Area0.3 indicated the provincial stand forest area 
(in 104 ha) with canopy density greater than 0.3 and 0.2, respectively; 
Carbon0.2 and Carbon0.3 indicated the biomass carbon stock (Tg C) 
under the two standards.

Forest type data

There are multiple ways to classify the land cover and MODIS 
classification data is the most important one [25]: the vegetation map 
of the People’s Republic of China with a scale of 1:1000000 [30]. In 
MODIS database, MCD12Q1 data is updated annually with 500 m 
spatial resolution. The data recorded from 2001 to 2011 reveal the 
dynamic change of vegetation, and therefore this study used MCD12Q1 
data.

In order to reduce the error in the analysis of impacts of climate 
change on BCD due to the change of land classification, we selected the 
invariant pixels in the MODIS database corresponding to the vegetation 
types from 2001 to 2011. In the study area, the invariant pixels can be 
divided into four categories: mixed forest is major vegetation which 
accounts for 69.7%, savanna accounts for 7.9%, grassland accounts for 
9.6% and cropland accounts for 9.0%. 

PDSI data

The quantification of drought is a difficult task, as we usually 
identify a drought by its effects on different systems (agriculture, water 
resources, ecosystem), but there is not a unique physical variable we can 
measure to quantify drought intensity [31]. The analysis of the spatial 
and temporal features of drought is the prerequisite to evaluate the 
response of forest ecological system to drought. However, the space-
time features of drought depend on specific assessment indicators, 
and the climate and vegetation factors are widely different in different 
assessment indicators. So the rationality of the assessment index is the 
prerequisite for an accurate assessment of drought and its impact. In the 
assessment of drought and its impact, the drought intensity, duration, 
frequency and area determine the effects of drought and are the core for 
regional drought analysis [32]. Drought is usually caused by a variety of 
complex physical mechanism and the indices for assessing drought are 
usually constructed in specific region and for a certain period of time 
with temporal and spatial characteristics [33]. 

In this article, we used the monthly scale with 0.5D spatial resolution 
as the PDSI to measure the drought level. The Palmer Drought Severity 
Index (PDSI) can be used to monitor drought conditions, calculating 
with precipitation, temperature, and soil moisture data [34,35]. 
According to the principle of soil water balance, droughts are defined 
to be continuous abnormal water deficit or water deficit due to the fact 
that actual water supply continues to be less than the local suitable 
water supply.

Forest BCD estimation

In order to analyze the relationship between meteorological factors 

and forest BCD, we need to first obtain the BCD of all forest pixels in 
China. First we counted the area and volume of every province from 
forest resources statistics of China. The ways to calculate the biomass 
of the three forest types are also different. The biomass density of 
economic forest is 23.7 Mg/ha (1 Mg=1000 kg or 106 g). Bamboo can 
be divided into moso and other bamboo; biomass density of moso is 
81.9 Mg/ha while biomass density of other bamboo is 53.1 Mg/ha [36]. 
For calculation of stand forest BCD, we used biomass expansion factor 
(BEF). The results showed that biomass can be calculated from forest 
volume data using BEF as shown below [37]:

B= a V+ b                                                                                               (3)

Where B is the total biomass (Mg ha-1); V stand for forest volume 
(m3 ha-1); a and b are conversion coefficients of specific types of forest. 
In order to achieve a more accurate calculation of forest biomass and 
improve the potential deficiencies including the short-term statistics, 
without considering the influence of forest age and insufficient data 
[37,38], we updated the conversion coefficient (Table 1). In this case, 
the forest volume data can be more accurately converted to biomass 
using 0.5 as the carbon conversion coefficient of biomass. Previous 
studies have shown that multiple linear regression model of each 
province can be constructed in terms of the corresponding mean BCD, 
NDVI and the latitude and longitude coordinates. Moreover, elevation 
also has a direct impact on the vegetation and thus BCD. Elevation 
data was mainly from the global climate data network (http://www.
worldclim.org/), and the resolution was 500m. The study area was a 
typical plateau mountainous region, in which the average elevation of 
the mixed forest was 1896m. We therefore estimated the BCD of each 

S NO. Forest Type a b
1 Abies, Picea 0.3933 56.650
2 Cunninghamia lanceolata 0.4553 17.552
3 Platycladus and Cupressus 0.4904 30.427
4 Hardwoods, Softwoods 0.8918 28.441
5 Pinus armandi 0.6217 12.960
6 Pinus koraiensis 0.4691 24.659
7 Pinus yunnanensis, Pinus kisiya 0.7370 3.2760
8 Pinus tabulaeformis 0.7709 8.8631
9 Pinus taeda 0.8136 7.0371
10 Cryptomeria fortunei, Tsuga chinensis, Keteleeria 0.5334 12.431
11 Tropical forests 0.9745 12.068
12 Metasequoia glyptostroboides 0.4960 3.6048
13 Acer, Tilia, Ulmus 0.7564 8.3103
14 Davidia 0.8956 0.0048
15 Betula 0.8101 11.682
16 Casuarina 0.8142 50.530
17 Quercus 0.7848 16.715
18 Eucalyptus 0.5631 10.835
19 Larix 0.6079 17.062
20 Phoebe, Cinnamomum 0.5381 41.881
21 Mixed coniferous and broadleaf forest 0.4385 52.905
22 Sassafras 0.8354 4.5822
23 Pinus sylvestris, Pinus densifolia 0.5162 18.293
24 Mixed coniferous 0.7442 26.806
25 Populus 0.6251 11.462
26 Mixed broadleaf forest 0.7393 43.210
27 Fraxinus, Juglans, Phellodendron 1.0394 2.3728
28 Pinus densata 0.4508 29.099
29 Acacia 0.5720 49.996
30 Pinus massoniana 0.6632 7.2656

Table 1: Biomass conversion coefficients [37].
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pixel position using the multiple linear regression relationship between 
BCD and these variables.

Impact of drought

In order to evaluate the impact of the drought occurred from 2009 
to 2013 on forest carbon stock and to detect the unusual change of BCD 
during this period, we analyzed the correlation between BCD indicating 
vegetation carbon absorption and PDSI indicating the drought level.

We have found that the 2009-2010 droughts could be divided into 
different stages: first stage, middle stage and last stage and the middle 
stage (Dec 2009-Sep 2010) was the most serious one [20]. Therefore, 
in the analysis of 2009-2013 drought, we estimated the drought level 
from the PDSI averaged over the PDSI detected from Dec of previous 
year to Sep of the following year. The 2010 drought severely affected the 
vegetation in the five provinces in the southwestern China. However, 
the impact of drought was recovered in the following several years and 
the response of vegetation to drought also recovered somehow.

Z value is often used for anomaly detection. In order to show the 
unusual change of forest vegetation due to the drought, we calculated 
the Z value of BCD from 2009 to 2013 as shown below:
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−

=                                                          (4)

Where X is BCD, X𝑛 is the average BCD, and σ (X) stands for the 
standard deviation. We used the mean value of BCD of 2001-2008 
as the vegetation carbon absorption in normal years to calculate the 
anomaly from 2009 to 2013.

Results
Biomass estimation

In this study, forest inventory data and corresponding remote 
sensing data were used to develop the forest biomass estimation model. 
The optimal regression equation was identified according to a stepwise 
regression method through the least squares regression analysis.

Where lat and lon are the average latitudes and longitudes of forest 
of each province, they stand for the geographic location of forests. 
Elevation is another most important parameters impacting vegetation. 
The effect of elevation on biomass estimation was also tested by 
introducing the variable of elevation.

B C D = 7 4 6 . 0 6 3 + 8 6 . 8 3 7 * N D V I - 1 7 . 3 2 6 * l n ( N D V I ) -
14.65*lon+0.067*lon2-0.347*lat+0.0086*dem

(R2=0.86, P<0.001)                                                                                   (5)

Forest inventory data in 1994-2013 were used to evaluate BCD 
estimation (Figure 2), and the R2 is 0.86. Evaluated results show that 
the model is reliable in estimation of the China’s BCD.

BCD changes in the study area

To evaluate the spatial changes of forest biomass carbon density in 
our study area, we calculated mean of BCD from 2009 to 2013 (Figure 
3). It can be seen that the biomass carbon density in our study area 
shows significant spatial differences. The average BCD in study area was 
39.02 Mg C/ha. Figure 3 illustrates the distribution of BCD, indicating 
a highly spatial heterogeneity which reflects differences in ages and 
climatic conditions. The higher BCD occupied the northwestern of 
region, mean BCD is 50-70 Mg C/ha, while BCD relatively lower in the 
eastern coastal and central areas. 

The average altitude of the study area is 1896 m, and we make two 
groups corresponding to lower than 1896 m and higher than 1896 m, 
then statistic the frequency distribution of the mean BCD in 2000-2013 
(Figure 4). From the distribution frequency of vegetation, the result of 
the independent sample T test show that the frequency distribution of 
BCD has no significant difference with altitude. The average value of 
BCD of all pixels below the mean altitude is 36.18 Mg C/ha, while the 
average value of BCD higher than mean altitude is 39.43 Mg C/ha.

The effect of drought on BCD

In order to analyze the impact of drought of different levels on 
vegetation BCD, we calculated the mean PDSI from 2009 to 2013 
(Figure 5) as well as the spatial distribution and frequency variation of 
BCD anomaly (Figure 6). In the PDSI box chart, the points from top 
to bottom represented the maximum value, 99% site, 75% site, mean 
value, 25% site, 1% site and the minimum value, respectively. The 
statistical analysis showed that, compared to 2009, the mean value of 

 

100

90
80

70
60

50

40

30
20

10
0
0      10     20     30     40     50     60     70    80     90    100

y=0.86x+4.23
R2=0.86

Forest Inventory(Mg C/ha)

R
em

ot
e 

se
ns

in
g 

es
tim

at
es

(M
g 

C
/h

a)

Figure 2: Comparison between observed and estimated results of BCD. Model 
evaluation using forest inventory data in 1994-2013. In this figure the number 
of points was 123, correlation coefficient between the two estimates was 0.86, 
with a good coincidence between the two estimates for most provinces.
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Figure 3: Spatial distribution of mean BCD from 2009-2013. The higher carbon 
density appeared in the northwestern while lower in the eastern region.
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part of the study area increased remarkably. The BCD Anomaly mainly 
distributed from -4 to 0 and the mean value was -0.959. In 2012, the 
overall situation recovered. In 2013, more than 72% of the pixels were 
greater than 0, the mean value of BCD Anomaly reached 0.371 and the 
vegetation growth completely returned to normal.

We implemented a correlation between PDSI and BCD anomaly in 
2010 and the result was shown below. It is clear from the Figure 7 that 
BCD anomaly decreased with the decrease of PDSI and R2 reached 0.37 

all PDSI in 2010 decreased by 1.292. The mean value of 2011 and 2012 
PDSI pixels were still lower than that of 2009, which declined by 0.502 
and 0.339, respectively, but increased compared to 2010. The mean 
value returned to the 2009 level until 2013. PDSI data clearly suggested 
that the drought occurred in 2010 was the most serious one and less 
severe drought still occurred in 2011 and 2012.

The distribution and frequency of BCD Anomaly showed that the 
distribution of BCD in different years were significantly different. In 
2009, the frequency of BCD Anomaly mainly distributed from -1 to 1 
and the mean value was -0.129; the spatial distribution showed slight 
anomaly in the center of the study area. However, compared to 2009, 
BCD significantly declined in the southwestern part of the study area 
in 2010. The BCD Anomaly frequency mainly distributed from -4 to 1 
and the mean value was -1.004. In 2011, the BCD in northwestern part 
recovered but the pixels indicating BCD anomaly in the southwestern 
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Figure 5: The figure shows the distribution of all invariant PDSI from 2009 to 
2013. It is clear that PDSI mean value greater than 0 in 2009, which was at 
normal level. 

 
Figure 6: BCD anomaly spatial distribution (left) and frequency distribution 
(right). BCD anomaly spatial distribution was calculated using Z value method 
and the data from previous Dec to Oct of current year.
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(P<0.001). This indicated that the response of forest was strong upon 
strong drought disturbance, which led to weakened vegetation carbon 
sequestration capacity and decline of BCD anomaly.

Discussion
In this work, we combined PDSI and BCD Anomaly to analyze the 

change of BCD Anomaly upon drought disturbance. First of all, in the 
biomass calculation of five provinces using BEF method, we adopted 
the most comprehensive conversion coefficients, which not only covers 
the longest time span, but also takes into account the age and segments 
of stand. Multiple nonlinear regression was then performed using 
remote sensing and survey data to improve the spatial resolution in 
calculation of biomass. At last, the linear analysis was implemented 
between PDSI and BCD Anomaly to detect the relationship between 
drought and BCD.

Biological carbon sequestration is an important biological 
process, in which vegetation absorb CO2 through photosynthesis 
and transform it into organic matter. Biomass is used as the index 
indicating the quality of organic matter per unit area of vegetation. 
Biological carbon sequestration can be influenced by internal factors 
such as age of stand forest, diversity of tree species as well as external 
disturbances. The driving force for the change of forest carbon stock is 
the dynamic changes of biomass due to the forest vegetation activity. 
Due to distinct external environmental factors, the carbon stock and 
carbon density can also be greatly different. Therefore, the study on 
the dynamic changes of forest carbon stock upon different levels of 
drought disturbance is important not only for evaluating the role of 
forest in regional-scale carbon cycle, but also for restoration, protection 
and management of forest.

Usually, drought, especially extreme drought will affect the growth 
of vegetation. Sergio M. Vicente-Serrano [31] also proves that the 
response of vegetation to drought depends on characteristic drought 
time-scales for different biomes. In the study of Zhang [14], climate and 
forest disturbances would impact the forest biomass to a certain extent. 
The same with these studies, our work provided valuable information 

and evidence for the relationships between forest biomass and drought 
disturbances.

In our estimation, we not only used the new conversion coefficients 
to calculate the stand biomass with thorough consideration of the age 
of stand and diversity of tree species, and also increased the biomass 
of bamboo and economic forest area based on the detailed table of 
bamboo and economic forest area, which achieved a more complete 
biomass data set of these provinces.

The NDVI value used in the remote sensing estimation model can 
be used to represent the best vegetation growth status, but it cannot 
represent the organic matter in the biological carbon cycle. NDVI in 
the remote sensing estimation model cannot be used in the assessment 
of vegetation biomass change upon drought disturbance. Moreover, 
NDVI only accounts for 12.8% of the biomass while the elevation 
accounts for 56%, geographical location accounts for 17.5%, and 
therefore NDVI alone cannot be used to represent BCD. Elevation is 
one of the important parameters affecting the growth of vegetation, 
which is also involved in our study. Compared to reference [5], in which 
the interpretation of all factors to BCD was 64%, the interpretation in 
this study is improved by 22% and the accuracy of BCD estimation is 
remarkably improved.

Figure 2 showed that remote sensing estimation is smaller with 
respect to the forest statistical data, which is due to the fact that the 
national statistical data of forest resources is mainly obtained by 
manual operation and thus a certain error is inevitable. Take, for 
example, Tibet, due to the large area and wide distribution of forests, 
human error may be inevitable in the survey.

In our remote sensing estimation model, we used the annual 
maximum value of NDVI to estimate the forest BCD, but there may 
be still certain uncertainty. When the age of tree is small, NDVI can 
somehow represent the changes in forest biomass. But due to the 
saturation limit of NDVI [39], it may not increase upon the growth of 
vegetation, but the biomass will further increase due to photosynthesis. 
This is one of the limitations in this study.

Conclusions
In this article, we used remote sensing method to estimate the 

biomass in five provinces in the southwestern China from 2009 to 
2013, calculated the variation of biomass carbon density. The results 
showed that the accuracy can reach R2=0.86 using BEF to calculate the 
forest biomass followed by remote sensing estimation. After 2000, BCD 
of the forest vegetation in the study area increased with the average 
annual increase rate of 0.102 Mg C /ha, but it remarkably reduced 
from 2009 to 2012 and especially plunged from 2009 to 2010. This 
suggests that the forest carbon sequestration capability weakened and 
forest carbon stock declined during this time, which almost returned 
to normal in 2013. PDSI is an important index indicating drought 
level. PDSI in the study area declined from 2009-2010, was lower than 
normal level in 2011-2012 and recovered in 2013. BCD also showed 
anomaly during this time, and in particular BCD anomaly was serious 
in 2010. Correlation analysis between BCD anomaly and PDSI showed 
that BCD anomaly decreased upon decrease of PDSI, indicating a more 
serious drought and BCD anomaly that lead to greater impact on BCD 
and thus forest carbon cycle.
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